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Abstract. The paper addresses a problem of robust optimal design of elastic structures when the
loading is unknown and only an integral constraint for the loading is given. We propose to minimize
the principal compliance of the domain equal to the maximum of the stored energy over all admissible
loadings. The principal compliance is the maximal compliance under the extreme, worst possible
loading. The robust optimal design is formulated as a min—max problem for the energy stored in
the structure. The maximum of the energy is chosen over the constrained class of loadings, while
the minimum is taken over the design parameters. It is shown that the problem for the extreme
loading can be reduced to an elasticity problem with mixed nonlinear boundary conditions; the
last problem may have multiple solutions. The optimization with respect to the designed structure
takes into account the possible multiplicity of extreme loadings and divides resources (reinforced
material) to equally resist all of them. Continuous change of the loading constraint causes bifurcation
of the solution of the optimization problem. It is shown that an invariance of the constraints under a
symmetry transformation leads to a symmetry of the optimal design. Examples of optimal design are
investigated; symmetries and bifurcations of the solutions are revealed.
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1. Introduction

A typical structural optimization problem asks for a material layout in the stiffest
design. The stiffness is defined as an elastic energy of a domain loaded by external
boundary forces (loading). If the loading is fixed and known, an optimal structure
adapts itself to resist the loading. However, the optimal designs are usually unstable
to variations of the forces. This instability is a direct result of optimization: To best
resist the given loading, all the resistivity of the structure is concentrated against a
certain direction thus decreasing its ability to sustain loadings in other directions
[7, 8, 20]. For example, consider a problem of optimal design of a structure of a
cube of maximal stiffness made from an elastic material and void; assume that the
cube is supported on its lower side and loaded by a homogeneous vertical force
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on its upper side. It is easy to demonstrate, that the optimal structure is a periodic
array of unconnected infinitely thin cylindrical rods. Obviously, this design does
not resist any other but the vertical loading.

The instability to variations of the loading is not a defect of an optimization
procedure — the structure does exactly what it is asked to do; it is a defect of the
modeling. In order to find a more stable robust solution, one needs to optimize
a more general robust stiffness-like functional that characterizes an elastic body
loaded by unspecified (or partly unspecified) forces on its boundary, as it happens
with most engineering constructions. To avoid this vulnerability of the optimally
designed structures to variations of loading, we propose to minimize the principal
compliance of the domain equal to the maximum of the stored energy over all
admissible loadings. The principal compliance is the maximal compliance under
the extreme, worst possible loading. We formulate the robust optimal design prob-
lem as a min—max problem for the energy stored in the domain, where the inner
maximum is taken over the set of admissible loadings and the minimum is chosen
over the design parameters characterizing the structure. This formulation corre-
sponds to physical situations when biological materials are created and engineering
constructions are designed to withstand loadings that are not known in advance.

This approach to the structural optimization was discussed in our papers [9, 12]
and (for the finite-dimensional model) in the papers [18, 19]. Various aspects of the
optimal design against partly unknown loadings were studied in [1, 5, 8, 21, 25—
27, 31, 32, 37], see also references therein. In some cases, the minimax design
problem, where the designed structure is chosen to minimize maximal compliance
of the domain, can be formulated as minimization of the largest eigenvalue of an
operator. The minimization of dominant eigenvalues was considered in a setting of
the inverse conductivity problem in [11, 13]. The multiplicity of optimal design that
we find in the minimax loading-versus-design problem is similar to multiplicity of
stationary solutions investigated in the engineering problems of the optimal design
against buckling [14, 34] and vibration [30, 28, 33, 22].

The structure of this paper is as follows. In Section 2, we introduce an integral
quantity of an elastic domain, the principal compliance, equal to the response
of the domain to the worst (extremal) boundary loading from the given class of
loadings; this quantity is a basic integral characteristic of the domain similar to the
capacity, the eigenfrequency, or the volume. The principal compliance is a solution
of a variational problem, which can be reduced to an eigenvalue problem or to a
bifurcation problem.

Examples of various constraints for admissible loadings and resulting varia-
tional problems are considered in Section 3. Particularly, the variational problem
for the principal compliance with a quadratically constrained class of loadings
is reduced to the Steklov eigenvalue problem. The principal compliance of the
domain in this case is a reciprocal of the principal Steklov eigenvalue. We also
consider the constraints of the L, norm, p > 1, of the loading and inhomogeneous
constraints and show that the L, norm constraints result in a nonlinear boundary
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value problem. The constraint of L; norm of the loading yields to a variational
problem which does not have a classical solution, but a distribution: the optimal
loading turns out to be a §-function or, physically speaking, a concentrated loading
(if such a loading does not lead to infinite energy).

Section 4 considers robust structural optimization which is formulated as a
problem of minimization of the principal compliance. The optimal design takes
into account the multiplicity of stationary solutions for extreme (most dangerous)
loadings; typically, the optimal structure equally resists several extreme loadings.
The set of the extreme loadings depends on the constraints of the problem. Contin-
uous change of the constraints leads to modification of the set of extreme loadings;
the optimal structure changes in response. This corresponds to bifurcation of the
solution of the optimization problem. Another characteristic feature of the opti-
mization problem is the symmetry of its solution. We show that the invariance of
the set of the constraints for the admissible loadings, together with the correspond-
ing symmetry of the domain, leads to the symmetry of the optimally designed
structure.

Section 5 contains two examples of problems of structural design for uncertain
loadings. One example is provided by the problem of designing the optimally
supported beam loaded by an unknown loading with fixed mean value. The sec-
ond example is a problem of determining the optimal structure of a composite
strip loaded by a force which deviates from the normal in an unknown direction.
The force is assumed to have a prescribed normal component and an additional
component which is arbitrarily directed and is unknown.

2. The Principal Compliance of a Domain
2.1. PROBLEM, EQUATIONS, CONSTRAINTS
2.1.1. Equations

Consider a domain 2 with the boundary 92 = 9,U4 filled with a linear anisotropic
elastic material, loaded on its boundary component 9 by a force f, and fixed on the
boundary component dy. The elastic equilibrium of such a body is described by a
system (see, for instance, [35]):

V.-o=0 inQ, o=2C:g¢,
{ M
c=0", ew)= 5(Vw + (Vw)T).

Here C = C(x) is the fourth-order stiffness tensor of an anisotropic inhomoge-
neous material, w = w(x) is the displacement vector, € is the strain tensor, o is the
stress tensor, and () represents contraction of two indices. Thus,

€:0 = E €ij0jis (C:e)y = E Cijki€kc-
i k.l
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Equation (1) is supplemented with the boundary conditions
g-n=f ond, w=0 ondg, 2)

where n is the normal to the boundary d2. These equations are the first variation
conditions of the variational problem,

9(C, f) = — min (/Qn(c,e(w))dx—/aw-fds>

w:w|30=0

= w:rzzll?oxzo(/;’w~fds—-/S;I'I(C,e(w))dx>, 3)

where ITis the density of the elastic energy:
-1 1
H(C,e(w)):—z-e:azie:C:e. 4)

The nonnegative functional § is called the compliance of the domain; (3) states that
it is maximal at equilibrium. At equilibrium, the energy stored in the body equals
the work of the applied external forces f,

1
Ho(C. ) =3 f w- fds = f [(C, e(w)) dx. )
] Q

Simultaneously with the elasticity problem, we consider also a close problem
of the bending of a Kirchhoff plate (see, for example, [35]). The equilibrium of the
plate is described by the fourth order equation

VV:Cp:VVw=f inQ 6)
with homogeneous boundary conditions
A d
w=0 ondQ, %:o on 99, %
n

corresponding to a clamped plate, or
w=0 onds, n(Cp : VVW)R =0 ondg, ®)

for a simply supported plate. Here, w is the deflection orthogonal to the plane of
the plate, C,; is the fourth-order tensor of bending stiffness of the elastic material,
VVw is the Hessian of w, and f is the external loading. Notice that the force f
enters the equation as a right-hand-side term. The equation for the plate deflection
corresponds to maximization of the functional

%pz(C,f)=—/

1
Q(Eva:Cpl :VVw—wf) dx. ®

The results that we develop further in this paper apply to both the elasticity (1)
and the bending problem (6); therefore, we will drop the subscript in §,,(C, f),
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and keep notation (C, f) for both compliance functionals. If this does not cause
a confusion, we use the same notation w to denote both the displacement in the
elasticity problem (1) and the deflection in the bending problem (6), even though
the first one is a vector function, whereas the second one is a scalar function.

2.1.2. Admissible Loadings

Let # be a set of admissible loadings f. The elastic energy over a finite domain
is assumed to be finite. We consider integral constraints to describe the set of
loadings F:

9, for problem (1),

5~'={f= Df¢(f)ds=1}’ Df:{ﬂ, for problem (6). o

Here Dy is a domain of application of the forces: in the elasticity problem (1),
D concides with the part of the boundary 9, whereas for the bending plate prob-
lem (6), Dy is the domain 2 or a part of it. We assume that ¢ is a convex function
of f, with the derivative ¢: R3 — R3:

Eé_(ai % E’_?_)
AT AT A

which has an inverse p = .

v(f) =

2.1.3. Principal Compliance

We define the principal compliance of an elastic domain in a class of loadings as a
compliance in the worst possible loading scenario.

DEFINITION. The principal compliance A of the domain is

A= max 4(C, ). 11)

The loadings that correspond to the principal compliance A are extreme or the most
dangerous loadings; we denote them as fp.

AC)=G(C, fp) 2 3(C.f) VfeF. (12)

The most dangerous loadings exist if the set ¥ is closed and convex, see [15].

2.2. CALCULATION OF THE PRINCIPAL COMPLIANCE

The concept of the principal compliance is useful if there are efficient algorithms
for computing the extreme loadings. We show here that the problem of computa-
tion of the principal compliance and the extreme loading$ can be formulated as a
boundary value problem.
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Consider problem (11) and assume that the loadings are constrained as in (10).
The augmented functional J for the problem is:

J =3, f)- M( ¢(f)ds — 1>,
Dy

where w is the Lagrange multiplier. Clearly, maxseg § = maxy J. Variation of
the augmented functional with respect to f gives the optimality condition for the
extreme loading(s):

0
st=fD O (fwtup(FSf =0,

; OF
or, since &f is arbitrary,
ad
w — ,u.% =0 on Dy.

Solving for the extreme loading(s) fp = f, we arrive at the condition
w
fo=p (—) (13)
I

which links the loading fp to the displacement w at the same boundary point
for the elasticity problem (1) or at the same point in the domain for the bending
problem. Condition (13) together with the first boundary condition in (2) allows us
to exclude f from the boundary conditions, leading to the boundary value problem
for the displacement w. We arrive at:

THEOREM 1. The principal compliance A of the elasticity problem (1), (2) with
the constraints for the class of loadings (10) equals

A= —l-/wp(z> ds, 14)
2 /s 147

where w satisfies the elasticity equations (1) in Q with the boundary conditions
1
a-n:p(—w) ond, w=0 ondap. (15)
W
The Lagrange multiplier y is determined from the integral condition

[z

where the function p(-) is an inverse of r = 3¢ /3f.
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Indeed, the displacement w, whose energy is the principal compliance, satisfies
the elasticity equations (1) in € with the boundary conditions obtained from (2)
and (13). The first condition in (15) relates the normal stress at a point on the
boundary 9 to the displacement at this point. The boundary value problem (1),
(15), (16) allows us to compute w and &, fp, and A.

For the bending problem (6), the calculation is similar. The principal com-
pliance is the maximum of the functional (9) over all loadings bounded by the
constraint (10); its value is the following,

THEOREM 2. The principal compliance A for the bending problem (6)~(8) with
the constraint for the class of loadings (10) is

A= 1] wp(3> dx, a7
2 Ja 22

where w satisfies the equation
w
VV . Cp:VVw = p(;) (18)

together with the corresponding homogeneous boundary conditions (7) or (8). The
Sunction p(*) is an inverse of y = 9¢/df. The Lagrange multiplier | is determined

from
/Q¢(p<%)> ds = L. (19)

Indeed, the extreme loading f is related to the displacement w by a scalar
relation w = u@’(f) or f = p(w/u), and the plate equlibrium is described by
equation (18).

3. Examples of Constraints
3.1. HOMOGENEOUS QUADRATIC CONSTRAINT

Assume that the constraint (10) restricts a weighted L, norm of f:

U oo 1
zfaf Wids=1 or ¢(f)=5f"Vf, 20)

where W(s) is a symmetric, positive matrix. In this case, p is a linear mapping:
p(f) = W~!f, and the first of the boundary conditions (15) for the extremal
loading becomes linear:

|
—¥'w—0-n=0 ond. @1
w

The optimality condition states that w and o - n are proportional to each other

everywhere on the boundary 9 with the same tensor of proportionality uW.
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REMARK 1. The stationary condition (21) allows for the following physical inter-
pretation: The boundary 9 is equipped with distributed springs with negative stiff-
ness. The forces in them are proportional but opposite to the forces in conventional
linear springs.

The elasticity equations (1) with boundary conditions (21) form a linear eigen-
value problem that has a nonzero solution w only if 1/u is one of its discrete
eigenvalues. Eigenvalue 1/u relates the displacement on the boundary and the
normal stress.

As all eigenvalue problems, the problem (1), (21) represent Euler-Lagrange
equations of a variational problem:

. Joew) : C:e(w)ds

1
w = wilom Lyw- ¥ lwds
or
1
(fe(w):C:e(w)dx———/w-\IJ“lwds)—-> min . (22)
Q u Ja w:w|p=0

The eigenvalue problem that contains the eigenvalue in the boundary condition is a
Steklov eigenvalue problem, and  is a reciprocal to the Steklov eigenvalue, see [4].
The eigenfunctions are normalized by condition (20).

Using (20) and (21) in the form w = uWf, we observe that the second term
in (22) is equal to y, thereafter u = A. The Steklov problem has infinitely many
real positive eigenvalues (see [4, 23]), but the principal compliance of the domain
corresponds to the dominant eigenvalue, A = fima. The dominant eigenfunction
is not necessarily unique; we will demonstrate below that the existence of many
stationary solutions is typical for the problems of minimization of the principal
compliance with respect to the structure. The dominant eigenfunctions are the
extreme loadings. The results are formulated as

THEOREM 3. If the Ly-norm of admissible loadings is bounded, the principal
compliance A is a solution of the eigenvalue problem:

V.o=0 inQ,v w=AVo.-n ona. 23)
A is a reciprocal to the principal eigenvalue 1/ of the problem (1), (21).

REMARK 2. The spectrum of the problem (1), (21) has one condensation point,
zero. Positive eigenvalues p; tend to zero but never reach it. This implies that the
dual problem of minimal compliance does not have a solution: the compliance can
be made arbitrarily small by choosing a fast alternating loading.

REMARK 3. The problem becomes isomorphic to the problem of the principal
eigenfrequency of the domain, if the kinetic energy (and the inertia) are concen-
trated on the boundary: T = §(x — xp)wWw, where x;, € 9.
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In the bending problem (6), the analogy between the principal compliance and
the principal eigenfrequency of vibrations is complete. The equilibrium (18) of
the optimally loaded plate coincides with the equation for the magnitude of the
deflection of the oscillating plate,

1
VV:Cp:VVW = ;\—w.

3.2. L;-NORM CONSTRAINT

Consider the Li-norm constraint for the class of admissible loadings which as-
sumes that the mean value of loading’s magnitude is fixed:

f8|f|ds=/6ﬁ7ds=1. (24)

From an engineering viewpoint, this case is probably the most interesting one: it
models the situation when the total weight applied to the structure is known but the
distribution of the loading over the boundary is uncertain.

For this, the functional of the variational problem grows linearly as | f| — oo
which leads to a significantly different analysis. The straightforward variational
technique does not provide the correct answer. Indeed, the variation with respect
to f returns the vector condition

1
CTRITT

which says that

8f: f=0 onad,

|w] = constant and w]| f ona.

The last condition, together with the condition ¢ - n = f (see (2)), allows us to
exclude f and end up with a pair of conditions on w:

(o0-n) xw=0, |w]=constant on d.

Generally, these conditions cannot be satisfied if the d-component of the bound-
ary is adjacent to the component 3y where w = 0 since w is continuous. This
contradiction shows that the naive variational method does not apply.

REMARK 4. The appearance of discontinuous solutions in the variational prob-
lems of linear growth is well-known [36]. The famous classical example is the
existence of a non-smooth solution in the minimal surface problem.

To solve the contradiction, we need to assume that the optimal loading f is a
distribution. Indeed, the distribution does not have to satisfy the Euler equations
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of the variational problem because this equation was derived under the assumption
that the optimal solution f is finite and smooth.

Dealing with distributions in the L,-constrained set of loadings may cause dif-
ficulties because the distributions §(x — x¢) may or may not correspond to a finite
energy of the elastic system, as is stated in the Sobolev embedding theorem, see,
for example, [24]. For the compliance of the bending plate (9), the energy of the
concentrated loading and the Green’s function of the corresponding operator are
finite. We illustrate this case below considering a one-dimensional example of a
beam; the concentrated loadings of the type §(x — xp) are acceptable because the
corresponding energy stored in the elastic beam is finite.

However, the linear elasticity problem does not allow a concentrated loading
because the corresponding energy is infinite; the Green’s function g(x, y) has a
singularity, g(x,x) = oo. In this case, the restriction on the class of admissible
f can be slightly tighten. We may assume, for example, that the force is piece-
wise constant within small domains of area €. Alternatively, we may constrain the
L14¢-norm of the loading,

flfl‘*é ds =1, (25)
]

where € > 0 is a fixed parameter. This loading can be supported by a linear elastic
material, although the displacement w can indefinitely grow when € — 0. The
analysis of this case leads to the optimality condition
1/¢
f= ’3 =,
mi o w
which shows that magnitude of an optimal loading either stays arbitrarily close to
zero or is very large (of the order of 1/€). The integral constraint (25) guarantees
that the measure of the set of large values of f(s) goes to zero when € — 0.
With this warning, we proceed with the formal analysis of the problem with the
Ly constraint assuming that either the limit exists or that € can be chosen arbitrary
close to zero to preserve the qualitative properties of the solution.

The extremal loading is concentrated in several points,

f= Zc,-s,-aoc - %),

w

where {x;} is the set of Pomts where the (concentrated) loading is applied, x; € 9,
& 1 & = (5,(1) é,(z) 3)) |&;] = 1, are directional vectors of the concentrated
loadings, and c; are thelr intensities; due to (24), ¢; belong to the simplex

it Zci =1, ¢ >=0. (26)

Further, we show that the extreme loading is always applied to a single point. The
displacements wy = w(x;) are

Wy = Z g(xe, xi)c;&;,
i



PRINCIPAL COMPLIANCE AND ROBUST OPTIMAL DESIGN 81

where g(x, x;) is the Green’s function which relates the §-function loading at the
point x; to the generated displacement w at the point x;. The compliance becomes

§=Y_Y cc(E glxi, x)&).
ik

The principal compliance corresponds to the maximum of § with respect to c¢;, &;
and the points x;.

As a function of ¢;, § is a nonnegative quadratic form, because the work ¢ is
always nonnegative. Therefore, ¢ is a convex function of ¢; and its maximum is
reached in a corner of the simplex (26): the maximum g, of § corresponds to a
single concentrated loading ¢; = 1,¢; = -+ = ¢, = 0. Next, we maximize
this maximum g, with respect to the direction &; = (51(1), 1(2), 51(3)) of the single
applied loading. The resulting compliance ¢ . is equal to the maximal eigenvalue
A& ax(x1) of the Green’s function g(x1, x;) at the point x = x;:

Fec = Ig?x(sfg(xl, x1)&1) = A8 (x1).

This implies that the applied loading f(x) must be parallel to the displacement
w(x). Finally, we choose the point x; € 9 of application of the extreme concen-
trated loading and obtain the principal compliance A. Summarizing, we obtain

THEOREM 4. The L,-principal compliance is
A= 8 ,
na M0}

max

where Moax(x) is the maximal eigenvalue of the 3 x 3 tensor Green’s function
g(x, x) of the problem (1) at the point x € 9.

We stress that the point x; may be not unique although the extreme loading
is always concentrated at one point. For example, there may be two symmetric
extreme loadings if Q is a symmetric domain. An example in Section 5.1 below
shows that there are several equally dangerous loadings in an optimal solution:
Max(x1) = + -+ = A4x (x,); the number ¢ depends on the structure.

3.3. OTHER SPECIAL CASES
3.3.1. Constrained L ,-norm of the Loading

If the constraint is imposed on the L ,-norm of the loading, i.e.,

1
[ =1 p>1,
P Ja
the problem has the form (1) but the boundary conditions (21) are replaced by

|w] 1/(p—1) w

o-n=nw), nw)= (——> — 27
7

|w]



82 E. CHERKAEV AND A, CHERKAEV

and the normalization (16) for u becomes

1 V4 11
w= (—-/le"ds) with — + — = 1. 28)
D Ja q D

In this case, the relation between the stress and displacement is nonlinear. Again,
the multiplicity of stationary solutions that satisfy (27), (28) is expected; this time
the solutions correspond to bifurcation points instead of spectrum points. The phys-
ical interpretation is similar to the one given in Remark 1, but the springs attached
to the boundary 9 are nonlinear.

3.3.2. Nonhomogeneous Constraint

Let the loading f consist of some known component f° and an unknown deviation
with a constrained L ,-norm:

If°— £llz, < 1. (29)

Applying the previous variational analysis, we conclude that an extremal loading
can be found from the elasticity problem with a inhomogeneous mixed boundary
condition:

o-n=f'+nw) ond.

Since the boundary condition is inhomogeneous, w = 0 is not a solution. Still, the
problem may have several stationary solutions. An example of this constraint is
discussed later in Section 5.2.

4. Robust Optimal Design
4.1. MULTIPLICITY OF EXTREME LOADINGS

Consider an optimal design problem: find a layout of elastic materials over the
domain 2 that minimizes the principal compliance A. Such a structure (stiffness
C(x)) corresponds to a solution of the extremal problem

Pmin max = glelg A(C), (30)

where C is a class of admissible layouts. We rewrite the problem using the defini-
tion of A(C):

Pmin max =gleuel I}lea})_(g(c, f), (31)
where the compliance § = (C, f) is defined in (3). Minimization over w in (3)
is performed first so that w will satisfy the elasticity equations while interchang-

ing the order of the extremal operations mincee and max ez correspond to two
physically different situations. Minimax problem (31) is a problem of optimization
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of the material layout when the applied loading is unknown, while in the maximin
problem

the loading is chosen to maximize the stored energy and is known to the designer;
so the design resists this particular loading. If ¢ is a saddle-point functional, the
solutions to these two problems coincide, and

P, max min = 4 'min max-

Saddle point solutions are typical for ‘weak’ control as we will demonstrate below.
The general case

P, max min < P, min max

corresponds to a situation when several loadings are ‘equally dangerous.” The stiff-
ness of the structure Cop; should be fairly distributed to resist equally well each of
these extreme loadings leading to the condition

g(copt, fi)= g(copt’ fj)’ Jis fj €9,

where @ is a set of extreme loadings.

Generally, the set of stationary loadings may consist of any number of elements.
They can be found from the following equations, see [16]. Consider a design Cqp
and the functional J(Cop, f). The extremal loadings that solve the variational
problem

8 82
S?g(copta f) =0, E?’Z'g(copty f) < 0
are denoted by ﬁ, i =1,...,p, where p < 00; we assume that there are p

stationary loadings that can become extreme. The optimized principal compliance
Prin max is determined from the problem

C 20

min maX(Pmin max Z Vig(copts ﬁ))? (33)

where v; > 0 are the Lagrange multipliers due to the constraints

g(colnh ﬁ) - Pmin max < O; Zvi = 1.
i

Optimal design Cp; is found from the following conditions that reformulate the
minimax problem as the problem of minimization of a sum of energies correspond-
ing to extreme loadings.
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THEOREM 5. The optimal principal compliance Pyin max €quals
q

Poin max = i max 3 wid(C, f), ) w=1, 34)

where q is the number of active extreme loadings.

The nonzero Lagrange multipliers correspond to the equalities

Jo=9Cop fi) i=1,...,q, = v >0,

and the multipliers equal zero if the stationary loading leads to a smaller value of
the functional, i.e.,

g0>g(copt9ﬁc), k=gq+1,....0 = v, = 0.

These last conditions should be checked in the optimization procedure; that is,
minimizing J, we check if the value of the functional for the next loading f, 11
(not the most dangerous one) is still less than Jo. When this inequality becomes
equality, the set of extreme loadings should be enlarged to include qu, and the
corresponding Lagrange multiplier v, becomes positive.

The multiplicity of equally dangerous loadings closely resembles the multi-
plicity of optimal solutions in a well studied problem of maximization of the
minimal eigenfrequency. The multiplicity of optimal eigenvalues in that problem
was observed first in a pioneering paper of Olhoff and Rasmussen [30]; then it was
investigated in [33, 14, 34].

REMARK 5. The optimization problem (34) also admits a probabilistic interpre-
tation. Namely, assume that the optimal loading is a random variable which takes
q stationary values with some probability vy, ..., v,. Then the sum }_ v; #(C, f)
in (34) is the expectation of the energy. The optimal design minimizes the ex-
pectation of the energy, meanwhile the loading chooses probabilities vy, ..., v, to
maximize it.

4.2, SYMMETRIES

Symmetries are typical for designs that minimize the principal compliance. Namely,
if the domain and the class of loadings are invariant under a symmetry transforma-
tion (translation, reflection, or rotation), then the set of extreme loadings & and
the optimal design are invariant under this transformation as well. We state the
following:

THEOREM 6. If the domain 2, the boundary component 3, and the set ¥ of
admissible loadings are invariant under a symmetry transformation R, i.e.,

Q= R, 0=RI, and F =RF,
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A 1 = l éél A
Figure 1. The force could be applied at arbitrary points along the elastically supported beam.
The mean value of the magnitude of the force is constrained.

then the set of extreme loadings ® and the optimal materials’ layout C are invari-
ant under this transformation, i.e.,

&= RO, C = RC. (35)

Indeed, applying the above consideration we can see that if fy € ® is an extreme
loading, then R f; is also an extreme loading. The compliance of the structure
should be the same for both loadings, which implies invariance of the design para-
meters with respect to the transformation R. Particularly, when the loaded domain
is rotationally symmetric, and the loading can be applied from any direction, the
optimal layout is axisymmetric.

REMARK 6. Notice the symmetry of many natural ‘designs’ that are perfected
by evolution: The rotationally symmetric shape of trees allows them to sustain
wind from all directions; our natural “protective shell”, the skull, provides the best
protection for the brain against hits from any direction.

The conditions of the theorem do not require the symmetry of the extreme load-
ing, only a possibility to apply a loading symmetric to any given one. In conirast,
the design must be symmetric.

5. Examples of Optimal Designs

The following examples highlight the discussed multiplicity of extreme loadings
and bifurcation of the optimal solution.

5.1. OPTIMAL DESIGN OF A SUPPORTED BEAM
5.1.1. Formulation

Consider a homogeneous elastic beam of unit length simply supported at both ends,
elastically supported from below by a distributed system of elastic vertical springs
with the specific stiffness g(x) > 0, and loaded by a distributed nonnegative force
f(x) 2 0. The elastic equilibrium of the displacement w is described by a one-
dimensional version of (6):

(Ew")" +qw = f, w(0) = w() =0, w0 =w'1) =0, (36)
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where E is Young’s modulus. The compliance is equal to

— ! E "2 /)
g—'/()(fW—'z‘(w)‘“Ew)dX, 3D

where w is a solution of (36). Assume that the mean value of the magnitude of
the loading (L,-norm constraint) is equal to one, and the integral stiffness of the
supporting springs is constrained by a constant «.

1
F = {feH-l(o,l):/ fdx.—.l},
0

1
Q = {qu‘l(o, 1):[ qu:;c}.
0

The optimal design problem of minimization of the principal compliance by dis-
tributing the springs stiffness becomes:

Proin max = ggg ( ffnea; 3)
Applying the above analysis, we conclude:
1. The domain, class of loadings and the boundary conditions are invariant to the
translation x — 1 — x, therefore the design (the springs stiffness) is symmetric
with respect to the center of the beam, see Section 4.2,

q(x) =q(1 —x).
2. Necessary conditions in Section 3.2 show that the extreme loading is a delta-
function f(x) = 8(x — x;) applied at one of the points {x;, x2, ..., X}, where
w'(x;) =0, w’(x;) < 0. (3%)

The extreme loading may be applied to different points symmetric with respect
to the center of the beam; the resulting stiffness must be equal.
3. The stiffness of an optimal spring is a distribution

qx) =) adx—y), Y a=r >0
i i

Indeed, the assumption that g (x) satisfies variational stationary conditions leads
to a contradiction similar to the contradiction discussed in Section 3.2. Particu-
larly, the optimal positions of the springs satisfy the necessary conditions (38),
and therefore the set of reinforcement points coincides with the set {xi, x,,
..., Xp}. The number p of the critical points depends on the relative stiffness
of the springs «/E.
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Accounting for the loading and springs being concentrated, we reformulate the
problem (37) for the optimal principal compliance:

p 1
_ . i) E 2
Prin max = (allz['l}gp) n}fkix{xl: (aikwk - ?wi> - /0 —2—(11) ) dx}, (39

I=

where §;; is Dirac function.
The response of a supported beam can be characterized by a function

v(x) = Crertgﬁ)g(s“, x), (40)

where g is the Green'’s function of the boundary value problem (36): g(¢, x) is the
displacement w(Z) at the point ¢ corresponding to a delta-function loading applied
at the point x, f(¢) = 8({ — x), and v(x) is the maximal displacement under the
concentrated force applied at the point x. Figure 2 shows the response v(x) of the
beam supported by two symmetric springs. The family of the thin curves shows
the displacements wy(x) under several concentrated loadings applied at different
points along the beam. The thick curve shows the maximal displacement, v(x).
Notice that the point of application of the concentrated force is generally different
from the point of maximum of the displacement curve; see the caption to Figure 2.
However, the optimal springs are located at points xf)pt, i = 1,2, of the maximum
of v(x), and the extreme loading is the one applied at one of the same points,
fp =8 —x3)or fp=28(x —x2,).

The numerical results demonstrate the following: if the springs are weak, k/E <
K1, they are concentrated in the center of the beam. We are dealing with the saddle-
point case: the most dangerous loading is a concentrated loading applied also at the
center. The maximal displacement v(x) is a unimodal function of the position of
the loading, with the maximum in the center, (v'(1/2) = 0, v"(1/2) < 0). There

Displacement

Figure 2. Thin curves: The displacement functions generated by concentrated loadings ap-
plied at various points along the beam. The thick curve: maximal displacement v(x) generated
by a force applied at x € (0, 1) as a function of the position of the force. The displacement
corresponding to the force applied at x = 0.15, has a maximum at x = 0.25. Figure shows the
responses of the beam optimally reinforced by two symmetric springs.
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Figure 3. Maximal displacement v(x) as a function of the position of the applied loading:
(a) corresponds to a saddle point case, k/E < k1: the function v(x) is unimodal, the optimal
spring and the extreme loading are both located in the middle of the beam; (b) shows v(x)
corresponding to «/E in the interval k; < x/E < k7 when the strong spring is located in
the center of the beam. Maximal displacement v(x) is not unimodal; design is not optimal;
(c) corresponds to «/E in the same interval 1 < k/E < «3, the maximal displacement v(x)
is shown for an optimally designed beam which is supported by two symmetric springs.

is only one solution for the optimal applied force and the optimal position of the
spring:

1 1
f(x)=6(x—§), q(x)=/c8(x—§>.
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Figure 3(a) shows v(x) for the beam supported by a weak spring in the center
of the beam. One can see that v(x) is unimodal. If the spring becomes stronger,
k1 < k/E < Ky, but is still located in the center, the maximum of v(x) corresponds
to a noncentral applied force. The equally dangerous loadings could be applied
in two symmetric eccentric points. The maximum displacement v(x), shown in
Figure 3(b), is not a unimodal function of the position of the moving applied
force; the design is not optimal. The optimal design for this case (Figure 3(c))
corresponds to two equally stiff springs located symmetrically with respect to the
center; the design experiences a bifurcation at the critical value of k/E = k.
An optimally supported beam is shown in Figure 3(c), where two strong springs
are located symmetric with respect to the center of the beam. The maximal dis-
placement curve becomes unimodal again, with a large interval of almost constant
values in the middle. The next bifurcation occurs when « further increases, at the
point k/E = k,. Three springs appear after the next bifurcation. The number of
optimal supporting points increases and tends to infinity when the springs are much
stronger than the beam, «/E >> 1. The optimality conditions

w'(x) =0, w(x;)| =y, = constant(i),

give the optimal position of the supporting springs x; and a requirement on their
stiffnesses «;.

5.2. COMPOSITE STRIP WITH CONSTRAINED DEVIATION OF THE LOADING

This example shows the design of an optimal structure for the worst possible load-
ing. Consider an infinite strip Q = {—00 < x < 00, —1 < y < 1}, made from a
two-component elastic composite with arbitrary structure but with fixed fractions
m4 and mp = 1 — m, of the isotropic components. The stiffness of the composite
C(x, y) is an anisotropic elasticity tensor; it is assumed that the stiffness can vary
only along the strip, C = constant(y).

Assume that the upper boundary is loaded by some unknown but uniform load-

ing f,
o(x,) - N=f Vx,

where N = (0, 1) is the normal vector. The loading f consists of the fixed compo-
nent fo = (0, 1) directed along the normal and a variable component (deviation)
(fv, fr), the magnitude of the deviation is constrained:

f=+ MmN+ T,  fi+ff=v> (41)

Here T = (1, 0) is the tangent vector and y is the intensity of the deviation. The
constraint (41) can be rewritten as

f=fo+ycosd)N + (ysin®)T fory=1,
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Figure 4. An infinite composite strip loaded by a force f that could deviate from the normal
direction. If the norm y of the deviation is smaller than a critical value y, the optimal com-
posite is a laminate with layers directed across the strip. If y ‘is greater than yq, the optimal
composite is second rank laminate with layers oriented along directions ¢ and —¢.

where @ is the angle of inclination of the deviation of the loading; see Figure 4. The
lower boundary of the strip is assumed to be loaded by a symmetrically deviated
force

f-=—f=—(fo+ycosO)N + (ysin(—0))T fory=—1.
The symmetry of the loadings results in the horizontal strain being zero,
€x(x,y) =0, -1<y<l, (42)

so that the strain tensor has only two, vertical and shear, nonzero components. The
stiffness of the composite C(x) is an anisotropic tensor that is assumed to vary only
along the x coordinate. We consider the problem of optimization of the principal
compliance of the described domain.

5.2.1. Design Parameters

Applying the symmetry theorem, we conclude that:

1. The elastic properties of the optimally designed structure do not vary along the
strip, since the design is invariant to the translation x — x < x. Together with
the assumption that the material properties do not vary with the thickness, this
leads to the conclusion that the elastic properties are uniform: the tensor C is
constant in x and y. This implies that the stress field o is constant inside an
optimal strip and

Oyy = 1+ ycosb, Oxy = y sinf. “3)

2. The material in the optimal strip is orthotropic with main axes directed along
the x and y axes since the design is invariant to the reflection x — —x:

C'(O exy)__c.( 0 —exy>
"\ €y €y =€y €y )
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This implies orthotropy with the main axes codirected along the x, y axes.

For the following calculations, we introduce an orthonormal (a; : a; = §;;)
tensor basis

1
(D) w( ) B0

In this basis, the stress tensor o,
oy O
o= (9 %),
o3 0]
is represented as a vector

o =o01a; +oya; + \/_2_03613.

The compliance tensor S and stiffness tensor C = S~! are presented as matrices
with the components {S;;} and {C;;}; their orthotropy implies the representation

St Sz 0
S={82 S» O
0 0 S5

and a similar one for C.

5.2.2. The Optimization Problem

The energy IT of an orthotropic material is computed either as a function of stresses
and compliance tensor § = {S;;} (stress energy):

1
I,(S,0) = 5(511012 + S0} + 28120102 + 253307), (45)
or as a function of strain € and stiffness tensor C = {Ci;},
1
M (C,¢) = §(C11€12 + Cpe? + 2C1a€1€2 + 2C33€2). (46)

Recall (see (43)) that two components o1 = gy, and 03 = oy, of the stress field
o are known, and the strain in the xx direction is zero, (42):

€ = S1201 + Sp02 = 0;
therefore, o, can be excluded. The elastic energy (46) becomes
1 2 2
[M(C,€) = §(C11€1 +2C33€3)

or, in terms of stress (see (45)),

1 S?
I, (S,0) = '2‘<(Sll - rg—;i)o’lz +2S330’32>.
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The problem of robust optimal design becomes

Pstrip = CeGr,I,}gz)sure I}lea;'( H(S, U)’ (47)

where G, closure is the set of all possible effective compliance tensors of a mi-
crostructure formed from the two given materials with the compliance tensors S4
and Sp, taken in the proportion m4 and mg = 1 —m, respectively, see [8, 27]. We
reformulate the problem using a sum of weighted energies, where the minimized
functional is taken as a sum of the energies due to the extreme loadings.

5.2.3. Laminates of Third Rank: Symmetry

The description of the strongest structures that minimize the sum of the energies
due to several loadings is known, (see the original papers [2, 3, 17] and the books
[8, 297); the best structures in 2D are so-called “laminates of the third rank” shown
in Figure 5. In 3D, they are the sixth rank laminates [17]. Structural optimiza-
tion based on using the third rank composites was effectively developed for the
multi-loadings case in [6, 10, 25]. The effective compliance tensor § = C~! of
a third rank composite ~ the symmetric fourth-order tensor of elasticity — has the
representation

S =Sy +mp((Sp — Sa)"' +maN)~, (48)

where S, is the compliance of an enveloping (reinforcing) material, Sp is the com-
pliance of the material in the nucleus, NV is the matrix of structural parameters that
depends on the structure of the composite, see [8, 29],

3. 3
N=Es) aP@), Y a=1 &3>0
i i=1

i=1

Here E, is the Young’s modulus of the A-material, angles ¢; are the angles that de-
fine the directions of laminates (directions of reinforcement), P is a tensor product
of four directional vectors z; = (cos ¢;, sin ¢;):

Figure 5. The schematic picture of the composite of the third rank.
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Pp))=72 097 ® 7 ® z;, 49)

«; is the corresponding relative thickness of the reinforcing layer in the ith direc-
tion.

The above mentioned symmetry of an optimal composite requires the orthotropy
of the optimal structure. Since the original materials are isotropic, the structure is
orthotropic if the matrix N is orthotropic. This can be achieved by setting

by =—¢3 = ¢, ) =03 = .

Generally, the optimal strip is reinforced by three layers of strong material; one
layer (with relative volume fraction 1 — 2¢«) is directed in the y-direction and two
other layers (with equal relative volume fractions «) are symmetrically inclined by
the angles +¢. In addition, the structure may degenerate into a single layer (when
o = 0) or two symmetric layers (when o = %) with angles ¢ and —¢. Because of
this symmetry, the matrix N for an optimal composite becomes

N =(1-2a)P(0) + aP(¢) +aP(—¢). (50)

Let us compute the compliance of a third-rank composite in the basis (44).
Compliance S4 of an isotropic material A is given by a matrix

1+VA I—VA —V4 0
Sa= 7 —Va 1-vsy 0],
A 0 0 1

and similarly for the material B. To compute the effective compliance of a third-
rank laminate, we first represent the matrix P(¢) of (49) in the basis (44),

cos* ¢ sinf¢pcos’dp  +/2singcos® ¢
P(¢) = ( ) :

sin® ¢ cos? ¢ sin* ¢ V/2sin® ¢ cos ¢
V2singcos’p /2sin®pcosp  2sin® ¢ cos?

and obtain from (50)

1 =20 +2acos*¢ 2asin’ ¢ cos? ¢ 0
N = ( 20 sin? ¢ cos? ¢ 20 sin* ¢ 0 )
0 0 4o sin® ¢ cos? ¢

The matrix N is the variable part of the compliance matrix, (see (48)); it depends
on only two scalar parameters, ¢ and o.
The structural optimization problem (47) finally becomes an algebraic problem

Jswip = min max I, (S($, @), o/(6)); (51)
R4
the expressions for the quantities involved are described above. The angle 6 is

the angle of deviation of the loading from the normal, and ¢ and o are structural
parameters.
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5.2.4. Second Rank Structure is Optimal

Although in the general case of minimization of a sum of energies corresponding to
multiple loadings the third-rank laminates are optimal, here the optimal structures
are the second - not the third-rank laminates. To prove this statement we must find
the derivative of I, in the algebraic minimization problem (51), and demonstrate
that it does not become zero; this would give the optimal value of & on the boundary
of the constraint. However, we skip this bulky calculation and give a physical ar-
gument supported by results of numerical optimization. Because of the absence of
a displacement in the x-direction, there is no need to reinforce this direction. Even
more, the stress in the composite does not change if a layer with infinite stiffness
oriented along x-axes is added to the composition. If this infinitely stiff layer is
counted, then the structure would be reinforced by three layers of stiff material.
Since the stiffness of a structure with an infinitely stiff layer is not smaller than
the stiffness of a structure without such a layer, the optimality of the second-rank
laminates follows.

This conclusion is supported by results of numerical optimization, which gives
®opt = 1/2 for all settings. Physically, this means that the optimal structure is rein-
forced by either single laminates oriented across the strip (the case when ¢ = 0) or
by a second-rank laminate with two symmetric reinforcement directions ¢ and —¢,
see Figure 4. This degeneration of the third-rank laminates can be explained by the
special geometry of the strip and the loading, which do not allow for any strain ey,
along the strip, and the assumed independence of the design on the y-coordinate.
The formulas for the effective properties of a symmetric second-rank composite
are simplified: They are still given by the expression (48) but the structural matrix
N is

1
N =z(P@)+ P(-¢)

instead of (50); in the basis (44) it has the form

cos* ¢ sin® ¢ cos? ¢ 0
N= (sin2 ¢ cos? ¢ sin* ¢ 0 ) .
0 0 2sin® ¢ cos? ¢

We notice that the symmetry in this example efficiently reduces the dimension of
the computational problem, but the general method works with or without symme-

try.
5.2.5. Numerical Example
For the first example, the following values of parameters were chosen:

mA=1——mB=O.2, EA=1, EB=5,
Vi = Uy = 0.3, fo = 1.
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Figure 6. Bifurcation diagram shows (1) the angle of deviation 0 (y) of the extreme, most
dangerous loading and (2) the angle ([A)(y) of optimal reinforcement of the second rank lami-
nated composite. Notice that the bifurcation parameter y has different critical values for the
deviation of the loading 8 and for the angle of reinforcement ¢.

The relative magnitude y of the variable part of the loading is the parameter of
the problem; the angle 6 of the optimal deviation of the extreme loading and the
structural parameters « and ¢ are determined from the solution of the min-max
optimization problem. We detect three regimes:

1. When y < yp = 0.31, the extreme loading is vertical, 6., = 0, and the optimal
structure is a laminate with vertical layers directed across the strip, ¢ope = 0,
see Figure 6.

2. Atthe critical value y; of the parameter y, the direction of the extreme deviation
undergoes a bifurcation, Gy, = +6 (¥), shown by the curve 1 in Figure 6. But
for y < y; = 0.46, the optimal structure remains the same: a laminate with
layers directed across the strip, ¢op = 0 (curve 2 in Figure 6).

3. When the magnitude y further increases, y > ¥, the optimal structure bifur-
cates as well; it becomes a second-rank matrix laminate with the angle @op =
:i:qAb(y) (curve 2 in Figure 6).

Although the problem has two solutions for the extreme loading, the depen-
dence of the compliance on the parameters ¢ and 0 is a saddle-point surface as is
shown in Figure 7. Indeed, the problem is reformulated (relaxed) accounting for
non-uniqueness of the loading and for the symmetry in the design.

The following examples demonstrate the dependence of the optimal solution
on the ratio of Young’s moduli for the materials in the composite. Figure 8 shows
the bifurcation diagrams for different ratios of Young’s moduli. Qualitatively, the
picture remains the same, but the critical values of the bifurcation parameter y are
different: The larger the ratio, the smaller the critical value of y, and y; at which
the bifurcation occurs. The interval (3, 1) decreases with an increase of the ratio
of Young’s moduli.
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10 0

Figure 7. Energy stored in the composite is a saddle point function of the angle of deviation
of the loading 6 and of the direction of reinforcement ¢.
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Figure 8. Bifurcation diagram for different ratios of Young’s moduli of the materials in the
composite ranging from 1 : 2 to 1 : 25. (a) Bifurcation of the angle ] (y) of deviation of the
extreme loading from the normal. (b) Bifurcation of the angle ¢3(y) of direction of the optimal
reinforcement for the second rank laminated composite.
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5.3. DISCUSSION

The principal compliance is a basic characteristic of an elastic body which de-
pends only on the shape of the domain and on the stiffness of the material. By
the proper normalization of A using ||S2|| and ||Cl||, this quantity is reduced to the
dimensionless parameter A:

LA
el

and can be treated as a basic integral characteristic of the filled domain along with
such properties as main eigenfrequency, the capacity, etc.

The optimal design aimed to decrease the principal compliance is a minimax
problem; typically, the problem does not have a saddle point and the optimal de-
sign provides equal minimal compliance for several extreme loadings. Symmetries
and relaxation bring the problem to a saddle-point type. Depending on the type of
constraints, the extreme loading can be a principal eigenfunction of an eigenvalue
problem, a concentrated loading, or a solution of a bifurcation problem.
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