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Abstract. Boundson the volume fraction of the constituentsin a two-componentmixture

are derivedfrom measurementsf the effective complexpermittivity of the mixture, usingthe

analyticity of the effective property. First-orderinverseboundsfor generalanisotropicmaterials,
aswell as second-ordeboundsfor isotropic mixtures,are obtained. By exploiting an analytic
representatiorof the effective complex permittivity, the problem of estimatingthe structural
parameterss reducedto a problem of evaluatingthe momentsand supportof a measure
containinginformation about the geometricalstructureof the material. Rigorousboundson

the volumefraction arefound by inverting first- and second-orde(Hashin—Shtrikmanjorward

boundson the complex permittivity. The inverseboundsare appliedto measurementsf the

effective complex permittivity of seaice, which is a three-componeninixture of ice, brine

and air. The seaice is treatedvia the two-componentheory appliedto a mixture of brine

andanice/air composite.The boundson the brine volume of seaice derivedfrom the effective

permittivity measurementarein excellentagreementvith datafrom experimentsTheinversion

of forward boundson the complex permittivity of compositemedia providesa basisfor a

theory of inversehomogenizatiorfor recoveringmicrostructuralparameterérom bulk property
measurementsSuchresultsare applicableto problemsin remotesensingmedicalimagingand

non-destructivaestingof materials.

1. Introduction

In recent years much effort has been focussedon estimating the effective complex
permittivity ¢* [2—4, 9, 10, 18, 19, 22, 23] of periodic and randommedia. In the present
paperwe formulateand solve the inverseproblem: having measuredhe effective complex
permittivity we want to make some conclusionsabout the volume fractions of the
constituentsand the geometryof the microstructure. We considerseaice as an example
of a randommedium. Seaice is a polycrystallinemediumof pureice with randombrine
and air inclusionson the millimetre scale. Its electromagnetidehaviouron this scaleis
quite complicated andis governedby the complexpermittivity  (x), which variesspatially
and admitsvery differentvaluesin the brine, ice andair. Many importantfeaturesof sea
ice suchas age, type, salinity, temperaturethermaland fluid transportproperties,growth
history, etc, are relatedto the details of its microstructure. In particular, the geometry
and relative volume fraction of the inclusionsdependstrongly on the temperatureof the
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ice, the conditionsunderwhich the ice was grown, and the history of the sampleunder
consideration.

In the quasistatidegime,whenthewavelengthi is muchlargerthanthe microstructural
scale,the wave cannotresolvevariationsin the local complexpermittivity €(x) on a fine
scale, and the brine and air microstructureon the millimetre scaleis averagedout, or
‘homogenized’. The behaviourof the wave inside the seaice in this caseis primarily
governedy its effective complexpermittivity €*. Forexamplethisis the casefor synthetic
apertureradar (SAR) usedin remote sensing,which operatesin the microwaveregion,
suchasin the C-band,with centralfrequency f = 5.3 GHz and free-spacewavelength
A =57cm.

Various models and effective medium theories, such as the coherent potential
approximationhavebeenusedto derive ‘mixing formulae’for €* of the system.Typically
the seaice was assumedto consistof a host medium, pure ice, containing ellipsoidal
inclusionsof brine andair (see[23, 25]). While mixing formulaeare certainly useful,their
applicabilityto thefull rangeof microstructuress limited, andthe assumptionsinderwhich
they are derivedare not alwayssatisfied. A generalanalytic methodfor obtainingbounds
on the bulk effective propertiesof compositematerialswas developedn [2, 3, 18,19, 9],
and appliesto any two-componenmedium. This analytic methodhasbeenappliedto sea
icein [10, 21, 11]. Given anincreasingamountof information on the microstructuresuch
asthe brine volume fraction, statisticalisotropy, or the assumptiorthat the brine phaseis
containedin separatednclusions(i.e. it doesnot form a connectednatrix, or percolate),
theseboundsrestrictall possiblevaluesof ¢* to increasinglysmallerregionsof the complex
¢* plane. However,as discussedefore,it would be very usefulto be ableto deducethe
detailedmicrostructuralpropertiesof the medium, such as the geometryand the volume
fractionsof the constituentsfrom electromagnetieneasurements.

In the presenpaperwe invertthe boundson the effective complexpermittivity to obtain
‘inverse’ boundson structuralparametersf a two-componenmixture from given complex
permittivity data. Two typesof inverseboundson thevolumefractionsof the constituentgare
derived: first-orderboundsvalid for generalanisotropictwo-componenimixtureswithout
any geometricalconstraints,and second-ordeboundsfor isotropic mixtures. We obtain
both rigorous boundson the possiblerange of volume fractions given a value of the
observedcomplex permittivity, valid in the quasistaticregime, and an accuratealgorithm
for predictingthe volume fraction associatedwvith a given datasetof permittivity values.
The seaice is a three-componenmixture of brine, ice and air. To apply the developed
algorithm,we modelledthe three-componennaterialasa mixture of brineanda composite
formedby ice andair. This is a significantsimplificationof a problemfor three-component
materialswhich is possibledue to the well known ‘bubbly’ structureof ice with a small
volumefraction of air. The algorithmis demonstratedn a representativelatasetfrom [1],
with excellentresults.

It should be remarkedthat a similar idea of estimatingstructural parametersrom
homogenizedneasurementwas usedpreviously, and appliedto multifrequencydata for
thin silver films [17]. Analytical expressiondor first-orderinverseboundswere derived
in [6]. Theywereappliedto the estimationof volumefraction of a polarizablecomponent
from multifrequencymeasurementsf the effective complexconductivity of a geophysical
mixture in [26]. Other approachedo the inversionfor microstructuralinformation have
beenconsideredn [8, 16, 14, 22]. The developednmethodis sufficiently generalto be able
to invert theseboundsfor muchmoredetailedinformationaboutthe microstructuresuchas
brine inclusion separatior(which is intimately connectedvith temperatureand percolation
properties) but this is dealtwith in [20].
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2. Bounds for the effective complex permittivity

Thebounddor the effective complexpermittivity of atwo-componenmixturewereobtained
usingthe analyticcontinuationmethod[2, 3, 18, 9]. We considera randommediumin R,

whered = 2 or d = 3. Let e(x, n) be a (spatially) stationaryrandomfield in x € R? and
n € Q, whereQ is thesetof all realizationsof therandommedium. We assume (x, n) takes
thevaluese; in thebrineande; in theice, andwrite e (x, n) = €1x1(x, n)+e€2x2(x, ), where
x; is the characteristidunction of medium j = 1, 2, which equalsone for all realizations
n € Q havingmediumj at x, and equalszero otherwise.Let E(x, n) and D(x, n) bethe
stationaryrandomelectric and displacemenfields, relatedby D(x, n) = e(x, n)E(x, n),

satisfying

V-D=0 VxE=0 (1)

where(E (x, n)) = e, e is aunit vectorin the kth direction,for somek =1, ...,d, and(-)
meansensembleaverageover 2 or spatialaverageover all of R?. The effective complex
permittivity tensore* is definedas

(D) = €*(E). (2)

For simplicity, we focus on one diagonalcoeficient ¢* = ¢;,. Due to homogeneityof
effective parameterss*(ce1, ce2) = ce*(e1, €2) for any constantc, €* dependonly on the
ratio h = €1/¢,, andwe definem(h) = €*/e,. Thetwo main propertiesof m(h) arethatit
is analytic off (—oo, 0] in the i plane,andthat it mapsthe upperhalf planeto the upper
half plane[2, 9], so thatit is an exampleof a Herglotz function. Basedon this fact, a
representatiorior ¢* was developedn [2] for periodic compositesand a generalintegral
representatiotior ¢* wasobtainedin [9]. For F(s) =1 —m(h),s = 1/(1 — h), which is
analyticoff [0, 1] in the s plane,the integral representatiofis

€* /1 du(z) 1

0

F(S)Zl—?zz sz S:?:L/ez (3)

wherethe positive measureu on [0, 1] is the spectralmeasureof the self-adjointoperator
[x1, wherel' = V(—A)~1V..

Statisticalassumptionsiboutthe geometryareincorporatednto p throughits moments
w,. Comparisorof a perturbatiorexpansiorof (3) arounda homogeneoumedium(s = oo,
or €1 = €2) with a similar expansionof a resolventrepresentatioffior F(s) [9], yields

1
[ Zfo 2" du(2) = (D" (xal(Cx2)"ex] - ex). “)

Then g = p; if thevolumefractionsp; and p, = 1 — p; of the brine andice areknown,
and u; = pip2/d if the materialis statistically isotropic. In general,knowledgeof the
(n + 1)-point correlationfunction of the mediumallows calculationof w, (in principle).
Boundsone*, or F(s), areobtainedby fixing s in (3), varyingoveradmissibleneasures
w (or admissiblegeometries),such as thosethat satisfy only ng = p1, and finding the
correspondingangeof valuesof F(s) in the complexplane[4, 9, 18, 19]. Two typesof
boundson ¢* are readily obtained. The first bound D® assumesnly that the relative
volume fractions p; and p, = 1 — p; areknown, sothatonly o = p1 heedbe satisfied.
In this case,the admissibleset of measuredorms a compact,convexset. Since(3) is a
linear functionalof u, the extremevaluesof F areattainedby extremepoints of the setof
admissiblemeasureswhich arethe Dirac point measure®f the form p15,. The valuesof
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F mustlie insidethe circle p1/(s — z), —oo < z < oo, andthe region DV is boundedby
circular arcs,one of which is parametrizedn the F planeby

i) = 2

0<z < pa (5)

To displaythe otherarc, it is conveniento usethe auxiliary function [2]

€1 (1—-sF(s))

E(s)=1-—=——"= 6
() e s(1—F(s)) ©)

which is a Hemlotz function like F(s), analytic off [0, 1], with a representationike (3)

whoserepresentingneasurdhasmassp,. Thenin the E plane,the othercircularboundary

of DY is parametrizedy

P2 0

Ci(z) = <z < p1. @)

In the ¢* plane(seefigure 1), D® hasverticesA; = ex(1 — C1(0)) = pie1 + poer and
By = €1/(1—C1(0)) = (p1/e1+ p2/€2)~ L, andcollapsego theinterval (p1/e1+ pa/es) L <
€* < p1e1 + preo Whene; ande;, arereal. In the last case theseboundsare the classical
arithmetic(upper)andharmonic(lower) meanbounds.The complexbounds(5) and(7) are
optimal and canbe attainedby a compositeof uniformly alignedspheroidsof materiall in
all sizescoatedwith confocalshellsof material2 andvice versa[18, 19]. Thesearcsare
tracedout asthe aspectratio varies. When the volume fractionsof the componentsn the
mixture vary, the correspondingdlomainsD¥ cover the region DY, a generalboundon
e* for arbitrary compositegnixed from the initial materials.

If the mixture is further assumedo be statistically isotropic, i.e. €}, = €*8;, then
w1 = p1p2/d mustbe satisfiedaswell. A convenientway of including this informationis
to usethe transformationintroducedin [4]:

Fi(s) 1 1
S)=—— .
ST S FG)

The function Fi(s) is, again, a Hemglotz function having a representatiorike (3) with
representingneasureu?, with only a restrictionon its massué = p2/pad.

®)

Figure 1. lllustration of boundson the bulk permittivity of a two-componentmixture. For

a given volume fraction of one componentall possibleeffective permittivities of the mixture
lie in the lens shapedregion DM, whereasisotropic mixtureslie in the smallerlens shaped
domainD®@. All possiblebulk permittivities of mixtureswith arbitrary volume fractionslie in

the region Dél) which is a union of the domainsD™® over all volumefractions.
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Applying the sameprocedureas for D@ yields a region D®, whoseboundariesare
againcircular arcs. In the F plane,one of thesearcsis parametrizedy
s—z
Co(2) = _pls-n) 0<z<@-1D/d 9)
s(s —z — p2/d)
In the E plane,the otherarcis parametrizedy

p2(s — 2)
s(s—z—p1d —1D/d)
In the ¢* plane,D® hasverticesA, and B, (seefigure 1), and collapsedo the interval

+ pl>l (11)

€ —€ de

Calz) = 0<z<1/d. (10)

1 r2

-1
<ef<e+po
€1—¢€ de

whene; ande; arerealwith €; > €,. Thesearethe Hashin—Shtrikmarbounds[13]. When
€1 < €2, thesequencef inequalitiesis reversed.TheverticesA, and B, (which correspond
to the expressionsn (11)), areattainedby the Hashin—Shtrikmartoatedspheregeometries
(spheresof all sizesof materialof permittivity €; in the volume fraction p; coatedwith
sphericalshellsof materiale, in the volumefraction p, andvice versa),andlie onthearcs
which bound D®.

€2+P1<

3. Inverse bounds for structural parameters

From equations(3) it immediatelyfollows that the effective complex permittivity of the
mixture of two constituentscan be representedas an integral with some positive Borel
measureu (dz) on unit interval;

b (dz)
S —Z

€f=e—eF,(s)=c—¢ / (12)
0
whereF,, = 1—€*/e; ands = 1/(1—e1/€2), s ¢ [0, 1]. An importantfeatureof theintegral
representatiori12) of the effective propertyis thatit separateshe propertiesof the mixture
constituentswhich are containedin the variable s, from the structuralinformation about
the geometryof the mixture, which is containedin the measureu. Wishing to recoverthis
geometricalinformation from the measurementef the effective complex permittivity, we
needto describea setof measuregc which generates measuredialuee* for the effective

property:
M) = {p: Fu(s) = 1— €"/ea}. (13)

Thestructuralinformationaboutthe geometryof the mixtureis containedn themoments
wu, of the measureu (seeequation(4)). Using an expansionof F(s) for |s| > 1 abouta
homogeneousedium

1
F(s)=%+%+~-~ un=f 2" du(2) (14)
0

the momentsof the measureuw canbe determined.If all the momentsare known, thenthe
measureu is uniquely determined.Theoretically,if only a measuredralue of the effective
permittivity is given, we cannotdeterminethe moments,nor the structureof the material.
This is becausedhere can exist a greatvariety of structuresgeneratingthe sameresponse
underthe appliedfield. But instead we candetermineaninterval confiningthe first moment
of the measureu. This will give us an interval of uncertaintyfor the volume fraction of
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one materialin a mixture for a generalanisotropicmediumwith no assumptionson the
geometricalstructure.

To obtaininformation about other structuralparametersye can parametrizea subset
M of M in (13) which consistsof singularmeasureg: concentratean pointst from the
interval [0, 1]. Geometrically this correspondso the parametrizatiorof the setof possible
microstructuresusing ‘coated sphere’composites:inclusionsof one material coatedwith
the secondmaterial. For the measuredrom this subsetM the correspondingralueof F' is
given by

F(s) = (15)

s —T
For the zeroth-orderboundson the complex permittivity given by the domain Dél) in
figurel, 0 < a <1 0<t < 1landF(1) < 1, which producesall possiblee* formed
from the initial materials. Now, having a prescribedvalue for F(s) we wantto find the
appropriateintervalsfor « andz.

The interval for « givesus aninterval of uncertaintyfor the volumefraction p; of one
materialin the mixture,

1
Y < < pd (16)

while the correspondingvaluesfor t estimatethe supportof possibleDirac measuresi
from the set M which are equivalentto the true spectralmeasuregrom the point of view of
the measuredralue of ¢*:

~(1 1 1 ~ ~
at=plsE") AP =pPscd) peMm 17)

The measuregi > and i are on the boundaryof the set M.

By changingt in (15) the correspondingstructurestrace out the arcs (A;, A, Br)
or (Aj, Bo, B1) (seefigure 1) changingfrom the laminates(in 2D case)or cylinders (in
3D case)orientedalong the field through coatedspheroidswith varying aspectratio to
isotropic structuresand then to laminates(or cylinders) orientedacrossthe field. Hence
the last estimatefor the measuresupportcan be extendednto an estimatefor geometrical
parametersuchas,for example the degreeof an anisotropyof the mixture [20].

Theseare the first-order bounds. However, if someinformation about the structure
of the compositeis available,then boundscan be derivedfor the next moments,and the
uncertaintyintervals will be essentiallydecreased.Pursuingthis approachfor isotropic
materials,we usethe second-ordeexpansionfor the function F. Thereforethe inverse
boundsfor the volume fraction of a componentin an isotropic mixture can be referredto
assecond-ordemversebounds.

Exploiting the transformation(8) from the function F to the function F; preserveghe
type of integralrepresentation

1,1 d
Fi(s) = fo po(do) (18)

§—Z

Hence the same approachworks here as well. We can also determinethe support of
equivalentmeasuregi € M

a7 =p78a™ P =pPee?)  AeM (19)

andanadmissiblantervalfor the secondnomentof the measurewhich givesusaninterval
of uncertaintyfor the volumefractionfor anisotropicmedium,or the second-ordebounds:

2
p? < p1 < pP. (20)
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Second order
volume fraction bounds

First order 1
volume fraction bounds Py

W< p<p® n@ < p<p,@

p| p pu € 1 u € 1

Figure 2. lllustrationof boundson the volumefraction of onecomponentn the mixture derived
from the first-orderanisotropicbounds(left-handdiagram)and from the second-ordeisotropic
bounds(right-handdiagram)for the effective permittivity. The smalllensshapediomainseach
containthe anisotropig(left) andisotropic(right) mixturescorrespondingo the volumefractions
of thefirst componenfp; and py. Thesepointsgive thelower andupperestimategor thevolume
fraction of the first materialin the mixture.

A geometricalillustration of the ideaof the inversionis shownin figure 2.

Given an observedcomplexpermittivity value e*, we increasethe volume fraction p;
in the bound D® until one of the circular arcson the boundaryof D® touchesthe point
€*. This definesthe lower bound p|(l) on the possiblerangeof volumefractionsassociated
with the datapoint. Similarly, we decreasep; until the other arc touchesthe datapoint,
giving an upperbound p{' on the possiblerangeof the volume fractions. Applying the
sameprocedureto the isotropic complex bound D@ vyields even tighter lower pl(Z) and
upper p{? boundson the volumefraction p;.

Given a setof datapointse*(k) for a setof N measurementg, = 1,..., N, we carry

out the inversionfor eachpoint, and then take the maximumover k of the p*’ and the

minimumoverk of the p?, andsimilarly for p® andp{®, whichyield rathertight, accurate
estimatesof the volumefractionsin the mixture associatedvith the given dataset.

Using this unified approachwe rederive below the first-order boundson the volume
fraction of a componenin an anisotropicmixture, derivedin [6], in the complexe* plane.
Then assumingisotropy of the mixture, we derive the boundsfor the volume fraction in
an isotropic mixture. Theseare the second-ordebounds. We then apply the technique
developedhereto real measurementsf the complex permittivity of seaice and compare
our boundswith experimentakesults.

4. First- and second-order inverse bounds

Let f be the value of F correspondingo the measureceffective complexpermittivity ¢*
for the given propertiesey, €, of the constituents As shownabove,if we do not input any
geometricainformationaboutthe mixture, asidefrom the volumefractions,the valueof f
lies insidethe circular arc

p1 0

Ci(z) = <z < p2 (21)
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We vary p; so that the given value f lies on this arc and we obtain an equationfor the
lower boundon the structuralparameterg ps, z}:

pi=[fG—2). (22)

Solvingit, we find the lower first-orderboundsp™ andz'" for the volumefraction p; and
the supportof the measuresupp(ii):

@ _ Im(fs) @ o2 IMG)
O =mgy P T  mgy

Herethe barin the secondexpressiordenoteshe complexconjugate.The value of zl(l) in
(23) givesthe boundfor the interval of variation of the supportof the measurei in (15),
pl(l) givesthe lower boundfor the first momentof the measurei or its massin (15). But
the first momentof the measurgx equalsthe first momentof the true measureu: fig = wo.
Hencepl(l) gives a rigorous boundfor the volume fraction of the first componentin the
mixture.
In orderto obtainthe otherbound,we can consideran auxiliary function G(z) [4]:
G(t):el_e =1—sF(s) (24)
€1 1—v
with the samepropertiesas F for some positive measurev. The advantageto using
this function as opposedto E(s) is that the spectrum(or supportof w in (3)) is trivially
transformedvia r = 1 — s, sothat spectralboundsobtainedfor F are easilytranslatedover
to G, which is not the casefor E. The value g of the function G correspondingo the
measured*, lies on the arc

(23)

Gw=""  0<z<p (25)

hencewe can derive boundsfor z and p, = 1 — p; similar to those consideredabove.
The formulae are analogougo (23), switching p; for p,, f for g, ands for ¢t = 1 —s.
Thuswe obtainthe upperbound p,, for the volume fraction of the first componentandthe
correspondindoundfor the supportingzy:

L Im@n _Im(gzD)
Y7 Im(e) Y7 Im(e)

The estimatefor the supportof the measureii is obtainedas z(Y = 1 — z,,, becausdrom
the auxiliary relationship

(26)

1—-tG@)
1—¢

it follows thatpolesof the functions F and G sumup to unity. Simplifying (26), we obtain

the first-orderboundsfor the measuresupportandthe volume fraction:

zﬁl)zl—w 1(11):1_|g|2I7m(t).
Im (g) Im(g)
Now, assumethat the mixture under considerationis known to be isotropic, which
meansthat the measured* hasto belongto the domain D® (seefigure 1). In orderto
derive second-ordeboundson the volumefraction of onecomponenin a two-component
isotropic mixture, we considerthe boundaryC»(z) in (9) of the circle containingthe point
f inside:

Fl—1) = (27)

(28)

_ nG-2 _
F(S)—m 0<z<d-1/d (29)
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andchoosehe parametersuchthatthevalue f lies ontheadmissiblepartof thearc C(z).
Separatingeal andimaginarypartswe obtaina systemof equationgfor z and p;. Solving
the systemwe needto choosea solutionof (29) which satisfiesO < z < (d — 1)/d:

{p 2} 0<z<(d—1yd. (30)

In orderto obtainthe otherboundwe againconsiderthe auxiliary function G (¢) (24), which
is obtainedfrom the function F(s) by changingp; for p, = 1— p; ands fort = 1 —s.
The explicit formulaeare asfollows. Let usintroducecomplexparameters andw as
@(e*—e€) t1—w) €ea—€¢*  t(l—v)
= = w = = .
€* (€1 — €2) tr—w €1 — €2 t—v
The second-ordebounds{p?, z*'}, and{p?, z?}, for the structuralparametersregiven
by the pair of solutionsof (29) andthe similar problemfor the transformedunction G:

p|<2) = Q0(v, s) Zl(z) = R(v, s)
PP =1-0Q(w,s) 722 =1—R(w,s)

suchthat the constraint(30) (and the correspondingauxiliary constraint)is satisfied. Here
Q andR are

(31)

(32)

2dvsi + vi — «/T
Q. 5) = 2(dsi + vi)
R(v, s) 2dvi(1—s;) —vi — /T (33)
2d vj

T = vi(vi — 4dsi|v|2 + 4dves; — 4d2visi2)

andthe subscriptgeferto the real or imaginaryparts.

It is shown in [5] that the support of the measureu is directly related to the
separationdistance betweenthe particlesin matrix—particle composite. Basedon the
approachdevelopedhere, we extract structuralinformation about separatiorbetweenthe
brine inclusionsin [20].

The geometricalideaof the second-ordeboundsin the complexe* planeis illustrated
in figure 2. Complexpermittivitiesof all possiblemixturesformedfrom two materialswith
the complexpermittivities e; and ¢, and arbitrary volume fraction of the constituentsare
confinedto the region D(()l). The compositeswith isotropic structureand arbitrary volume

fraction belongto the smallerregion D, which is a union of small lens shapeddomains
correspondingdo isotropic mixturesfor all volume fractions. Two suchdomainsare shown
in figure 2 for the volume fractions of the first materialequalto 0.5 and 0.56. Inverse
boundsfor the volume fraction [p|(2), p?] provide a range of variation of the volume
fraction parameterp = p; for all suchsmall domainswhich could possibly containthe
measuredralue of €*.

For measurementsorrespondingo different frequenciesthe inverseboundsfor the
volume fraction of a componentverederivedin [17, 6, 26] asan intersectionof particular
boundingintervals. In determinationof the brine volume fraction in seaice below, we
considerthe casewhere severalmeasurementare madeat the sametemperatureand the
samephysical conditions. In this situation,we believethat, thoughwe deal with slightly
different microstructureswe do not have meansto distinguishthem. Henceas well as
for frequencydependenimeasurementst is the samestructure,and the boundsfor the
volume fraction are an intersectionof all particular bounds, correspondingto particular
measurements.
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For a set of datapoints correspondingo the samestructurethe boundsare given by
an intersectionof all admissibleintervals. Supposewe have severalmeasurements* (k),
k=1,...,N, correspondindo the samecompositestructurewhich meansthat we do not
distinguishdifferencesn geometryof the mixtures. We find that the intersectionover k of

theintervals p® (k) < p < pi (k) givesthe boundsfor the volumefraction p = ps:

P9 = max (k) < p < min PP (k) = P g=12 (34)
Here pl(‘”(k) and pﬁ‘”(k) are,respectivelyJower and upperboundsfor the volumefraction

derived from the effective complex permittivity ¢*(k) and ¢ is the order of the bounds,
g = 1 for a generalmixture, g = 2 for anisotropic mixture.

5. Inverse bounds for the sea-ice brine volume from measured effective complex
per mittivities

Determinationof the structureof seaice and brine contentfrom measurementsf the
effective complex permittivity is an importantproblemin remotesensing. We apply the
developedmethodto two datasetsof 4.75 GHz measurementsf the effective complex
permittivity of seaice [1]. The datasetseachcontainnine measurementsf the effective
complex permittivity of seaice for two different temperaturesand for different volume
fractionsof brine. The temperatureare —6 °C and —11 °C. Given a sea-icesampleof
temperaturel’ °C andsalinity S partsperthousandppt), the brine volume p; is calculated
from the equationof Frankensteirand Garner[7]. Given the frequency f GHz as well,
the complex permittivity ¢, of the brine is computedfrom the equationsof Stogrynand
Desagant [24]. Furthermore althoughthe brine microstructuretendsto be elongatedin
the vertical direction, since only vertically incident wavesare consideredn [1], we are
justified in assumingthat the geometryis isotropic within the horizontal plane,in which
casewe take d = 2 above. Theseparametercalculationsgave generallygood agreement
with theboundsD® and D@ in [10]. However,we foundthatcloseragreemenis obtained
if we slightly adjustthe complex permittivity e, of the ice by treatingit asa composite
with a small volume fraction of air, and calculatingits effective permittivity ¢, with the
Maxwell-Garnettformula [15].

Seaice is a mixture of threecomponentspureice, brine andair with the unit complex
permittivity of air, €5 = 1, the complexpermittivity of ice ¢jce = 3.15+ 10.002, and the
complexpermittivity of brine dependingon the temperatureand frequency. We consider
this three-componenmixture as obtainedin a two-stepmixing procedure:a compositeof
ice and air is mixed with brine. We assumethat the first mixture of ice and air is a 3D
isotropic compositeof an ice matrix containinginclusionsof air. As the volume fraction
of the air inclusionsis small, and the permittivities of ice and air are relatively close, a
goodapproximationof the effective complexpermittivity of sucha mixture is given by the
Maxwell-Garnettformula for a two-phasecomposite

d pair(€ice — €air) i|
€ice(d — 1) + €air + pair(€ice — €air) ’

The Maxwell-Garnettformula, as well as Bruggeman’ssymmetric effective medium
formula[15], givescloseresultsfor the effective complexpermittivity of the mixture of ice
andair. Whenthe volumefraction of air in this mixture changestheregionsDél), DY and
D@ confining the possibleeffective permittivities of seaice, changetheir locationin the

€2 = €jce |:1 — (35)
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Figure 3. Experimentallymeasureccomplexpermittivity valuesfor sea-icesampleswith brine
volume p = 0.036 (dataset 1, left-hand diagram)and with brine volume p = 0.0205 (data
set2, right-handdiagram),and boundsfor the complexpermittivity of compositedormedfrom
the brine andice/air mixture with the correspondingrolume fractions. The biggerlens shaped
region DD correspondso all anisotropiccompositesand the smallerlens shapedregion D@
confinesthe complex permittivities of two-dimensionalisotropic mixtures. Points show the
measured/aluesof the complexpermittivity of seaice containingthe given percentagef brine.

complexe* plane(seefiguresl and2). The air volumefractionin the ice/air mixture was
chosenso that the region D® correspondindo 2D isotropic compositesvould containall

points of measurementBom both datasets. This gives 2.5% of air in the ice/air mixture
and the value for permittivity e, = 3.07 4+ 10.0019. We usedthis value as the complex
permittivity of the ice/air componenin anice/air/brinemixture. The complexpermittivity

of the othercomponentprine, dependsn the temperatureandit is e, = 51+ i 45 for the
first setof measurementat the temperature-6 °C, ande, = 42.2 + i 45.6 for the second
setof dataat the temperature-11°C. Thesedatasetsare shownin figure 3. (We remark
that the volume fraction of air could also be calculateda priori from knowledgeof the
densityasin [11]).

First-order inverse bounds. For eachparticulardatapoint from datasetsl and2, we used
our techniqueto evaluatethe brine volumefrom the measurementsf the effective complex
permittivity. As a first stepwe appliedthe bounds(23) and (28) for a generalmedium
without any geometricalinformation.

For data set 1 with the volume fraction of brine p = 0.036, the intersectionof
all particular admissibleintervals for the brine volume fraction gives an estimate as
0.0213 < p < 0.0664. For dataset2 with the volume fraction of brine p = 0.0205,
this estimateis 0.0119< p < 0.0320.

Second-order inverse bounds. The second-orderinverse boundsfor the brine volume
fraction werederivedfrom the measurementsf the effective complexpermittivity with the
assumptiorof 2D isotropyof the mixture. Theintersectiorof theboundingintervalsfor data
set1 with brine volume p = 0.036, estimateghe brine volume as0.0333 < p < 0.0422.
For dataset2 with volume fraction of brine p = 0.0205, the inverseboundsfor the brine
volume are 0.0189 < p < 0.0213. The algorithm estimateghe brine volume well within

10% error of the actualvalue of 0.0205for dataset?2.
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Figure 4. Comparisorof the first- andsecond-ordeboundsfor dataset1 with the actualbrine
volume of 0.036 (left-hand diagram)and data set 2 with the actual brine volume of 0.0205
(right-handdiagram). Joint plots of p,(l) (k) and p&l) (k) showthe first-orderinverseboundsfor

generalanisotropiccompositeswhile plots of pl(z) (k) and pf.z) (k) show second-ordeinverse
boundsfor isotropicmixtures,wherek denoteshe index of the datapointk =1,2,...,9. The
dashedines showthe interval of uncertaintyin determiningthe brine volume derivedwith the
assumptiorof 2D isotropy.

Comparisorof the first- andsecond-ordeboundsfor eachparticulardatapointis shown
in figure 4 for datasets1 and 2. On the horizontal axis is shownthe index of the data
point. The points of the lower bound p, and of the upperbound p, correspondingo all
nine different data points are joined on the plots to give betterexposition. The shapeof
the curvesis not important, becausehe numerationof the datapointsin the datasetsis
arbitrary, but the distancebetweenthe lower and uppercurvesis important.

In figure 4 the pointscorrespondindo the first-orderinverseboundsp,” (k) and p (k)
areplotted,giving thelower andupperestimates.The maximumof pl(l) (k) andthe minimum
of pV(k) with respectto k give the first-order inverse boundsfor generalanisotropic
composites.For both datasetstheseare not very tight, permitting quite a large rangeof
variationfor the volume fraction. The second—ordeboundSpl(z) and p{? derivedwith the
assumptiorabout2D isotropy of the composite,are shownfor the samedatasets. Again
the points of the lower bound p|(2) (k) and of the upperbound p{? (k) for nine different
datapoints,k = 1, ..., 9, arejoined on the plot. In this casethe interval of uncertaintyis
reducedby morethanhalf comparedwith the first-orderestimate.

The geometricalstructureof the compositesn eachof the two setsof measurements
is believedto vary negligibly, reflecting the similarity of the physical conditionsof the
experiments. Thereforethe boundsfor the volume fraction haveto satisfy all particular
restrictions,and are given by the intersectionof all particularvolumefraction intervals.

6. Conclusion

We have developeda unified approachto the problem of inverse bounds on the
microstructuralparameterof a mixture. Two typesof inverseboundsare derived using
the analyticity of the effective complexpermittivity of the composite.They are first-order
inverse boundson the volume fraction and structural parameterdor generalanisotropic
mixtures,andsecond-ordeinverseboundsfor mixtureswith 2D or 3D isotropicgeometrical
structure.Theinclusionof additionalinformationon geometricaktructureof the composite
considerablyimprovesthe inversestructuralbounds. This is an expectedresult, because
introducing isotropic restrictionsfor a geometricalstructure,we restrict the classof the
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composites.The inverseboundsobtainedare usedto estimatesea-icebrine volume from
real measurementsf the effective complexpermittivity of seaice. The boundsarein very
goodagreementith the experimentakesults.
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