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Numerical approximations and modeling of many physical, biological, and biomedical prob-
lems often deal with equations with highly varying coefficients, heterogeneous models
(described by different types of partial differential equations (PDEs) in different domains),
and/or have to take into consideration the complex structure of the computational sub-
domains. The major challenge here is to design an efficient numerical method that can
capture certain properties of analytical solutions in different domains/subdomains (such
as positivity, different regularity/smoothness of the solutions, etc.), while handling the
arbitrary geometries and complex structures of the domains. In this work, we employ
one-dimensional elliptic type models as the starting point to develop and numerically
test high-order accurate Difference Potentials Method (DPM) for variable coefficient elliptic
problems in heterogeneous media. While the method and analysis are simple in the one-
dimensional settings, they illustrate and test several important ideas and capabilities of the
developed approach.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Numerical approximations and modeling of many physical, biological, and biomedical problems often deal with equa-
tions with highly varying coefficients, heterogeneous models, and/or have to take into consideration the complex structure
of the computational subdomains. The major challenge here is to design an efficient and flexible numerical method (for
example, multi-scale method) that can capture certain properties of analytical solutions in different domains/subdomains,
while handling the arbitrary geometries and complex structures of the domains.

There is extensive literature that addresses problems in domains with irregular geometries and interface problems. Some
established finite-difference based methods for such problems are the Immersed Boundary Method (IB) ([17,18], etc.), the
Immersed Interface Method (IIM) ([9–11], etc.), the Ghost Fluid Method (GFM) ([5,13,12], etc.), the Matched Interface and
Boundary Method (MIB) ([32,30,31], etc.), and the method based on the Integral Equations approach ([15], etc.). These
methods are robust sharp interface methods that have been applied to solve many problems in science and engineering. For
a detailed review of the subject the reader can consult [11].

We consider here an approach based on Difference Potentials Method (DPM) [22,23]. The DPM on its own, or in com-
bination with other numerical methods, is an efficient tool for the numerical solution of interior and exterior boundary
value problems in arbitrary domains (see for example [22,23,14,24,28,16,25,26,3,4]). Viktor S. Ryaben’kii originally intro-
duced DPM in his Doctor of Science thesis (Habilitation thesis) in 1969. The DPM allows one to reduce uniquely solvable
and well-posed boundary value problems to pseudo-differential boundary equations with projections. Similar to the method
in [15], methods based on Difference Potentials (see for example [23,26,25,4,16], etc.) introduce computationally simple

* Corresponding author.
http://dx.doi.org/10.1016/j.apnum.2014.02.005
0168-9274/© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://dx.doi.org/10.1016/j.apnum.2014.02.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2014.02.005&domain=pdf


70 Y. Epshteyn, S. Phippen / Applied Numerical Mathematics 93 (2015) 69–86
auxiliary domains. After that, the original domains/subdomains are embedded into simple auxiliary domains (and the auxil-
iary domains are discretized using Cartesian grids). However, compared to the integral equation approach in [15], methods
based on Difference Potentials construct discrete pseudo-differential Boundary Equations with Projections to obtain the values
of the solutions at the points near the continuous boundaries of the original domains (at the points of the discrete grid
boundaries which approximate the continuous boundaries from the inside and outside of the domains). Using the obtained
values of the solutions at the discrete grid boundaries, the approximation to the solution in each domain/subdomain is
constructed through the discrete generalized Green’s formulas.

The main complexity of the methods based on Difference Potentials approach reduces to several solutions of simple aux-
iliary problems on structured Cartesian grids. Like the method in [15], and IIM, GFM and MIB, methods based on Difference
Potentials preserve the underlying accuracy of the schemes being used for the space discretization of the continuous PDEs
in each domain/subdomain. But compared to [15], and to IIM and GFM, methods based on Difference Potentials are not
restricted by the type of the boundary or interface conditions (as long as the continuous problems are well-posed), see [23]
or some example of the recent works [2,25,26,4], etc. Furthermore, DPM is computationally efficient since any change of
the boundary/interface conditions affects only a particular component of the overall algorithm, and does not affect most of
the numerical algorithm (this property of the numerical method is crucial for computational and mathematical modeling
of many applied problems). Finally, Difference Potentials approach is well-suited for the development of parallel algorithms,
see [26,25,4] – examples of the second-order in space schemes based on Difference Potentials idea for 2D interface/com-
posite domain problems. The reader can consult [23,22] and [19,20] for a detailed theoretical study of the methods based
on Difference Potentials, and ([23,22,14,24,28,27,16,2,26,25,3,4], etc.) for the recent developments and applications of DPM.

In this work, we employ one-dimensional elliptic type models (second-order Boundary Value Problem (BVP)) as the starting point, to
develop and numerically test high-order accurate methods based on Difference Potentials approach for variable coefficient elliptic type
problems in heterogeneous media. Let us note that, previously in [26,25,4], we have developed efficient (second-order accurate
in space) schemes based on Difference Potentials idea for 2D interface/composite domain problems. The method developed
in [26,25,4] can handle non-matching interface conditions (as well as non-matching grids between each subdomain), and is
well-suited for the design of parallel algorithms. However, these schemes were constructed and tested for the solution of
Poisson’s or heat equations (constant coefficient). Also, a different example of the efficient and high-order accurate method,
based on Difference Potentials for the Helmholtz equation in homogeneous media with the variable wave number, was
recently developed and numerically tested in [16] for a single 2D domain. But to the best of our knowledge, this is the first
application (at this point in the simple settings) of Difference Potentials approach for the construction of high-order accurate numerical
schemes for problems with variable coefficients in heterogeneous media and non-matching interface conditions. While the method
and analysis are simple in the one-dimensional setting, they illustrate and test several important ideas and capabilities
of Difference Potentials approach. Furthermore, to develop these methods, we employ here a more general viewpoint on
Difference Potentials of being discrete potentials for the linear difference schemes (rather than approximation to the surface
potentials [19,20]) – “Difference Potential plays the same role for the solution of a general system of linear difference
equations (linear difference scheme), as the classical Cauchy’s type integral for the solution of Cauchy–Riemann system, or
in other words for the analytic functions” – see [22] or see Section 4.1 and Appendix A.

The paper is organized as follows. First, in Section 2 we give a brief summary of the main steps of the proposed algo-
rithms. In Section 3 we introduce the formulation of our problem. Next, to illustrate the framework for the construction of DPM
with a different order of accuracy, we construct DPM with a second and with a fourth-order accuracy in Section 4.1 for a single domain
1D elliptic type model. In Section 5, we extend the second and the fourth-order DPM to one-dimensional elliptic type interface/com-
posite domain model problem. Finally, we illustrate the performance of the proposed Difference Potentials Methods, as well as
compare Difference Potentials Methods with the Immersed Interface Method in several numerical experiments in Section 6.
Some concluding remarks are given in Section 7.

2. Algorithm

In this section we will briefly summarize the main steps of our algorithm. We will give a detailed description of each
step in the subsequent sections below.

• Step 1: Introduce a computationally simple auxiliary domain and formulate the auxiliary problem (AP).
• Step 2: Compute a Particular solution, u j := Gh f , x j ∈ N+ , as the solution of the Auxiliary Problem (AP). For the sin-

gle domain method, see (4.12)–(4.13) in Section 4.1 (second-order and fourth-order method). For the straightforward
extension of the algorithms to the interface and composite domains problems, see Section 5.

• Step 3: Next, compute the unknown boundary values or densities uγ at the points of the discrete grid boundary γ (value
of the unknown density uγ on γ ) by solving the system of linear equations derived from the system of Boundary
Equations with Projection: see (4.31)–(4.32) (second-order method), or (4.35)–(4.36) (fourth-order method) in Section 4.1,
and extension to the interface and composite domain problems (5.2)–(5.3) in Section 5.

• Step 4: Using the definition of the difference potential, Definition 4.2, Section 4.1, and Section 5 (algorithm for inter-
face/composite domain problems), construct the Difference Potential PN+γ uγ from the obtained density uγ .

• Step 5: Finally, reconstruct the approximation to the continuous solution from uγ using the generalized Green’s formula
u(x) ≈ PN+γ uγ + Gh f , see Theorem 4.4 in Section 4.1, and see Theorem 5.1 in Section 5.



Y. Epshteyn, S. Phippen / Applied Numerical Mathematics 93 (2015) 69–86 71
3. Elliptic type interface models

We are concerned here with a 1D elliptic type interface problem of the form:

(k1ux)x − σ1u = f1, x ∈ I1, (3.1)

(k2ux)x − σ2u = f2, x ∈ I2, (3.2)

subject to the Dirichlet boundary conditions specified at the points x = 0 and x = 1:

u(0) = a, and u(1) = b (3.3)

and interface conditions at α:

lint(u) = φ, x = α (3.4)

where I1 := [0,α) ⊂ I0
1 and I2 := (α,1] ⊂ I0

2 are two subdomains of the domain I := [0,1], 0 < α < 1 is the interface point,
and I0

1 and I0
2 are some auxiliary subdomains that contain the original subdomains I1 and I2 respectively. The functions

k1(x) � 1, k2(x) � 1, σ1(x) � 0, σ2(x) � 0 are sufficiently smooth functions defined in a larger auxiliary subdomains I0
1

and I0
2, respectively. f1(x) and f2(x) are sufficiently smooth functions defined in each subdomain I1 and I2 respectively.

Note, we assume that the operator on the left-hand side of Eq. (3.1) is well-defined on some larger auxiliary domain I0
1 , and the

operator on the left-hand side of Eq. (3.2) is well-defined on some larger auxiliary domain I0
2 . More precisely, we assume that for any

sufficiently smooth functions on the right-hand side of (3.1)–(3.2), Eqs. (3.1) and (3.2) have a unique solution on I0
1 and I0

2 , that satisfy
the given boundary conditions on ∂ I0

1 and ∂ I0
2 , respectively.

Remark. The Dirichlet boundary conditions (3.3) are chosen only for the purpose of illustration and the method (DPM) is
not restricted by any type of boundary conditions.

4. Single domain

Our goal is to develop high-order methods based on Difference Potentials idea for the problem (3.1)–(3.4). To simplify the
presentation (and to illustrate the unified framework for the construction of DPM with different orders of accuracy for the problems in
single domain, and/or for the interface/composite domain problems), we will first state the second and the fourth-order methods
for the single domain problem:

(kux)x − σu = f , x ∈ I (4.1)

subject to the Dirichlet boundary conditions specified at the points x = 0 and x = 1:

u(0) = a, and u(1) = b, (4.2)

and then extend the developed ideas in a straightforward way to the interface/composite domain problem (3.1)–(3.4) in
Section 5. As before, I = [0,1], the functions k(x) � 1, σ(x) � 0 are sufficiently smooth functions defined in some auxiliary
domain I0, such that I ⊂ I0 and f (x) is sufficiently smooth function defined in I . We also assume that the model problem
(4.1)–(4.2) is well-posed, as well as that the operator on the left-hand side of Eq. (4.1) is well-defined on some larger
auxiliary domain I0. Similar to [23,26,25,22], let us now introduce and define the main steps of the DPM for this problem.

4.1. Difference potentials approach for construction of high-order methods

We will present below (at this point, using simple one-dimensional settings) a framework based on Difference Po-
tentials approach to construct high-order methods for problems with variable coefficients in heterogeneous media, and
non-matching interface conditions. However, major principles of this framework will stay the same when applied to the
numerical approximation of the models in arbitrary domains in 2D and 3D, and subject to general boundary conditions.
Also, it is important to note that the presented approach based on Difference Potentials is general, and can be employed in
similar ways with any (most suitable) underlying high-order discretization of the given continuous problem. In this work,
the particular choices of the second-order discretization (4.6) and the fourth-order discretization (4.7) were only employed
for purpose of the efficient illustration and implementation of the ideas.

We will present our ideas below by designing the second-order and the fourth-order methods together, and will only
comment on the technical differences.

Introduction of the auxiliary domain

Let us place the original domain I in the auxiliary domain I0 := [c,d] ⊂ R. Next, we introduce a Cartesian mesh for I0,
with points x j = c + j�x ( j = 0,1, . . . , N0). Let us assume for simplicity that �x := h = d−c

0 . Note that the boundary points

N
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Fig. 1. Example (a sketch) of the auxiliary domain I0, original domain I = [0,1], and the example of points in set γ = {xl, xl+1, xL , xL+1} for the 3-point
second-order scheme.

Fig. 2. Example (a sketch) of the auxiliary domain I0, original domain I = [0,1], and the example of points in set γ = {xl, xl+1, xl+2, xl+3, xL , xL+1, xL+2, xL+3}
for the 5-point fourth-order scheme.

x = 0 and x = 1 will typically fall between grid points, say xl � 0 � xl+1 and xL � 1 � xL+1 (for the 3-point second-order
scheme); and between grid points xl < xl+1 � 0 � xl+2 < xl+3 and xL < xL+1 � 1 � xL+2 < xL+3 (for the 5-point fourth-order
scheme), see Fig. 1 and Fig. 2.

Now, we define a finite-difference stencil Nκ
j := N3

j or Nκ
j := N5

j with its center placed at x j , to be a 3-point central
finite-difference stencil of the second-order method, or a 5-point central finite-difference stencil of the fourth-order method,
respectively:

Nκ
j := { j − 1, j, j + 1}, κ = 3, or (4.3)

Nκ
j := { j − 2, j − 1, j, j + 1, j + 2}, κ = 5. (4.4)

Next, we introduce point set M0, the set of all the grid nodes x j that belong to the interior of the auxiliary domain I0;
M+ := M0 ∩ I , the set of all the grid nodes x j that belong to the interior of the original domain I; and M− := M0\M+ , the
set of all the grid nodes x j that are inside of the auxiliary domain I0, but belong to the exterior of the original domain I .
Define N+ := {⋃ j Nκ

j | x j ∈ M+}, the set of all points covered by the stencil Nκ
j when the center point x j of the stencil goes

through all the points of the set M+ ⊂ I . Similarly, define N− := {⋃ j Nκ
j | x j ∈ M−}, the set of all points covered by the

stencil Nκ
j when the center point x j of the stencil goes through all the points of the set M− .

Now we can introduce the set γ := N+ ∩ N− . The set γ is called the discrete grid boundary. The mesh nodes from set
γ straddle the boundary ∂ I ≡ {0,1}. In case of the second-order method (with 3-point stencil), the set γ will contain four
mesh nodes γ = {l, l +1, L, L +1}, see Fig. 1. In case of the fourth-order method (with 5-point stencil), the set γ will contain
eight mesh nodes γ = {l, l + 1, l + 2, l + 3, L, L + 1, L + 2, L + 3}, see Fig. 2. Finally, define N0 := {⋃ j Nκ

j | x j ∈ M0} ⊂ I0.
Once again, let us emphasize, that κ either takes here the value 3 (if the 3-point stencil is used to construct the second-order

method), or 5 (if the 5-point stencil is used to construct the fourth-order method).
The point sets N0, M0, N+ , N− , M+ , M− , γ will be used to develop high-order methods based on the Difference

Potentials idea.

Construction of difference equations

The discrete version of the problem (4.1) is to find u j ∈ N+ such that

Lh[u j] = f j, x j ∈ M+ (4.5)

The discrete system of Eqs. (4.5) is obtained here by discretizing (4.1) with the standard second-order 3-point central finite
difference scheme (4.6) (if the second-order accuracy is desired), or with the fourth-order 5-point central finite difference
scheme in space (4.7) (if the fourth-order accuracy is desired). Here and below, by Lh we understand the discrete linear operator
obtained using either the second-order approximation to (4.1), or the fourth-order approximation to (4.1), and with f j as the discrete
right-hand side.

Second-order scheme

Lh[u j] := 1

h2

(
k j+ 1

2
(u j+1 − u j) − k j− 1

2
(u j − u j−1)

) − σ ju j, (4.6)

the right-hand side f j := f (x j), and the coefficients k j+ 1
2

:= k(x j+ 1
2
),σ j := σ(x j), and x j+ 1

2
is the middle point of the

interval [x j, x j+1].
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Fourth-order scheme

Lh[u j] := k j
−u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2

12h2
+ (kx) j

u j−2 − 8u j−1 + 8u j+1 − u j+2

12h
− σ ju j, (4.7)

the right-hand side f j := f (x j), and the coefficients k j := k(x j), (kx) j := kx(x j), σ j := σ(x j). In (4.7), we have used the
following fourth-order approximation for

uxx ≈ −u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2

12h2
(4.8)

ux ≈ u j−2 − 8u j−1 + 8u j+1 − u j+2

12h
. (4.9)

Remark. Let us note that the scheme in the form of (4.7) is obtained by rewriting equation (kux)x − σ u = f in the form
of kuxx + kxux − σ u = f (in other words, we assume that this continuous problem (and a nearby problem) is well-posed as
well). However, this is not always the best choice, for instance due to some properties of the coefficient k, or due to the
physics of the problems. In some cases, it is better to discretize the model (kux)x −σ u = f directly (as we did in (4.6) for the
second-order scheme). However, the main ideas of the DPM presented below will not change. Here, we illustrate the ideas
using scheme (4.7) for the construction of the fourth-order method, especially since we develop a multi-domain approach
in Section 5 (also, the same scheme applies to an equation of the form k1uxx + k2ux −σ u = f ). If needed, derivatives of the
coefficients, like kx, . . . , can be evaluated by the appropriate finite difference schemes to avoid analytic differentiation.

In general, the linear system of difference equations (4.5) will have multiple solutions since we did not impose any
discrete boundary conditions. Once we complete the system (4.5) with the appropriate choice of the numerical boundary
conditions, the scheme will result in an accurate approximation of the continuous problem in domain I . To do so here, we
will develop an approach based on the idea of the Difference Potentials [23,22].

General discrete auxiliary problem

One of the major steps of the DPM is the introduction of the auxiliary problem, which we will denote as (AP) and will
give definition below.

Definition 4.1. For the given grid function q ∈ M0, find the solution v ∈ N0 of the discrete (AP) such that it satisfies the
following system of equations:

Lh[v j] = q j, x j ∈ M0, (4.10)

v j = 0, x j ∈ N0\M0. (4.11)

Here, Lh is the same linear discrete operator as in (4.5), but now it is defined on the larger auxiliary domain I0 (note
that, we assumed before in Section 4 that the operator on the left-hand side of Eq. (4.1) is well-defined on the entire
domain I0). It is applied in (4.10) to the function v ∈ N0. We note that (for small enough h (for (4.7)) and under the above
assumptions on the continuous problem) the (AP) (4.10)–(4.11) is well-defined for any right hand side q j : it has a unique
solution v ∈ N0. In this work we supplemented the discrete (AP) (4.10) by the zero boundary conditions (4.11). In general,
the boundary conditions for (AP) are selected to guarantee that the discrete equation Lh[v j] = q j has a unique solution v ∈ N0 for any
discrete right-hand side q.

Remark. The solution of the (AP) (4.10)–(4.11) defines a discrete Green’s operator Gh (or the inverse operator to Lh). Al-
though the choice of boundary conditions (4.11) will affect the operator Gh , and hence the difference potentials and the
projections defined below, it will not affect the final approximate solution to (4.1)–(4.2), as long as the (AP) is uniquely
solvable and well-posed.

Construction of a particular solution

Let us denote by u j := Gh f j , u j ∈ N+ the particular solution of the discrete problem (4.5), which we will construct as
the solution (restricted to set N+) of the auxiliary problem (AP) (4.10)–(4.11) of the following form:

Lh[u j] =
{

f j, x j ∈ M+,

0, x j ∈ M−,
(4.12)

u j = 0, x j ∈ N0\M0. (4.13)
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Remark. The right-hand side of (4.10) in (AP) for the construction of a particular solution, is set to

q j =
{

f j, x j ∈ M+,

0, x j ∈ M−.
(4.14)

Difference potential

We now introduce a linear space Vγ of all the grid functions denoted by vγ defined on γ [23,26,25,4], etc. We will
extend the value vγ by zero to other points of the grid N0.

Definition 4.2. The Difference Potential with any given density vγ ∈ Vγ is the grid function u j := PN+γ vγ , defined on N+ ,
and coincides on N+ with the solution u j of the auxiliary problem (AP) (4.10)–(4.11) of the following form:

Lh[u j] =
{

0, x j ∈ M+,

Lh[vγ ], x j ∈ M−,
(4.15)

u j = 0, x j ∈ N0\M0. (4.16)

Remark. The right-hand side of (4.10) in (AP) for constructing a difference potential with density vγ is set to

q j =
{

0, x j ∈ M+,

Lh[vγ ], x j ∈ M−.
(4.17)

The Difference Potential with density vγ ∈ Vγ is the discrete inverse operator. Here, PN+γ denotes the operator which
constructs the difference potential u j = PN+γ vγ from the given density vγ ∈ Vγ . The operator PN+γ is the linear operator
of the density vγ . Hence, it can be easily constructed, as illustrated below:

um =
∑
j∈γ

A jm v j, xm ∈ N+,

with
∑

j∈γ A jm v j being:

for the second-order method

∑
j∈γ

A jm v j ≡ Alm vl + Al+1m vl+1 + ALm v L + AL+1m v L+1, xm ∈ N+, (4.18)

and for the fourth-order method

∑
j∈γ

A jm v j ≡ Alm vl + Al+1m vl+1 + Al+2m vl+2 + Al+3m vl+3

+ ALm v L + AL+1m v L+1 + AL+2m v L+2 + AL+3m v L+3, xm ∈ N+. (4.19)

Here, by um we denote the value at the grid point xm of the Difference Potential P N+
γ

vγ with the density vγ , and

by {A jm} the coefficients of the difference potentials operator. The coefficients {A jm} can be computed by solving an
auxiliary problem (AP) (4.15)–(4.16) (or by constructing a Difference Potential operator) with the unit density vγ at
points x j	 ∈ γ . Here, for the second-order method, x j	 ∈ γ ≡ {xl, xl+1, xL, xL+1}, and for the fourth-order method, x j	 ∈ γ ≡
{xl, xl+1, xl+2, xl+3, xL, xL+1, xL+2, xL+3}. Density vγ is defined as the unit density at point x j	 ∈ γ :

vγ =
{

1, if j = j	,

0, ∀ j 	= j	.
(4.20)

Therefore, A jm is the value at a point xm ∈ N+ of the solution of the auxiliary problem (AP) (4.15)–(4.16) with the unit
density (or the value at a point xm ∈ N+ of the Difference Potential with the unit density (4.20)).

Next, similarly to ([23,3], etc.) we can define another operator Pγ : Vγ → Vγ that is defined as the trace (or restric-
tion/projection) of the Difference Potential PN+γ vγ on the grid boundary γ :

Pγ vγ := Trγ (PN+γ vγ ) = (PN+γ vγ )|γ (4.21)

We will now formulate the crucial theorem of the method (see [23] for the general result).
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Theorem 4.3. Density uγ is the trace of some solution u to the Difference Equations (4.5): uγ ≡ Trγ u, if and only if, the following
equality holds

uγ = Pγ uγ + Gh fγ , (4.22)

where Gh fγ := Trγ (Gh f ) is the trace (or restriction) of the particular solution Gh f ∈ N+ constructed in (4.12)–(4.13) on the grid
boundary γ .

Proof. The proof follows the argument from [23] and for the reader’s convenience we will present it below.
First, let us assume that uγ is the trace of some solution to the difference equations (4.5): uγ = Trγ u, where u ∈ N+

is the solution to the difference equations Lh[u j] = f j , x j ∈ M+ . Construct the grid function: w := PN+γ uγ + Gh f on N0

(not restricted to N+). From the definition of the difference potentials PN+γ uγ (4.15), and the particular solution Gh f (see
(4.12)–(4.13)), the grid function w ∈ N0 coincides with the solution of (AP) (4.10)–(4.11) of the form:

Lh[w j] =
{

f j, x j ∈ M+,

Lh[uγ ], x j ∈ M−,
(4.23)

w j = 0, x j ∈ N0\M0. (4.24)

At the same time, u ∈ N+ is the solution of Lh[u j] = f j , x j ∈ M+ , hence f j ≡ Lh[u j] in (4.23), and uγ is the trace of the
solution u. Hence we have that:

Lh[w j] = Lh[u j], x j ∈ M0 (4.25)

Note that solution u is extended by 0 to the points of the set N0\N+ . Due to the uniqueness argument, w ≡ u, on N+ .
Hence, we can reconstruct solution u to the difference equations (4.5) using the formula: u = PN+γ uγ + Gh f . Let us apply
the trace operator to both sides of this formula to obtain the desired equality: uγ = Pγ uγ + Gh fγ .

Next, assume that the equality (4.22) holds true for some grid function uγ ∈ Vγ . Again, let us construct the grid function:
w := PN+γ uγ + Gh f on N0. Thus, w is the solution to (AP) (4.23)–(4.24), and therefore it coincides on M+ with a solution
u of the difference equations (4.5): w ≡ u on M+ . Hence, due to equality (4.22), uγ coincides with the trace wγ of w , and
thus coincides with the trace uγ of a solution u of the difference equations (4.5): uγ ≡ Trγ u (note that for any density
uγ ∈ Vγ , grid function PN+γ uγ + Gh f ∈ N+ is some solution to the difference equations (4.5)). �
Remark. Note that the difference potential PN+γ uγ is the solution to the homogeneous difference equation Lh[u j] = 0,
x j ∈ M+ , and is uniquely defined once we know the value of the density uγ at the points of the boundary γ .

Also, note that density uγ has to satisfy Boundary Equations uγ − Pγ uγ = Gh fγ in order to be a trace of the solution to the
difference equation Lh[u j] = f j .

Remark. In the case of a constant coefficient model problem (4.1) (assume, k(x) ≡ 1), using the technique from [21] let
us show a direct connection of the difference potential PN+γ uγ to the Cauchy-type integral (see [23,22] for more general
discussion on the subject). We also assume σ(x) = 0 for simplicity of illustration and will consider the example of the
second-order method here (4.6) (for reader’s convenience we present similar calculations for the fourth-order method (4.7)
in Appendix A).

Thus, the homogeneous difference equation Lh[u j] = 0, j = l + 1, . . . , L for the second order scheme is

u j−1 − 2u j + u j+1

h2
= 0, j = l + 1, . . . , L. (4.26)

Consider a difference equation of the form

z j−1 − 2z j + z j+1 = 0. (4.27)

Denote, z := (zl, zl+1, . . . , zL, zL+1) to be a solution of the difference equation (4.27). Next, define the generating polynomial

Z(g) =
L+1∑
j=l

z j g j,

where the coefficients of the polynomial z j are the values of the solution z at the grid points. Multiply (4.27) by g j , and
sum from l + 1, . . . , L, thus we will have:
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L∑
j=l+1

z j−1 g j − 2
L∑

j=l+1

z j g j +
L∑

j=l+1

z j+1 g j = 0. (4.28)

For example, we can rewrite the first term as:

g
L∑

j=l+1

z j−1 g j−1 = g Z(g) − zL gL+1 − zL+1 gL+2.

Similarly, the second and the third term in (4.28) can be rewritten as

L∑
j=l+1

z j g j = Z(g) − zl g
l − zL+1 gL+1

and

1

g

L∑
j=l+1

z j+1 g j+1 = 1

g
Z(g) − zl g

l−1 − zl+1 gl.

This way, (4.27) becomes

(
g Z(g) − zL gL+1 − zL+1 gL+2) − 2

(
Z(g) − zl g

l − zL+1 gL+1) +
(

Z(g)

g
− zl g

l−1 − zl+1 gl
)

= 0. (4.29)

Finally, let us recall Cauchy’s residue Theorem, and represent

z j = 1

2π i

∮
|g|=2

Z(g)

g j+1
dg.

Solving (4.29) for Z(g) we obtain

z j = 1

2π i

∮
|g|=2

gl(1 − 2g)zl + gl+1zl+1 + gL+2zL + (g − 2)gL+2zL+1

(1 − g)2 g j+1
dg, j = l, . . . , L + 1. (4.30)

The Cauchy-type integral (4.30) plays the role of the discrete potential for the linear difference equations (4.27) (each z j, j = l, . . . , L +1
is determined by values zγ ), as the difference potential PN+γ uγ for the linear difference equations (4.26).

Coupling of Boundary Equations with boundary conditions

We will present below the details for the second-order scheme and for the fourth-order scheme separately since there
are differences in the technical details (however, the main strategy is the same for any high-order scheme).

Case of the second-order method

The Boundary Equations: uγ − Pγ uγ = Gh fγ for the unknown density uγ is the linear system of equations:

(I − A)u = Ghf, (4.31)

where I is the identity matrix and A is the matrix of the coefficients of the difference potentials with unit densities:⎛
⎜⎜⎝

All Al+1l ALl AL+1l

All+1 Al+1l+1 ALl+1 AL+1l+1

AlL Al+1L ALL AL+1L

AlL+1 Al+1L+1 ALL+1 AL+1L+1

⎞
⎟⎟⎠ .

The column vector of the unknown densities is

u := (ul, ul+1, uL, uL+1)
T ,

and the column vector of the right-hand side is

Ghf := (
Gh fl, Gh fl+1, Gh f L, Gh f L+1

)T
.

The above system of Boundary Equations (4.31) will have multiple solutions without boundary conditions (4.2), since it is
equivalent to the difference equations Lh[u j] = f j , x j ∈ M+ . We need to supplement it by the boundary conditions (4.2) to
construct the unique uγ .
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Remark. It can be shown (see for example, [23] or [3]) that the rank of the linear system will be |γ in| (here, |γ in| is the
cardinality of a set γ in – the interior layer of the grid boundary γ = γ in ∪ γ ex . Similarly, γ ex denotes the exterior layer).
For the second order method here, the rank is 2.

Therefore, we will consider the following approach to solve for the unknown densities uγ from the Boundary Equa-
tions (4.31). Here, using the idea of the Taylor expansion, one can represent the unknown densities uγ with the values of
the continuous solution and its derivatives at the boundary of the domain with the desired accuracy: in other words, one
can define the extension operator from the continuous boundary ∂ I to the discrete boundary γ for the solution of (4.1). Note that the
extension operator (the way it is constructed below) depends only on the properties of the given model at the continuous boundary ∂ I .
For example, in case of 3 terms, the extension operator is:

u j := u|∂ I ± dux|∂ I + d2

2
uxx

∣∣∣∣
∂ I

, x j ∈ γ , (4.32)

where

u|∂ I := u(0), ux|∂ I := ux(0), uxx|∂ I := uxx(0), if j = {l, l + 1},
and

u|∂ I := u(1), ux|∂ I := ux(1), uxx|∂ I := uxx(1), if j = {L, L + 1}.
d denotes the distance from point x j ∈ γ to the boundary point. We take it with either sign “+” or with sign “−”.

The value u|∂ I is given due to the boundary conditions (4.2). Let us denote the unknown value of C1 := ux(0) and
C2 := ux(1). We can obtain the values of higher-order derivatives using the given differential equation (4.1). In case of the
second-order derivatives, this is simply

uxx(0) = f (0) + σ(0)a

k(0)
− kx(0)

k(0)
C1, (4.33)

and

uxx(1) = f (1) + σ(1)b

k(1)
− kx(1)

k(1)
C2. (4.34)

Hence, the only unknowns that we need to solve for are C1 and C2. We will use expansion (4.32) for uγ in the Boundary
Equations (4.31) and obtain the overdetermined linear system for C1 and C2. This system is solved uniquely using the least
square method. After that, we can obtain the value of the density uγ at the points of the grid boundary γ using formula
(4.32).

Case of the fourth-order method

Similarly to the second-order case above, the Boundary Equations: uγ − Pγ uγ = Gh fγ for the unknown density uγ is the
linear system of equations:

(I − A)u = Ghf, (4.35)

where I is the identity matrix and A is the matrix of the coefficients of the difference potentials with unit densities:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

All Al+1l Al+2l Al+3l ALl AL+1l AL+2l AL+3l

All+1 Al+1l+1 Al+2l+1 Al+3l+1 ALl+1 AL+1l+1 AL+2l+1 AL+3l+1

All+2 Al+1l+2 Al+2l+2 Al+3l+2 ALl+2 AL+1l+2 AL+2l+2 AL+3l+2

All+3 Al+1l+3 Al+2l+3 Al+3l+3 ALl+3 AL+1l+3 AL+2l+3 AL+3l+3

AlL Al+1L Al+2L Al+3L ALL AL+1L AL+2L AL+3L

AlL+1 Al+1L+1 Al+2L+1 Al+3L+1 ALL+1 AL+1L+1 AL+2L+1 AL+3L+1

AlL+2 Al+1L+2 Al+2L+2 Al+3L+2 ALL+2 AL+1L+2 AL+2L+2 AL+3L+2

AlL+3 Al+1L+3 Al+2L+3 Al+3L+3 ALL+3 AL+1L+3 AL+2L+3 AL+3L+3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The column vector of the unknown densities is

u := (ul, ul+1, ul+2, ul+3, uL, uL+1, uL+2, uL+3)
T ,

and the column vector of the right-hand side is

Ghf := (
Gh fl, Gh fl+1, Gh fl+2, Gh fl+3, Gh f L, Gh f L+1, Gh f L+2, Gh f L+3

)T
.

As before, the above system of Boundary Equations (4.35) without boundary conditions (4.2) will have multiple solutions,
since it is equivalent to the difference equations Lh[u j] = f j , x j ∈ M+ . To construct the unique uγ we need to supplement
it by the boundary conditions (4.2).
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Remark. The rank of the system here is 4 for the fourth order scheme.

Therefore, similarly to the second-order case, we will consider the following approach to solve for the unknown densities
uγ from the Boundary Equations (4.35). Again, using the idea of Taylor expansion, we will construct the extension from the
continuous boundary ∂ I to the discrete boundary γ of the solution to (4.1). For example, in case of 5-terms, extension
operator is:

u j := u|∂ I ± dux|∂ I + d2

2! uxx

∣∣∣∣
∂ I

± d3

3! uxxx

∣∣∣∣
∂ I

+ d4

4! uxxxx

∣∣∣∣
∂ I

x j ∈ γ , (4.36)

where, if j = {l, l + 1, l + 2, l + 3}, we have that:

u|∂ I := u(0), ux|∂ I := ux(0), uxx|∂ I := uxx(0), uxxx|∂ I := uxxx(0), uxxxx|∂ I := uxxxx(0),

and if j = {L, L + 1, L + 2, L + 3}, we denote:

u|∂ I := u(1), ux|∂ I := ux(1), uxx|∂ I := uxx(1), uxxx|∂ I := uxxx(1), uxxxx|∂ I := uxxxx(1).

d is the distance from point x j ∈ γ to the boundary point. We take it with either sign “+” or sign “−”.
u|∂ I are given due to the boundary conditions (4.2). Let us denote the unknown value of C1 := ux(0) and C2 := ux(1).

We can obtain the values of higher-order derivatives using the given differential equation (4.1). In case of the second-order
derivatives, this is simply

uxx(0) = f (0) + σ(0)a

k(0)
− kx(0)

k(0)
C1, (4.37)

and

uxx(1) = f (1) + σ(1)b

k(1)
− kx(1)

k(1)
C2. (4.38)

For the third order derivatives we have:

uxxx(0) = fx(0) − 2kx(0)
k(0)

f (0)

k(0)
+ σx(0) − 2kx(0)

k(0)
σ (0)

k(0)
a + σ(0) + 2 k2

x (0)

k(0)
− kxx(0)

k(0)
C1, (4.39)

uxxx(1) = fx(1) − 2kx(1)
k(1)

f (1)

k(1)
+ σx(1) − 2kx(1)

k(1)
σ (1)

k(1)
b + σ(1) + 2 k2

x (1)

k(1)
− kxx(1)

k(1)
C2. (4.40)

And for the fourth order derivatives we have:

uxxxx(0) = −3kxx(0) − 6k2
x (0)

k(0)
− σ(0)

k2(0)
f (0) − 3kx(0)

k2(0)
fx(0) + fxx(0)

k(0)

−
(

3kxx(0) − σ(0)

k2(0)
σ (0) + 3kx(0)(σx(0) − 2kx(0)

k(0)
σ (0))

k2(0)
− σxx(0)

k(0)

)
a

+
(

3kxx(0) − σ(0)

k2(0)
kx(0) − 3kx

σ(0) + 2 k2
x (0)

k(0)
− kxx(0)

k2(0)
− kxxx(0) − 2σx(0)

k(0)

)
C1, (4.41)

uxxxx(1) = −3kxx(1) − 6k2
x (1)

k(1)
− σ(1)

k2(1)
f (1) − 3kx(1)

k2(1)
fx(1) + fxx(1)

k(1)

−
(

3kxx(1) − σ(1)

k2(1)
σ (1) + 3kx(1)(σx(1) − 2kx(1)

k(1)
σ (1))

k2(1)
− σxx(1)

k(1)

)
b

+
(

3kxx(1) − σ(1)

k2(1)
kx(1) − 3kx

σ(1) + 2 k2
x (1)

k(1)
− kxx(1)

k2(1)
− kxxx(1) − 2σx(1)

k(1)

)
C2. (4.42)

Hence, again, the only unknowns that we need to solve for are C1 and C2. We will use expansion (4.36) for uγ in the
Boundary Equations (4.35), and obtain the overdetermined linear system for C1 and C2. This system is solved uniquely for
C1 and C2 using the least square method. After that, we can obtain the value of the density uγ at the points of the grid
boundary γ using formula (4.36).

Finally, the last step of the DPM is to use the obtained density uγ to reconstruct the approximation to the solution (4.1)–(4.2) inside
the domain I .
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Generalized Green’s formula

Theorem 4.4. Discrete solution u j := PN+γ uγ + Gh f is the approximation to the solution u j ≈ u(x j), x j ∈ N+ ∩ I of the continuous
problem (4.1)–(4.2).

Discussion: The result is the consequence of the sufficient regularity (smoothness) of the exact solution, Theorem 4.3,
extension operator (4.32) (for the second-order method) or the extension operator (4.36) (for the fourth-order method), and
the second-order accuracy of the scheme (4.6) (for the second-order method) and the fourth-order accuracy of the scheme
(4.7) (for the fourth-order method). Therefore, we expect that the discrete solution u j := PN+γ uγ + Gh f will approximate
the solution u j ≈ u(x j), x j ∈ N+ ∩ I of the continuous problem (4.1)–(4.2) with O (h2) (for the second-order method) and
with O (h4) (for the fourth-order method) in the maximum norm. In Section 6 we illustrate the capabilities and the consistence
of the developed approach with several numerical experiments for the interface/composite domain problems.

Let us remark, that in higher-dimensions (� 2), in [19,20] it was shown (under sufficient regularity of the exact solution),
that the Difference Potentials approximate surface potentials of the elliptic operators (and, hence DPM approximates the
solution to the elliptic boundary value problem) with the accuracy of O (hP−ε) in the discrete Hölder norm of order Q+ ε.
Here, 0 < ε < 1 is arbitrary number, Q is the order of the considered elliptic operator, and P = 2 – if the second-order
scheme is employed for the approximation of the elliptic operator, or P = 4 – if the fourth-order scheme is employed for
the approximation of the elliptic operator (see [19,20] or [23] for the details and proof of the general result. Also, see [16]
for the brief discussion of the accuracy of DPM). However, the rigorous theoretical analysis (accuracy, etc.) of more general concept
of the Difference Potentials for arbitrary linear difference scheme still needs to be investigated [22].

Remark.

• The formula PN+γ uγ + Gh f is known as the discrete generalized Green’s formula.
• Note that after density uγ is obtained from the Boundary Equations, the difference potential is easily constructed as the

solution of a simple (AP) using Definition 4.2.

5. Difference potentials approach for interface and composite domains problems

In Section 4.1 we formulated second and fourth-order methods based on Difference Potentials approach, for problems
in the single domain I . In this section we will show how to extend these methods to interface/composite domains prob-
lems (3.1)–(3.4).

First, as we have done in Section 4 for the single domain I , we will introduce the auxiliary domains. We will place
each of the original subdomains Is in the auxiliary domains I0

s ⊂ R (s = 1,2) and will formulate the auxiliary difference
problems in each subdomain Is (s = 1,2). The choice of these auxiliary domains I0

1 and I0
2 does not need to depend on

each other. Again, for each subdomain, we will proceed in a similar way as we did in Section 4.1. Also, for each I0
s we

will introduce, for example a Cartesian grid (the choice of the grids for the auxiliary problems in each subdomain will be
independent. The choice for each subdomain is based on the considerations of the properties of the model and solution in
each subdomain (3.1)–(3.3), as well as the efficiency and simplicity of the resulting discrete problems). After that, all the
definitions, notations, and properties introduced in Section 4.1 extend to each subdomain Is in a direct and straightforward
way: we will use index s (s = 1,2) to distinguish each subdomain. Let us denote the difference problem of (3.1)–(3.2) for
each subdomain as:

Ls
h[u j] = f s j, x j ∈ M+

s . (5.1)

The difference problem (5.1) is obtained using either the second-order (4.6) or the fourth-order scheme (4.7).
The cornerstone of our approach for the composite domains and interface problems is the following proposition.

Theorem 5.1. Density uγ := (uγ1 , uγ2 ) is the trace of some solution u ∈ I1 ∪ I2 to the Difference Equations (5.1): uγ ≡ Trγ u, if and
only if, the following equality holds

uγ1 = P1γ1
uγ1 + Gh

1 fγ1 , x j ∈ γ1, (5.2)

uγ2 = P2γ2
uγ2 + Gh

2 fγ2 , x j ∈ γ2. (5.3)

The obtained discrete solution u j := PsN+
s γs

uγs + Gh
s fs is the approximation to the solution u j ≈ u(x j) ∈ I1 ∪ I2 , x j ∈ N+

s ∩ Is ,
s = 1,2 of the continuous problem (3.1)–(3.4).

Discussion: The result is a consequence of the results in Section 4.1. We expect that the solution u j := Ps N+
s γs

uγs + Gh
s fs will

approximate the exact solution u(x j) ∈ I1 ∪ I2, x j ∈ N+
s ∩ Is , s = 1,2 with the accuracy O (h2) for the second-order scheme,
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and with the accuracy O (h4) for the fourth-order scheme in the maximum norm. See also Section 6 for the numerical
results.

Remark. Similar to the discussion in Section 4.1, the Boundary Equations (5.2)–(5.3) alone will have multiple solutions and
have to be coupled with boundary (3.3) and interface conditions (3.4) to obtain the unique densities uγ1 and uγ2 . We
use the extension formula (4.32) (second-order scheme) or (4.36) (fourth-order scheme) to construct uγs , s = 1,2 in each
subdomain/domain. The unknowns are u|∂ I1 , ux|∂ I1 and u|∂ I2 , ux|∂ I2 . Here, ∂ I1 := {0,α} and ∂ I2 := {α,1} (total 8 unknowns
without imposed boundary and interface conditions (3.3)–(3.4)).

Note that we constructed the algorithm here based on the inhomogeneous Boundary Equations (5.2)–(5.3) instead of the
homogeneous Boundary Equations uγs −Psγs uγs = 0 like in [26,25,4]. We do not see too many advantages of one approach over the
other one in 1D, but in 2D and in 3D we expect that the algorithms based on homogeneous Boundary Equations will be more efficient
and will have more flexibility, such as the ability to consider different auxiliary problems for the construction of the difference potentials
and the particular solutions, etc. (see for more details in our work [26,25,4]). This will be part of our future research for problems with
variable coefficients in 2D and in 3D.

6. Numerical examples

In this section, we will consider two test problems. We will first compare the performance of the second-order Difference
Potentials Method (DPM) with the second-order Immersed Interface Method (IIM) [9–11], as well as with the standard
second-order central difference method in Section 6.1. Moreover, we will present the result of the fourth-order DPM for the
same test problem. Next, in Section 6.2 we will test and compare the second and the fourth-order DPM on the variable
coefficient problem in heterogeneous media as well. In all numerical experiments below, we compute the maximum error

max
x j∈[0,1]

∣∣u(x j) − u j
∣∣.

Moreover, in Tables 3, 4 and in Table 8 to further illustrate the potential of the developed approach to capture the dis-
continuities at the interface, we also compute the maximum error between the discrete gradient (derivative) of the exact
solution and the numerical solution

max
(x j+1,x j)∈[0,1]

∣∣∣∣u(x j+1) − u(x j)

h
− u j+1 − u j

h

∣∣∣∣.
Here, u(x j) is the exact solution at the grid points, u j is the numerical solution and h is the mesh size.

6.1. Second and fourth order difference potentials method and comparison with other methods

To test and compare second and fourth order DPM, second-order IIM and the standard central second-order finite differ-
ence method we consider the following problems in this section (which is the modification of a problem in [11]).

(βux)x = 56x6, β =
{

1, if 0 � x � 0.5

2, if 0.5 < x � 1
(6.1)

subject to the boundary and interface conditions:

u(0) ≡ u1(0) = 0, u(1) ≡ u2(1) = 257

512
(6.2)

u1(0.5) = u2(0.5), (6.3)

u1x(0.5) = 2u2x(0.5). (6.4)

The exact solution to (6.1)–(6.4) is given as:

u(x) =
{

u1(x) = x8, if x � 0.5

u2(x) = 1
2 (x8 + 1

256 ), if x > 0.5.
(6.5)

In the tables below, DPM 2 stands for second-order DPM, DPM 4 stands for the fourth-order DPM, and IIM 2 stands for
the second-order IIM. For DPM 2 and DPM 4, we implement the algorithm from Section 5. We consider auxiliary domain
[−0.25,0.75] in Tables 1–4, and auxiliary domain [−0.667,0.833] in Tables 5–6 to discretize the problem using DPM in
subdomain I1 := [0,0.5]. We consider auxiliary domain [0.25,1.25] in Tables 1–4, and auxiliary domain [−0.167,1.33] in
Tables 5–6 to discretize the problem using DPM in subdomain I2 := [0.5,1.0]. Each auxiliary domain is subdivided by N
intervals, and in Tables 1–6 we use the same number of intervals (the same grids) for each subdomain. The results presented
in Tables 1–4 show that the errors of the second-order DPM 2 and the second-order IIM 2 are similar (there is difference



Y. Epshteyn, S. Phippen / Applied Numerical Mathematics 93 (2015) 69–86 81
Table 1
Errors in the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider auxiliary domains [−0.25,0.75] for 0 � x � 0.5, and
[0.25,1.25] for 0.5 < x � 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains. Problem (6.1).

N Error (DPM 2) Conv. rate Error (IIM 2) Conv. rate Error (DPM 4) Conv. rate

20 0.003998 0.003998 7.361e−05
40 0.001002 1.996 0.001002 1.996 2.346e−06 4.972
80 0.0002506 1.999 0.0002506 1.999 8.688e−08 4.755

160 6.267e−05 2.000 6.267e−05 2.000 6.92e−09 3.650
320 1.567e−05 2.000 1.567e−05 2.000 4.756e−10 3.863
640 3.917e−06 2.000 3.917e−06 2.000 1.119e−10 2.088

Table 2
Errors in the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider auxiliary domains [−0.25,0.75] for 0 � x � 0.5, and
[0.25,1.25] for 0.5 < x � 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains. Problem (6.1).

N Error (DPM 2) Conv. rate Error (IIM 2) Conv. rate Error (DPM 4) Conv. rate

24 0.002775 0.002775 2.996e−05
48 0.000696 1.995 0.000696 1.995 9.408e−07 4.993
96 0.0001741 1.999 0.0001741 1.999 4.579e−08 4.361

192 4.352e−05 2.000 4.352e−05 2.000 3.453e−09 3.729
384 1.088e−05 2.000 1.088e−05 2.000 2.141e−10 4.012
768 2.72e−06 2.000 2.72e−06 2.000 2.641e−10 −0.303

Table 3
Errors in the discrete gradient (derivative) of the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider auxiliary domains
[−0.25,0.75] for 0 � x � 0.5, and [0.25,1.25] for 0.5 < x � 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains.
Problem (6.1).

N Error (DPM 2) Conv. rate Error (IIM 2) Conv. rate Error (DPM 4) Conv. rate

20 0.019756 0.019756 4.629e−04
40 0.006241 1.663 0.006241 1.663 3.579e−05 3.693
80 0.001743 1.840 0.001743 1.840 2.412e−06 3.891

160 4.600e−04 1.922 4.600e−04 1.922 1.555e−07 3.955
320 1.181e−04 1.961 1.181e−04 1.961 9.846e−09 3.981
640 2.992e−05 1.981 2.992e−05 1.981 4.044e−10 4.606

Table 4
Errors in the discrete gradient (derivative) of the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider auxiliary domains
[−0.25,0.75] for 0 � x � 0.5, and [0.25,1.25] for 0.5 < x � 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains.
Problem (6.1).

N Error (DPM 2) Conv. rate Error (IIM 2) Conv. rate Error (DPM 4) Conv. rate

24 0.014861 0.014861 2.421e−04
48 0.004499 1.724 0.004499 1.724 1.773e−05 3.771
96 0.001233 1.868 0.001233 1.868 1.176e−06 3.915

192 3.223e−04 1.935 3.223e−04 1.935 7.534e−08 3.964
384 8.239e−05 1.968 8.239e−05 1.968 4.731e−09 3.993
768 2.083e−05 1.984 2.083e−05 1.984 6.565e−10 2.849

Table 5
Errors in the solution as functions of the number of intervals for DPM 2: we consider auxiliary domains [−0.667,0.833] for 0 � x � 0.5, and [−0.167,1.33]
for 0.5 < x � 1. Problem (6.1).

N Error (DPM 2) Conv. rate N Error (DPM 2) Conv. rate

20 0.009871 24 0.006677
40 0.002115 2.223 48 0.001521 2.134
80 0.0005357 1.981 96 0.0003978 1.935

160 0.0001488 1.848 192 9.719e−05 2.033
320 3.441e−05 2.113 384 2.458e−05 1.983
640 8.59e−06 2.002 768 6.109e−06 2.009

in 6th–8th digits when small enough h is considered and we believe that this is due to different effect of round off errors
in DPM and IIM). Moreover, the results presented in Tables 3–4 show the ability of the Difference Potentials approach to
capture very accurately discontinuities at the interface.

We believe that these results are expected. The proposed method here is based on the idea of the difference potentials,
which allows to construct Boundary Equations with Projection for the trace of the solution at the points near a continuous
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Table 6
Errors in the solution as functions of the number of intervals for DPM 4: we consider auxiliary domains [−0.667,0.833] for 0 � x � 0.5, and [−0.167,1.33]
for 0.5 < x � 1. Problem (6.1).

N Error (DPM 4) Conv. rate N Error (DPM 4) Conv. rate

20 0.0001759 24 9.473e−05
40 9.466e−06 4.216 48 4.397e−06 4.429
80 6.124e−07 3.950 96 2.746e−07 4.001

160 4.202e−08 3.865 192 1.972e−08 3.800
320 2.361e−09 4.154 384 1.231e−09 4.002
640 1.117e−10 4.402 768 1.286e−10 3.259

Table 7
Errors in the solution as functions of the number of intervals. Problem (6.1).

N Error (Standard Central FD) N Error (Standard Central FD)

20 0.006789 24 0.007191
40 0.009214 48 0.009633
80 0.01037 96 0.01053

160 0.01083 192 0.01089
320 0.01103 384 0.01106
640 0.01112 768 0.01113

Table 8
Errors in the solution and in the discrete derivative of the solution as functions of the number of intervals for DPM 4: we
consider auxiliary domains [−0.667,0.833] for 0 � x � 0.5, and [−0.167,1.33] for 0.5 < x � 1. Problem (6.6).

N Solution error (DPM 4) Gradient (derivative) error (DPM 4)

24 3.809e−15 1.466e−14
48 8.59e−15 2.145e−13
96 3.819e−13 1.266e−12

192 1.618e−12 1.032e−11
384 2.404e−12 5.165e−11
768 4.71e−11 1.999e−10

boundary (at the points of the discrete grid boundary). Therefore, the accuracy of DPM is only limited by the accuracy of
the scheme employed to construct the difference potentials and the particular solutions (see a more detailed exposition of
the theory in [23]). Hence, the accuracy of the DPM 2 in this case is limited only by the second-order scheme. At the same
time, IIM is derived from the idea of minimizing the magnitude of local truncation error near the irregular points (near
interface) using the explicit information about jump conditions on the solution and the flux across the interface. This allows
to obtain a numerical scheme that achieves second-order accuracy (for a second-order scheme; note, that extension of IIM
to higher than second order is not straightforward) on the interface problems [11]. Thus, the accuracy of the second-order
IIM and the accuracy of the second-order DPM is very close to each other. Similar results are observed in 2D when DPM is
compared with the second order finite difference scheme [25,4] (when classical solution exists).

At the same time, as expected, and illustrated in Table 7, the standard centered second-order finite-differences scheme
failed to converge on the interface problem (6.1)–(6.2). Furthermore, the results in Tables 1–6 confirm second-order con-
vergence for DPM 2 and fourth-order convergence for DPM 4 in the solution, as well as in the discrete derivative of the
solution – Tables 3–4 (we consider different choice of auxiliary problems for DPM in Tables 1–4 and in Tables 5–6). Let us
remark that the breakdown of convergence of fourth-order scheme on finer grids is due to the loss of significant digits, as
the absolute levels of error get very close to machine zero.

Finally, we use the test problem below (6.6)–(6.9) to illustrate that the fourth-order DPM captures the solution and the
discrete derivative with almost machine-accuracy (again, the observed breakdown of accuracy of the fourth-order scheme
on finer grids is due to the loss of significant digits); see results in Table 8.

(βux)x = 12x2, β =
{

1, if 0 � x � 0.5,

2, if 0.5 � x � 1
(6.6)

subject to the boundary and interface conditions:

u(0) ≡ u1(0) = 0, u(1) ≡ u2(1) = 17

32
, (6.7)

u1(0.5) = u2(0.5), (6.8)

u1x(0.5) = 2u2x(0.5). (6.9)
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Table 9
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider auxiliary domains [−0.167,0.583] with N1 subintervals
for 0 � x � 0.5, and [0.333,1.08] with N2 subintervals for 0.5 < x � 1. Problem (6.10).

N1 N2 Error (DPM 2) Conv. rate Error (DPM 4) Conv. rate

40 40 0.00018 4.187e−06
80 80 4.512e−05 1.996 1.817e−07 4.526

160 160 1.133e−05 1.994 2.417e−08 2.910
320 320 2.837e−06 1.998 1.466e−09 4.043
640 640 7.091e−07 2.000 9.334e−11 3.973

Table 10
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider auxiliary domains [−0.167,0.583] with N1 subintervals
for 0 � x � 0.5, and [0.333,1.08] with N2 subintervals for 0.5 < x � 1. Problem (6.10).

N1 N2 Error (DPM 2) Conv. rate Error (DPM 4) Conv. rate

48 48 0.0001253 2.106e−06
96 96 3.159e−05 1.988 1.345e−07 3.969

192 192 7.862e−06 2.007 2.617e−09 5.684
384 384 1.97e−06 1.997 1.238e−09 1.080
768 768 4.918e−07 2.002 1.079e−10 3.520

The exact solution is:

u(x) =
{

u1(x) = x4 if 0 � x � 0.5,

u2(x) = 1
2 (x4 + 1

16 ), if 0.5 � x � 1.

6.2. Second and fourth order difference potentials method for problem in heterogeneous media

In this section we consider the following test problem with variable coefficients:

(ksusx)x − σsus = f s, s = 1,2 (6.10)

with

k1(x) = 3e−10(x−0.5)4x4
,

k2(x) = 3,

σ1(x) = 2,

σ2(x) = 1

subject to the boundary and interface conditions:

u(0) ≡ u1(0) = 0, u(1) ≡ u2(1) = 1.0156, (6.11)

u1(0.5) = u2(0.5), (6.12)

u1x(0.5) = u2x(0.5) (6.13)

and

u(x) =
{

u1(x), if 0 � x � 0.5,

u2(x), if 0.5 � x � 1
(6.14)

where the exact solution is given below

u1(x) = sin(πx),

u2(x) = 2(x − 0.5)7 + 1.

The f s are computed from the above equation. We have a variable coefficient k1(x) in subdomain I1 and a constant coef-
ficient k2 in subdomain I2. In Tables 9–14, we demonstrate overall second-order convergence for DPM 2 and fourth-order
convergence for DPM 4 (6.10)–(6.13). However, the error does not converge monotonically, but rather oscillates for the vari-
able coefficient problem. Again, we note that the breakdown of convergence of fourth-order scheme on finer grids is due
to the loss of significant digits, as the absolute levels of error get very close to machine zero. In Tables 11–14, we select
different grids for each subdomain. Results in Tables 11 and 13 show that we can take a coarser mesh in the subdomain
with less oscillatory solution, while the error remains almost the same as in Tables 9 and 10. Similar results with the use
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Table 11
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider auxiliary domains [−0.167,0.583] with N1 subintervals
for 0 � x � 0.5, and [0.333,1.08] with N2 subintervals for 0.5 < x � 1. Problem (6.10).

N1 N2 Error (DPM 2) Conv. rate Error (DPM 4) Conv. rate

80 40 7.242e−05 9.375e−08
160 80 1.78e−05 2.025 1.649e−08 2.507
320 160 4.467e−06 1.995 9.082e−10 4.182
640 320 1.122e−06 1.993 1.184e−10 2.939

Table 12
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider auxiliary domains [−0.167,0.583] with N1 subintervals
for 0 � x � 0.5, and [0.333,1.08] with N2 subintervals for 0.5 < x � 1. Problem (6.10).

N1 N2 Error (DPM 2) Conv. rate Error (DPM 4) Conv. rate

40 80 0.0001571 4.275e−06
80 160 3.959e−05 1.989 1.894e−07 4.496

160 320 9.941e−06 1.994 2.473e−08 2.937
320 640 2.487e−06 1.990 1.655e−09 3.901

Table 13
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider auxiliary domains [−0.167,0.583] with N1 subintervals
for 0 � x � 0.5, and [0.333,1.08] with N2 subintervals for 0.5 < x � 1. Problem (6.10).

N1 N2 Error (DPM 2) Conv. rate Error (DPM 4) Conv. rate

96 48 5.085e−05 9.327e−08
192 96 1.237e−05 2.039 6.243e−09 3.901
384 192 3.134e−06 1.981 1.111e−09 2.490
768 384 7.784e−07 2.009 1.363e−10 3.027

Table 14
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider auxiliary domains [−0.167,0.583] with N1 subintervals
for 0 � x � 0.5, and [0.333,1.08] with N2 subintervals for 0.5 < x � 1. Problem (6.10).

N1 N2 Error (DPM 2) Conv. rate Error (DPM 4) Conv. rate

48 96 0.000109 2.147e−06
96 192 2.776e−05 1.973 1.393e−07 3.946

192 384 6.879e−06 2.013 2.491e−09 5.805
384 768 1.727e−06 1.994 1.476e−09 0.755

of different grids in different subdomains are observed in 2D for the constant coefficient problem [25,4]. This illustrates the
important flexibility of the method for the future development of the proposed ideas (multigrid/multiscale approach) for
variable coefficient problems in 2D and 3D.

7. Concluding remarks

In this work, we used the one-dimensional elliptic type model with variable coefficients as the starting point, to de-
velop and numerically test high-order methods based on Difference Potentials approach for the variable coefficient elliptic
problems in heterogeneous media. We also illustrated the unified framework (principles) for the construction of Difference
Potentials Methods with high-order accuracy for the single domain, and for the interface/composite domain problems with
non-matching interface conditions. While the methods and analysis are simple for these one-dimensional problems, they
allow us to illustrate and test several ideas and capabilities of high-order methods based on Difference Potentials approach.
The numerical schemes, as well as meshes can be chosen totally independently for each subdomain/domain; in higher-
dimensions the boundaries of the subdomains and interfaces do not need to conform/align with the grids. We expect that
the high-order schemes can be constructed for problems with general boundary conditions, and the main complexity of the
developed algorithm reduces to the several solutions of simple auxiliary problems on structured Cartesian grids. Also, the
preliminary tests that we conducted here in the one-dimensional settings (as well as preliminary 2D numerical tests in [26,
25,4,3]) indicate the capability of Difference Potentials approach to resolve discontinuities very accurately at the interface.
Therefore, we expect that the proposed approach will be well-suited for the general heterogeneous models and interface
problems.

For future research, we plan to extend and further develop the proposed approach (as well as methods that we developed in [26,
25,4,3]) to high-order methods for variable coefficient problems in arbitrary domains in 2D and 3D, including the time-dependent
problems. The high-order Difference Potentials methods for time-dependent problems will be developed by considering the time-discrete
version of the continuous problems (employing Backward Euler, Crank–Nicolson or high-order IMEX, etc. time discretizations; see some
examples of 2D second order in space and first order in time DPM schemes in [3,4]). We also plan to develop iterative solvers, for
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example a multigrid iterative solver for the efficient solution of the auxiliary problems in each subdomain/domain, see some
references on multigrid [6,7,1,8,29] and other references. We expect that the developed approach will be well-suited for
multi-physics/multi-scale problems with general boundary conditions, as well as for the development of parallel algorithms.
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Appendix A

For the reader’s convenience, similar to the second-order method in the case of a constant coefficient model prob-
lem (4.1) (assume, k(x) ≡ 1), let us show a direct connection of the difference potential PN+γ uγ to the Cauchy-type integral.
Again, we will assume σ(x) = 0.

The homogeneous difference equation Lh[u j] = 0, j = l + 2, . . . , L + 1 for the fourth order scheme is

−u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2

12h2
= 0, j = l + 2, . . . , L + 1. (A.1)

Consider the difference equation of the form

−z j−2 + 16z j−1 − 30z j + 16z j+1 − z j+2 = 0. (A.2)

Denote, z := (zl, zl+1, . . . , zL+2, zL+3) to be a solution of the difference equation (A.2). Next, define the generating polynomial

Z(g) =
L+3∑
j=l

z j g j,

where the coefficients of the polynomial z j are the values of the solution z at the grid points. Multiply (A.2) by g j , and sum
from l + 2, . . . , L + 1 to obtain:

L+1∑
j=l+2

z j−2 g j − 16
L+1∑

j=l+2

z j−1 g j + 30
L+1∑

j=l+2

z j g j − 16
L+1∑

j=l+2

z j+1 g j +
L+1∑

j=l+2

z j+2 g j = 0. (A.3)

As for the second-order method in Section 4.1, we can rewrite each term. For example, we can rewrite the first term as:

g2
L+1∑

j=l+2

z j−2 g j−2 = g2 Z(g) − zL gL+2 − zL+1 gL+3 − zL+2 gL+4 − zL+3 gL+5.

Similarly, the other terms in (A.3) can be rewritten as well. Again, let us recall Cauchy’s residue theorem, and represent

z j = 1

2π i

∮
|g|=2

Z(g)

g j+1
dg.

Thus, we obtain

z j = 1

2π i

∮
|g|=2

(1 − 16g + 30g2 − 16g3)glzl + (1 − 16g + 30g2)gl+1zl+1 + (1 − 16g)gl+2zl+2

(g − 1)2(g2 − 14g + 1)g j+1
dg

+ 1

2π i

∮
|g|=2

gl+3zl+3 + gL+4zL + (−16 + g)gL+4zL+1 + (30 − 16g + g2)gL+4zL+2

(g − 1)2(g2 − 14g + 1)g j+1
dg

+ 1

2π i

∮
|g|=2

(−16 + 30g − 16g2 + g3)gL+4zL+3

(g − 1)2(g2 − 14g + 1)g j+1
dg, j = l, . . . , L + 3. (A.4)

The Cauchy-type integral (A.4) plays the role of the discrete potential for the difference equation (A.2) (each z j, j = l, . . . , L + 3 is
determined by values zγ ), similar to the difference potential PN+γ uγ for (A.1).
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[22] V.S. Ryaben’kiı̆, Difference potentials analogous to Cauchy integrals, Usp. Mat. Nauk 67 (3(405)) (2012) 147–172.
[23] V. Ryaben’kii, Method of Difference Potentials and Its Applications, Springer-Verlag, 2002.
[24] V.S. Ryaben’kii, S.V. Tsynkov, Artificial boundary conditions for the numerical solution of external viscous flow problems, SIAM J. Numer. Anal. 32 (5)

(1995) 1355–1389.
[25] V.S. Ryaben’kiı̆, V.I. Turchaninov, E.Y. Èpshteı̆n, An algorithm composition scheme for problems in composite domains based on the method of difference

potentials, Zh. Vychisl. Mat. Mat. Fiz. 46 (10) (2006) 1853–1870, http://dx.doi.org/10.1134/S0965542506100137.
[26] V. Ryaben’kii, V.I. Turchaninov, Y.Y. Epshteyn, The numerical example of algorithms composition for solution of the boundary-value problems on

compound domain based on difference potential method, Keldysh Institute for Applied Mathematics, Russia Academy of Sciences, Moscow, Preprint 3,
http://library.keldysh.ru/preprint.asp?lg=e&id=2003-3.

[27] V.S. Ryaben’kii, S.V. Tsynkov, S.V. Utyuzhnikov, Active control of sound with variable degree of cancellation, Appl. Math. Lett. 22 (12) (2009) 1846–1851,
http://dx.doi.org/10.1016/j.aml.2009.07.010.

[28] S. Tsynkov, Numerical solution of problems on unbounded domains. A review, Appl. Numer. Math. 27 (4) (1998) 465–532, absorbing boundary condi-
tions.

[29] J. Van Lent, S. Vandewalle, Multigrid methods for implicit Runge–Kutta and boundary value method discretizations of parabolic PDEs, SIAM J. Sci.
Comput. 27 (1) (2005) 67–92, http://dx.doi.org/10.1137/030601144.

[30] S. Yu, Y. Zhou, G.W. Wei, Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces, J. Comput. Phys. 224 (2)
(2007) 729–756, http://dx.doi.org/10.1016/j.jcp.2006.10.030.

[31] Y.C. Zhou, J. Liu, D.L. Harry, A matched interface and boundary method for solving multi-flow Navier–Stokes equations with applications to geodynam-
ics, J. Comput. Phys. 231 (1) (2012) 223–242, http://dx.doi.org/10.1016/j.jcp.2011.09.010.

[32] Y.C. Zhou, S. Zhao, M. Feig, G.W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and
singular sources, J. Comput. Phys. 213 (1) (2006) 1–30, http://dx.doi.org/10.1016/j.jcp.2005.07.022.

http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5230343331373139s1
http://epubs.siam.org/doi/abs/10.1137/120902689
http://dx.doi.org/10.1007/s10915-012-9599-2
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib45707368s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib45707368s1
http://dx.doi.org/10.1006/jcph.1999.6236
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5230313337333134s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5230313832313633s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib486F6C73743931706172616C6C656C706572666F726D616E6365s1
http://dx.doi.org/10.1137/0731054
http://dx.doi.org/10.1137/S1064827595282532
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5232323432383035s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5232323432383035s1
http://dx.doi.org/10.1090/S0025-5718-03-01525-4
http://dx.doi.org/10.1006/jcph.2000.6444
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5231383730373037s1
http://dx.doi.org/10.1137/0721021
http://www.scopus.com/inward/record.url?eid=2-s2.0-84860903077&partnerID=40&md5=915737f56fce5f42cbc711491887a605
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5230343930303237s1
http://dx.doi.org/10.1017/S0962492902000077
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D52363533323237s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib52657A6E696B506844s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib52657A6E696B506844s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5230323639313936s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5233303234383437s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib52796162s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5231333532313935s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5231333532313935s1
http://dx.doi.org/10.1134/S0965542506100137
http://library.keldysh.ru/preprint.asp?lg=e&id=2003-3
http://dx.doi.org/10.1016/j.aml.2009.07.010
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5231363434363734s1
http://refhub.elsevier.com/S0168-9274(14)00019-1/bib4D5231363434363734s1
http://dx.doi.org/10.1137/030601144
http://dx.doi.org/10.1016/j.jcp.2006.10.030
http://dx.doi.org/10.1016/j.jcp.2011.09.010
http://dx.doi.org/10.1016/j.jcp.2005.07.022
http://dx.doi.org/10.1007/s10915-012-9599-2
http://dx.doi.org/10.1137/0721021

	High-order difference potentials methods for 1D elliptic type models
	1 Introduction
	2 Algorithm
	3 Elliptic type interface models
	4 Single domain
	4.1 Difference potentials approach for construction of high-order methods

	5 Difference potentials approach for interface and composite domains problems
	6 Numerical examples
	6.1 Second and fourth order difference potentials method and comparison with other methods
	6.2 Second and fourth order difference potentials method for problem in heterogeneous media

	7 Concluding remarks
	Acknowledgements
	References


