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Abstract. Boundson the volume fraction of the constituentsin a two-componentmixture
arederivedfrom measurementsof the effective complexpermittivity of the mixture, using the
analyticityof theeffectiveproperty.First-orderinverseboundsfor generalanisotropicmaterials,
aswell assecond-orderboundsfor isotropicmixtures,areobtained.By exploiting an analytic
representationof the effective complex permittivity, the problem of estimatingthe structural
parametersis reducedto a problem of evaluating the momentsand support of a measure
containing information about the geometricalstructureof the material. Rigorousboundson
the volumefraction arefound by inverting first- andsecond-order(Hashin–Shtrikman)forward
boundson the complexpermittivity. The inverseboundsare applied to measurementsof the
effective complex permittivity of sea ice, which is a three-componentmixture of ice, brine
and air. The seaice is treatedvia the two-componenttheory applied to a mixture of brine
andan ice/air composite.The boundson the brine volumeof seaice derivedfrom the effective
permittivity measurementsarein excellentagreementwith datafrom experiments.Theinversion
of forward boundson the complex permittivity of compositemedia provides a basis for a
theoryof inversehomogenizationfor recoveringmicrostructuralparametersfrom bulk property
measurements.Suchresultsareapplicableto problemsin remotesensing,medicalimagingand
non-destructivetestingof materials.

1. Introduction

In recent years much effort has been focussedon estimating the effective complex
permittivity ε∗ [2–4, 9, 10, 18, 19, 22, 23] of periodic and randommedia. In the present
paperwe formulateandsolvethe inverseproblem: havingmeasuredthe effective complex
permittivity we want to make some conclusionsabout the volume fractions of the
constituentsand the geometryof the microstructure.We considerseaice as an example
of a randommedium. Seaice is a polycrystallinemediumof pure ice with randombrine
and air inclusionson the millimetre scale. Its electromagneticbehaviouron this scaleis
quitecomplicated,andis governedby thecomplexpermittivity ε(x), which variesspatially
andadmitsvery different valuesin the brine, ice andair. Many importantfeaturesof sea
ice suchas age,type, salinity, temperature,thermaland fluid transportproperties,growth
history, etc, are related to the details of its microstructure. In particular, the geometry
and relative volume fraction of the inclusionsdependstrongly on the temperatureof the
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ice, the conditionsunderwhich the ice was grown, and the history of the sampleunder
consideration.

In thequasistaticregime,whenthewavelengthλ is muchlargerthanthemicrostructural
scale,the wave cannotresolvevariationsin the local complexpermittivity ε(x) on a fine
scale, and the brine and air microstructureon the millimetre scale is averagedout, or
‘homogenized’. The behaviourof the wave inside the sea ice in this caseis primarily
governedby its effectivecomplexpermittivity ε∗. For example,this is thecasefor synthetic
apertureradar (SAR) used in remotesensing,which operatesin the microwaveregion,
such as in the C-band,with central frequencyf = 5.3 GHz and free-spacewavelength
λ = 5.7 cm.

Various models and effective medium theories, such as the coherent potential
approximation,havebeenusedto derive‘mixing formulae’ for ε∗ of the system.Typically
the sea ice was assumedto consist of a host medium, pure ice, containing ellipsoidal
inclusionsof brine andair (see[23, 25]). While mixing formulaearecertainlyuseful,their
applicabilityto thefull rangeof microstructuresis limited, andtheassumptionsunderwhich
they arederivedarenot alwayssatisfied.A generalanalyticmethodfor obtainingbounds
on the bulk effective propertiesof compositematerialswasdevelopedin [2, 3, 18, 19, 9],
andappliesto any two-componentmedium. This analyticmethodhasbeenappliedto sea
ice in [10, 21, 11]. Given an increasingamountof informationon the microstructure,such
as the brine volume fraction, statisticalisotropy,or the assumptionthat the brine phaseis
containedin separatedinclusions(i.e. it doesnot form a connectedmatrix, or percolate),
theseboundsrestrictall possiblevaluesof ε∗ to increasinglysmallerregionsof thecomplex
ε∗ plane. However,as discussedbefore,it would be very useful to be able to deducethe
detailedmicrostructuralpropertiesof the medium,suchas the geometryand the volume
fractionsof the constituents,from electromagneticmeasurements.

In thepresentpaper,we invert theboundson theeffectivecomplexpermittivity to obtain
‘inverse’ boundson structuralparametersof a two-componentmixture from givencomplex
permittivity data.Two typesof inverseboundsonthevolumefractionsof theconstituentsare
derived: first-orderboundsvalid for generalanisotropictwo-componentmixtureswithout
any geometricalconstraints,and second-orderboundsfor isotropic mixtures. We obtain
both rigorous boundson the possible range of volume fractions given a value of the
observedcomplexpermittivity, valid in the quasistaticregime,and an accuratealgorithm
for predictingthe volume fraction associatedwith a given dataset of permittivity values.
The seaice is a three-componentmixture of brine, ice and air. To apply the developed
algorithm,we modelledthethree-componentmaterialasa mixtureof brineanda composite
formedby ice andair. This is a significantsimplificationof a problemfor three-component
materialswhich is possibledue to the well known ‘bubbly’ structureof ice with a small
volumefractionof air. Thealgorithmis demonstratedon a representativedatasetfrom [1],
with excellentresults.

It should be remarkedthat a similar idea of estimatingstructural parametersfrom
homogenizedmeasurementswas usedpreviously,and applied to multifrequencydata for
thin silver films [17]. Analytical expressionsfor first-order inverseboundswere derived
in [6]. They wereappliedto the estimationof volumefraction of a polarizablecomponent
from multifrequencymeasurementsof the effective complexconductivityof a geophysical
mixture in [26]. Other approachesto the inversion for microstructuralinformation have
beenconsideredin [8, 16, 14, 22]. The developedmethodis sufficiently generalto be able
to invert theseboundsfor muchmoredetailedinformationaboutthemicrostructure,suchas
brine inclusionseparation(which is intimately connectedwith temperatureandpercolation
properties),but this is dealtwith in [20].
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2. Bounds for the effective complex permittivity

Theboundsfor theeffectivecomplexpermittivity of atwo-componentmixturewereobtained
usingtheanalyticcontinuationmethod[2, 3, 18, 9]. We considera randommediumin R

d ,
whered = 2 or d = 3. Let ε(x, η) be a (spatially) stationaryrandomfield in x ∈ R

d and
η ∈ �, where� is thesetof all realizationsof therandommedium.Weassumeε(x, η) takes
thevaluesε1 in thebrineandε2 in theice,andwrite ε(x, η) = ε1χ1(x, η)+ε2χ2(x, η), where
χj is the characteristicfunction of mediumj = 1, 2, which equalsone for all realizations
η ∈ � havingmediumj at x, andequalszerootherwise.Let E(x, η) andD(x, η) be the
stationaryrandomelectric and displacementfields, relatedby D(x, η) = ε(x, η)E(x, η),
satisfying

∇ · D = 0 ∇ × E = 0 (1)

where〈E(x, η)〉 = ek, ek is a unit vectorin thekth direction,for somek = 1, . . . , d, and〈·〉
meansensembleaverageover � or spatialaverageover all of R

d . The effective complex
permittivity tensorε∗ is definedas

〈D〉 = ε
∗〈E〉. (2)

For simplicity, we focus on one diagonalcoefficient ε∗ = ε∗
kk. Due to homogeneityof

effective parameters,ε∗(cε1, cε2) = cε∗(ε1, ε2) for any constantc, ε∗ dependsonly on the
ratio h = ε1/ε2, andwe definem(h) = ε∗/ε2. The two main propertiesof m(h) arethat it
is analytic off (−∞, 0] in the h plane,and that it mapsthe upperhalf planeto the upper
half plane [2, 9], so that it is an exampleof a Herglotz function. Basedon this fact, a
representationfor ε∗ was developedin [2] for periodic composites,and a generalintegral
representationfor ε∗ wasobtainedin [9]. For F(s) = 1 − m(h), s = 1/(1 − h), which is
analyticoff [0, 1] in the s plane,the integral representationis

F(s) = 1 − ε∗

ε2
=

∫ 1

0

dµ(z)

s − z
s = 1

1 − ε1/ε2
(3)

wherethe positivemeasureµ on [0, 1] is the spectralmeasureof the self-adjointoperator
0χ1, where0 = ∇(−1)−1∇· .

Statisticalassumptionsaboutthegeometryareincorporatedinto µ throughits moments
µn. Comparisonof a perturbationexpansionof (3) arounda homogeneousmedium(s = ∞,
or ε1 = ε2) with a similar expansionof a resolventrepresentationfor F(s) [9], yields

µn =
∫ 1

0
zn dµ(z) = (−1)n〈χ1[(0χ1)

nek] · ek〉. (4)

Thenµ0 = p1 if the volumefractionsp1 andp2 = 1 − p1 of the brine andice areknown,
and µ1 = p1p2/d if the material is statistically isotropic. In general,knowledgeof the
(n + 1)-point correlationfunction of the mediumallows calculationof µn (in principle).

Boundson ε∗, or F(s), areobtainedby fixing s in (3), varyingoveradmissiblemeasures
µ (or admissiblegeometries),such as thosethat satisfy only µ0 = p1, and finding the
correspondingrangeof valuesof F(s) in the complexplane[4, 9, 18, 19]. Two typesof
boundson ε∗ are readily obtained. The first bound D(1) assumesonly that the relative
volume fractionsp1 andp2 = 1 − p1 are known, so that only µ0 = p1 needbe satisfied.
In this case,the admissibleset of measuresforms a compact,convexset. Since(3) is a
linear functionalof µ, the extremevaluesof F areattainedby extremepointsof the setof
admissiblemeasures,which are the Dirac point measuresof the form p1δz. The valuesof
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F must lie inside the circle p1/(s − z), −∞ 6 z 6 ∞, andthe regionD(1) is boundedby
circular arcs,oneof which is parametrizedin the F planeby

C1(z) = p1

s − z
0 6 z 6 p2. (5)

To displaythe otherarc, it is convenientto usethe auxiliary function [2]

E(s) = 1 − ε1

ε∗ = (1 − sF (s))

s(1 − F(s))
(6)

which is a Herglotz function like F(s), analytic off [0, 1], with a representationlike (3)
whoserepresentingmeasurehasmassp2. Thenin theE plane,theothercircularboundary
of D(1) is parametrizedby

Ĉ1(z) = p2

s − z
0 6 z 6 p1. (7)

In the ε∗ plane(seefigure 1), D(1) hasverticesA1 = ε2(1− C1(0)) = p1ε1 + p2ε2 and
B1 = ε1/(1−Ĉ1(0)) = (p1/ε1+p2/ε2)

−1, andcollapsesto theinterval(p1/ε1+p2/ε2)
−1 6

ε∗ 6 p1ε1 + p2ε2 whenε1 andε2 are real. In the last case,theseboundsare the classical
arithmetic(upper)andharmonic(lower) meanbounds.Thecomplexbounds(5) and(7) are
optimal andcanbe attainedby a compositeof uniformly alignedspheroidsof material1 in
all sizescoatedwith confocalshellsof material2 andvice versa[18, 19]. Thesearcsare
tracedout as the aspectratio varies. When the volumefractionsof the componentsin the
mixture vary, the correspondingdomainsD(1) cover the region D

(1)

0 , a generalboundon
ε∗ for arbitrarycompositesmixed from the initial materials.

If the mixture is further assumedto be statistically isotropic, i.e. ε∗
ik = ε∗δik, then

µ1 = p1p2/d mustbe satisfiedaswell. A convenientway of including this information is
to usethe transformationintroducedin [4]:

F1(s) = 1

p1
− 1

s F (s)
. (8)

The function F1(s) is, again, a Herglotz function having a representationlike (3) with
representingmeasureµ1, with only a restrictionon its massµ1

0 = p2/p1d.

A1

A2

B1

B2

D(1)

D(2)

D0
(1)

ε2

ε1

Figure 1. Illustration of boundson the bulk permittivity of a two-componentmixture. For
a given volume fraction of one component,all possibleeffective permittivities of the mixture
lie in the lens shapedregion D(1), whereasisotropic mixtures lie in the smaller lens shaped
domainD(2). All possiblebulk permittivitiesof mixtureswith arbitraryvolumefractionslie in
the regionD

(1)
0 which is a union of the domainsD(1) over all volumefractions.
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Applying the sameprocedureas for D(1) yields a region D(2), whoseboundariesare
againcircular arcs. In the F plane,oneof thesearcsis parametrizedby

C2(z) = p1(s − z)

s(s − z − p2/d)
0 6 z 6 (d − 1)/d. (9)

In the E plane,the otherarc is parametrizedby

Ĉ2(z) = p2(s − z)

s(s − z − p1(d − 1)/d)
0 6 z 6 1/d. (10)

In the ε∗ plane,D(2) hasverticesA2 andB2 (seefigure 1), andcollapsesto the interval

ε2 + p1

(

1

ε1 − ε2
+ p2

dε2

)−1

6 ε∗
6 ε1 + p2

(

1

ε2 − ε1
+ p1

dε1

)−1

(11)

whenε1 andε2 arereal with ε1 > ε2. Thesearethe Hashin–Shtrikmanbounds[13]. When
ε1 6 ε2, thesequenceof inequalitiesis reversed.TheverticesA2 andB2 (which correspond
to the expressionsin (11)), areattainedby the Hashin–Shtrikmancoatedspheregeometries
(spheresof all sizesof materialof permittivity ε1 in the volume fraction p1 coatedwith
sphericalshellsof materialε2 in thevolumefractionp2 andvice versa),andlie on thearcs
which boundD(1).

3. Inverse bounds for structural parameters

From equations(3) it immediatelyfollows that the effective complex permittivity of the
mixture of two constituentscan be representedas an integral with somepositive Borel
measureµ (dz) on unit interval:

ε∗ = ε2 − ε2 Fµ(s) = ε2 − ε2

∫ 1

0

µ (dz)

s − z
(12)

whereFµ = 1−ε∗/ε2 ands = 1/(1−ε1/ε2), s 6∈ [0, 1]. An importantfeatureof theintegral
representation(12) of theeffectivepropertyis that it separatesthepropertiesof themixture
constituents,which are containedin the variable s, from the structuralinformation about
the geometryof the mixture,which is containedin the measureµ. Wishing to recoverthis
geometricalinformation from the measurementsof the effective complexpermittivity, we
needto describea setof measuresµ which generatesa measuredvalueε∗ for the effective
property:

M(µ) = {µ : Fµ(s) = 1 − ε∗/ε2}. (13)

Thestructuralinformationaboutthegeometryof themixtureis containedin themoments
µn of the measureµ (seeequation(4)). Using an expansionof F(s) for |s| > 1 abouta
homogeneousmedium

F(s) = µ0

s
+ µ1

s2
+ · · · µn =

∫ 1

0
zn dµ(z) (14)

the momentsof the measureµ canbe determined.If all the momentsareknown, thenthe
measureµ is uniquelydetermined.Theoretically,if only a measuredvalueof the effective
permittivity is given, we cannotdeterminethe moments,nor the structureof the material.
This is becausetherecan exist a greatvariety of structuresgeneratingthe sameresponse
undertheappliedfield. But instead,we candetermineanintervalconfiningthefirst moment
of the measureµ. This will give us an interval of uncertaintyfor the volume fraction of



442 E Cherkaeva and K M Golden

one material in a mixture for a generalanisotropicmedium with no assumptionson the
geometricalstructure.

To obtain information aboutother structuralparameters,we can parametrizea subset
M of M in (13) which consistsof singularmeasures̃µ concentratedon pointsτ from the
interval [0, 1]. Geometrically,this correspondsto the parametrizationof the setof possible
microstructuresusing ‘coatedsphere’composites:inclusionsof one materialcoatedwith
the secondmaterial.For the measuresfrom this subsetM the correspondingvalueof F is
given by

F(s) = α

s − τ
. (15)

For the zeroth-orderboundson the complex permittivity given by the domain D
(1)

0 in
figure 1, 0 6 α 6 1, 0 6 τ 6 1 and F(1) 6 1, which producesall possibleε∗ formed
from the initial materials. Now, having a prescribedvalue for F(s) we want to find the
appropriateintervalsfor α andτ .

The interval for α givesus an interval of uncertaintyfor the volumefractionp1 of one
materialin the mixture,

p
(1)

l 6 p1 6 p(1)
u (16)

while the correspondingvaluesfor τ estimatethe supportof possibleDirac measuresµ̃
from the setM which areequivalentto the true spectralmeasurefrom the point of view of
the measuredvalueof ε∗:

µ̃
(1)

l = p
(1)

l δ(z
(1)

l ) µ̃(1)
u = p(1)

u δ(z(1)
u ) µ̃ ∈ M. (17)

The measures̃µ(1)

l and µ̃(1)
u areon the boundaryof the setM.

By changingτ in (15) the correspondingstructurestrace out the arcs (A1, A2, B1)

or (A1, B2, B1) (seefigure 1) changingfrom the laminates(in 2D case)or cylinders (in
3D case)orientedalong the field through coatedspheroidswith varying aspectratio to
isotropic structuresand then to laminates(or cylinders)orientedacrossthe field. Hence
the last estimatefor the measuresupportcanbe extendedinto an estimatefor geometrical
parameterssuchas,for example,the degreeof an anisotropyof the mixture [20].

Theseare the first-order bounds. However, if someinformation about the structure
of the compositeis available,then boundscan be derivedfor the next moments,and the
uncertaintyintervals will be essentiallydecreased.Pursuingthis approachfor isotropic
materials,we use the second-orderexpansionfor the function F . Thereforethe inverse
boundsfor the volume fraction of a componentin an isotropic mixture can be referredto
assecond-orderinversebounds.

Exploiting the transformation(8) from the function F to the function F1 preservesthe
type of integral representation

F1(s) =
∫ 1

0

µ1 (dz)

s − z
. (18)

Hence the sameapproachworks here as well. We can also determinethe support of
equivalentmeasures̃µ ∈ M

µ̃
(2)

l = p
(2)

l δ(z
(2)

l ) µ̃(2)
u = p(2)

u δ(z(2)
u ) µ̃ ∈ M (19)

andanadmissibleintervalfor thesecondmomentof themeasure,which givesusaninterval
of uncertaintyfor thevolumefraction for an isotropicmedium,or thesecond-orderbounds:

p
(2)

l 6 p1 6 p(2)
u . (20)
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First order
volume fraction bounds

     pl 
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Second order
volume fraction bounds

     pl 
(2)  <   p  <   pu

(2)

Figure 2. Illustrationof boundson thevolumefractionof onecomponentin themixturederived
from the first-orderanisotropicbounds(left-handdiagram)andfrom the second-orderisotropic
bounds(right-handdiagram)for the effective permittivity. The small lensshapeddomainseach
containtheanisotropic(left) andisotropic(right) mixturescorrespondingto thevolumefractions
of thefirst componentpl andpu. Thesepointsgive thelowerandupperestimatesfor thevolume
fraction of the first materialin the mixture.

A geometricalillustration of the ideaof the inversionis shownin figure 2.
Given an observedcomplexpermittivity value ε∗, we increasethe volume fraction p1

in the boundD(1) until oneof the circular arcson the boundaryof D(1) touchesthe point
ε∗. This definesthe lower boundp

(1)

l on the possiblerangeof volumefractionsassociated
with the datapoint. Similarly, we decreasep1 until the other arc touchesthe datapoint,
giving an upperboundp(1)

u on the possiblerangeof the volume fractions. Applying the
sameprocedureto the isotropic complex bound D(2) yields even tighter lower p

(2)

l and
upperp(2)

u boundson the volumefraction p1.
Given a setof datapointsε∗(k) for a setof N measurements,k = 1, . . . , N , we carry

out the inversion for eachpoint, and then take the maximumover k of the p
(1)

l and the
minimumoverk of thep(1)

u , andsimilarly for p
(2)

l andp(2)
u , whichyield rathertight, accurate

estimatesof the volumefractionsin the mixture associatedwith the given dataset.
Using this unified approachwe rederivebelow the first-order boundson the volume

fraction of a componentin an anisotropicmixture,derivedin [6], in the complexε∗ plane.
Then assumingisotropy of the mixture, we derive the boundsfor the volume fraction in
an isotropic mixture. Theseare the second-orderbounds. We then apply the technique
developedhereto real measurementsof the complexpermittivity of seaice and compare
our boundswith experimentalresults.

4. First- and second-order inverse bounds

Let f be the value of F correspondingto the measuredeffective complexpermittivity ε∗

for the given propertiesε1, ε2 of the constituents.As shownabove,if we do not input any
geometricalinformationaboutthe mixture,asidefrom the volumefractions,the valueof f

lies insidethe circular arc

C1(z) = p1

s − z
0 6 z 6 p2. (21)
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We vary p1 so that the given value f lies on this arc and we obtain an equationfor the
lower boundon the structuralparameters{p1, z}:

p1 = f (s − z). (22)

Solving it, we find the lower first-orderboundsp(1)

l andz
(1)

l for thevolumefractionp1 and
the supportof the measuresupp(µ̃):

z
(1)

l = Im (f s)

Im (f )
p

(1)

l = |f |2 Im (s)

Im (f )
. (23)

Herethe bar in the secondexpressiondenotesthe complexconjugate.The valueof z
(1)

l in
(23) gives the boundfor the interval of variationof the supportof the measureµ̃ in (15),
p

(1)

l gives the lower boundfor the first momentof the measureµ̃ or its massin (15). But
thefirst momentof themeasureµ̃ equalsthefirst momentof the truemeasureµ: µ̃0 = µ0.
Hencep

(1)

l gives a rigorousbound for the volume fraction of the first componentin the
mixture.

In order to obtainthe otherbound,we canconsideran auxiliary function G(t) [4]:

G(t) = ε1 − ε∗

ε1
= 1 − s F (s)

1 − s
(24)

with the samepropertiesas F for some positive measureν. The advantageto using
this function as opposedto E(s) is that the spectrum(or supportof µ in (3)) is trivially
transformedvia t = 1− s, so that spectralboundsobtainedfor F areeasilytranslatedover
to G, which is not the casefor E. The value g of the function G correspondingto the
measuredε∗, lies on the arc

C̃1(z) = p2

t − z
0 6 z 6 p1 (25)

hencewe can derive boundsfor z and p2 = 1 − p1 similar to thoseconsideredabove.
The formulaeare analogousto (23), switching p1 for p2, f for g, and s for t = 1 − s.
Thuswe obtainthe upperboundpu for the volumefraction of the first componentandthe
correspondingboundfor the supportingzu:

zu = Im (g t)

Im (g)
pu = Im (g g t)

Im (g)
. (26)

The estimatefor the supportof the measureµ̃ is obtainedas z(1)
u = 1 − zu, becausefrom

the auxiliary relationship

F(1 − t) = 1 − t G(t)

1 − t
(27)

it follows thatpolesof the functionsF andG sumup to unity. Simplifying (26), we obtain
the first-orderboundsfor the measuresupportandthe volumefraction:

z(1)
u = 1 − Im (g t)

Im (g)
p(1)

u = 1 − |g|2 Im (t)

Im (g)
. (28)

Now, assumethat the mixture under considerationis known to be isotropic, which
meansthat the measuredε∗ hasto belongto the domainD(2) (seefigure 1). In order to
derivesecond-orderboundson the volumefraction of onecomponentin a two-component
isotropicmixture, we considerthe boundaryC2(z) in (9) of the circle containingthe point
f inside:

F(s) = p1(s − z)

s(s − z − p2/d)
0 6 z 6 (d − 1)/d (29)
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andchoosetheparameterssuchthat thevaluef lies on theadmissiblepartof thearcC2(z).
Separatingreal andimaginarypartswe obtaina systemof equationsfor z andp1. Solving
the systemwe needto choosea solutionof (29) which satisfies0 6 z 6 (d − 1)/d:

{p1, z} : 0 6 z 6 (d − 1)/d. (30)

In orderto obtaintheotherboundwe againconsidertheauxiliary functionG(t) (24), which
is obtainedfrom the function F(s) by changingp1 for p2 = 1 − p1 and s for t = 1 − s.
The explicit formulaeareasfollows. Let us introducecomplexparametersv andw as

v = ε1 (ε∗ − ε2)

ε∗ (ε1 − ε2)
= t (1 − w)

t − w
w = ε1 − ε∗

ε1 − ε2
= t (1 − v)

t − v
. (31)

Thesecond-orderbounds{p(2)

l , z
(2)

l }, and{p(2)
u , z(2)

u }, for thestructuralparametersaregiven
by the pair of solutionsof (29) andthe similar problemfor the transformedfunction G:

p
(2)

l = Q(v, s) z
(2)

l = R(v, s)

p(2)
u = 1 − Q(w, s) z(2)

u = 1 − R(w, s)
(32)

suchthat the constraint(30) (and the correspondingauxiliary constraint)is satisfied.Here
Q andR are

Q(v, s) = 2dvrsi + vi −
√

T

2(dsi + vi)

R(v, s) = 2dvi(1 − sr) − vi −
√

T

2dvi

T = vi(vi − 4dsi |v|2 + 4dvrsi − 4d2vis
2
i )

(33)

andthe subscriptsrefer to the real or imaginaryparts.
It is shown in [5] that the support of the measureµ is directly related to the

separationdistancebetweenthe particles in matrix–particle composite. Based on the
approachdevelopedhere,we extract structuralinformation aboutseparationbetweenthe
brine inclusionsin [20].

The geometricalideaof the second-orderboundsin the complexε∗ planeis illustrated
in figure2. Complexpermittivitiesof all possiblemixturesformedfrom two materialswith
the complexpermittivities ε1 and ε2 and arbitrary volume fraction of the constituentsare
confinedto the regionD

(1)

0 . The compositeswith isotropicstructureandarbitraryvolume
fraction belongto the smallerregionD

(2)

0 , which is a union of small lensshapeddomains
correspondingto isotropicmixturesfor all volumefractions.Two suchdomainsareshown
in figure 2 for the volume fractions of the first material equal to 0.5 and 0.56. Inverse
boundsfor the volume fraction [p(2)

l , p(2)
u ] provide a range of variation of the volume

fraction parameterp = p1 for all such small domainswhich could possibly contain the
measuredvalueof ε∗.

For measurementscorrespondingto different frequencies,the inverseboundsfor the
volumefraction of a componentwerederivedin [17, 6, 26] asan intersectionof particular
boundingintervals. In determinationof the brine volume fraction in seaice below, we
considerthe casewhereseveralmeasurementsare madeat the sametemperatureand the
samephysicalconditions. In this situation,we believethat, thoughwe deal with slightly
different microstructures,we do not have meansto distinguishthem. Henceas well as
for frequencydependentmeasurements,it is the samestructure,and the boundsfor the
volume fraction are an intersectionof all particular bounds,correspondingto particular
measurements.
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For a set of datapoints correspondingto the samestructurethe boundsare given by
an intersectionof all admissibleintervals. Supposewe haveseveralmeasurementsε∗(k),
k = 1, . . . , N , correspondingto the samecompositestructurewhich meansthat we do not
distinguishdifferencesin geometryof the mixtures.We find that the intersectionover k of
the intervalsp

(q)

l (k) 6 p 6 p
(q)
u (k) givesthe boundsfor the volumefraction p = p1:

P
(q)

l = max
k

p
(q)

l (k) 6 p 6 min
k

p(q)
u (k) = P (q)

u q = 1, 2. (34)

Herep
(q)

l (k) andp
(q)
u (k) are,respectively,lower andupperboundsfor the volumefraction

derived from the effective complex permittivity ε∗(k) and q is the order of the bounds,
q = 1 for a generalmixture,q = 2 for an isotropicmixture.

5. Inverse bounds for the sea-ice brine volume from measured effective complex
permittivities

Determinationof the structureof sea ice and brine content from measurementsof the
effective complexpermittivity is an importantproblemin remotesensing. We apply the
developedmethodto two data setsof 4.75 GHz measurementsof the effective complex
permittivity of seaice [1]. The datasetseachcontainnine measurementsof the effective
complex permittivity of sea ice for two different temperaturesand for different volume
fractionsof brine. The temperaturesare −6 ◦C and −11 ◦C. Given a sea-icesampleof
temperatureT ◦C andsalinity S partsper thousand(ppt), thebrinevolumep1 is calculated
from the equationof Frankensteinand Garner[7]. Given the frequencyf GHz as well,
the complexpermittivity ε2 of the brine is computedfrom the equationsof Stogrynand
Desargant [24]. Furthermore,althoughthe brine microstructuretendsto be elongatedin
the vertical direction, since only vertically incident wavesare consideredin [1], we are
justified in assumingthat the geometryis isotropic within the horizontalplane, in which
casewe take d = 2 above. Theseparametercalculationsgavegenerallygood agreement
with theboundsD(1) andD(2) in [10]. However,we foundthatcloseragreementis obtained
if we slightly adjust the complexpermittivity ε2 of the ice by treating it as a composite
with a small volume fraction of air, and calculatingits effective permittivity ε2 with the
Maxwell–Garnettformula [15].

Seaice is a mixture of threecomponents:pureice, brine andair with the unit complex
permittivity of air, εair = 1, the complexpermittivity of ice εice = 3.15+ i 0.002, and the
complexpermittivity of brine dependingon the temperatureand frequency. We consider
this three-componentmixture asobtainedin a two-stepmixing procedure:a compositeof
ice and air is mixed with brine. We assumethat the first mixture of ice and air is a 3D
isotropic compositeof an ice matrix containinginclusionsof air. As the volume fraction
of the air inclusionsis small, and the permittivities of ice and air are relatively close,a
goodapproximationof the effective complexpermittivity of sucha mixture is given by the
Maxwell–Garnettformula for a two-phasecomposite

ε2 = εice

[

1 − d pair(εice − εair)

εice(d − 1) + εair + pair(εice − εair)

]

. (35)

The Maxwell–Garnettformula, as well as Bruggeman’ssymmetriceffective medium
formula [15], givescloseresultsfor theeffectivecomplexpermittivity of themixtureof ice
andair. Whenthevolumefractionof air in this mixturechanges,theregionsD(1)

0 , D(1) and
D(2) confining the possibleeffective permittivities of seaice, changetheir location in the
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Figure 3. Experimentallymeasuredcomplexpermittivity valuesfor sea-icesampleswith brine
volume p = 0.036 (data set 1, left-handdiagram)and with brine volume p = 0.0205 (data
set2, right-handdiagram),andboundsfor the complexpermittivity of compositesformedfrom
the brine and ice/air mixture with the correspondingvolumefractions. The bigger lensshaped
regionD(1) correspondsto all anisotropiccomposites,andthe smallerlensshapedregionD(2)

confinesthe complex permittivities of two-dimensionalisotropic mixtures. Points show the
measuredvaluesof thecomplexpermittivity of seaice containingthegivenpercentageof brine.

complexε∗ plane(seefigures1 and2). The air volumefraction in the ice/air mixture was
chosenso that the regionD(2) correspondingto 2D isotropiccompositeswould containall
pointsof measurementsfrom both datasets. This gives2.5% of air in the ice/air mixture
and the value for permittivity ε2 = 3.07 + i 0.0019. We usedthis value as the complex
permittivity of the ice/air componentin an ice/air/brinemixture. The complexpermittivity
of the othercomponent,brine,dependson the temperature,andit is ε2 = 51+ i 45 for the
first setof measurementsat the temperature−6 ◦C, andε2 = 42.2 + i 45.6 for the second
set of dataat the temperature−11◦C. Thesedatasetsare shownin figure 3. (We remark
that the volume fraction of air could also be calculateda priori from knowledgeof the
densityas in [11]).

First-order inverse bounds. For eachparticulardatapoint from datasets1 and2, we used
our techniqueto evaluatethebrinevolumefrom themeasurementsof theeffectivecomplex
permittivity. As a first step we applied the bounds(23) and (28) for a generalmedium
without any geometricalinformation.

For data set 1 with the volume fraction of brine p = 0.036, the intersectionof
all particular admissible intervals for the brine volume fraction gives an estimateas
0.0213 6 p 6 0.0664. For data set 2 with the volume fraction of brine p = 0.0205,
this estimateis 0.01196 p 6 0.0320.

Second-order inverse bounds. The second-orderinverse bounds for the brine volume
fractionwerederivedfrom themeasurementsof theeffectivecomplexpermittivity with the
assumptionof 2D isotropyof themixture. Theintersectionof theboundingintervalsfor data
set 1 with brine volumep = 0.036, estimatesthe brine volume as 0.03336 p 6 0.0422.
For dataset2 with volumefraction of brine p = 0.0205,the inverseboundsfor the brine
volume are 0.01896 p 6 0.0213. The algorithm estimatesthe brine volume well within
10% error of the actualvalueof 0.0205for dataset2.
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Figure 4. Comparisonof the first- andsecond-orderboundsfor dataset1 with the actualbrine
volume of 0.036 (left-hand diagram)and data set 2 with the actual brine volume of 0.0205
(right-handdiagram).Joint plots of p

(1)
l (k) andp

(1)
u (k) showthe first-orderinverseboundsfor

generalanisotropiccomposites,while plots of p
(2)
l (k) and p

(2)
u (k) show second-orderinverse

boundsfor isotropicmixtures,wherek denotesthe index of the datapoint k = 1, 2, . . . , 9. The
dashedlines showthe interval of uncertaintyin determiningthe brine volumederivedwith the
assumptionof 2D isotropy.

Comparisonof thefirst- andsecond-orderboundsfor eachparticulardatapoint is shown
in figure 4 for datasets1 and 2. On the horizontalaxis is shownthe index of the data
point. The points of the lower boundpl and of the upperboundpu correspondingto all
nine different datapoints are joined on the plots to give betterexposition. The shapeof
the curvesis not important,becausethe numerationof the datapoints in the datasetsis
arbitrary,but the distancebetweenthe lower anduppercurvesis important.

In figure4 thepointscorrespondingto thefirst-orderinverseboundsp(1)

l (k) andp(1)
u (k)

areplotted,giving thelowerandupperestimates.Themaximumof p
(1)

l (k) andtheminimum
of p(1)

u (k) with respectto k give the first-order inverse boundsfor generalanisotropic
composites.For both datasetstheseare not very tight, permitting quite a large rangeof
variation for the volumefraction. The second-orderboundsp(2)

l andp(2)
u derivedwith the

assumptionabout2D isotropy of the composite,are shownfor the samedatasets. Again
the points of the lower boundp

(2)

l (k) and of the upper boundp(2)
u (k) for nine different

datapoints,k = 1, . . . , 9, are joined on the plot. In this casethe interval of uncertaintyis
reducedby morethanhalf comparedwith the first-orderestimate.

The geometricalstructureof the compositesin eachof the two setsof measurements
is believedto vary negligibly, reflecting the similarity of the physical conditionsof the
experiments.Thereforethe boundsfor the volume fraction have to satisfy all particular
restrictions,andaregiven by the intersectionof all particularvolumefraction intervals.

6. Conclusion

We have developed a unified approach to the problem of inverse bounds on the
microstructuralparametersof a mixture. Two typesof inverseboundsare derivedusing
the analyticity of the effective complexpermittivity of the composite.They arefirst-order
inverseboundson the volume fraction and structuralparametersfor generalanisotropic
mixtures,andsecond-orderinverseboundsfor mixtureswith 2D or 3D isotropicgeometrical
structure.The inclusionof additionalinformationon geometricalstructureof thecomposite
considerablyimprovesthe inversestructuralbounds. This is an expectedresult, because
introducing isotropic restrictionsfor a geometricalstructure,we restrict the classof the
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composites.The inverseboundsobtainedare usedto estimatesea-icebrine volume from
real measurementsof the effective complexpermittivity of seaice. The boundsarein very
goodagreementwith the experimentalresults.
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