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ABSTRACT

The problem of detectability of inclusions by boundary measurements is considered.
The inclusions di�er from the background material by their conductivity, the location
of inclusions is unknown. The detectability is equal to the di�erence of energies needed
to inject currents in the model body without inclusion and in the sample under in-
vestigation. We consider a game where inclusions hide in the domain and current
distribution seeks them; this is either max-min or a min-max problem for detectability.
These problems have di�erent solutions and di�erent physical meaning, both are solved
and the bounds of detectability are established. The bounds are independent of the
shape of the domain and have a simple analytical form.
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DESCRIPTION OF THE PROBLEM

We deal with the problem of detection of a damage by nondestructive boundary
electrical measurements. We answer the question: whether or not a conducting body
contains damaged regions inside. We are not interested in �nding the location of
these regions, their shape, etc., only in detecting the possible presence of damage. A
damaged part of the sample is called inclusion; it is supposed that the conductivity �I of
inclusions is constant and is less than constant conductivity �B of a basic material. The
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problem of detection naturally arises in technical diagnostics, where one is interested
in detecting cracks, corrosion, or any other defect in a sample.

We apply arbitrary currents J on the surface @
 of the body 
 and measure the
energy required to inject these currents. To detect an inclusion we compare energies
spent for current injection in the undamaged body (which we call a model body)
and in a real sample. Clearly, that the energy spent to inject a current into a body
with inclusions is greater than the energy of the same current for the body without
inclusion; so the presence of the inclusion is easy to �nd. The next assumption makes
the problem nontrivial: we assume that the sensitivity (resolution) of measurements is
limited. An inclusion is detected if the di�erence of responses for the body with and
without inclusion is greater then a sensitivity of measurements.

Nothing supposed to be known about inclusions location; we deal with the problem
of �nding an injected current which detects the `worst' position of inclusions. It can be
formulated as a `hide and seek' game: the inclusion hides itself somewhere in the domain

 and the injected current detects its presence. We determine the best strategies for
both players; one of them controls the position and shape of inclusions and the other
controls the injected currents. The abilities of both sides are restricted by �xing the
total volume of inclusions and the total energy of currents.

We �nd in particular that the best policy is to inject currents with uniform density
in the model body, and that it is better to inject two orthogonal currents with �xed
total energy.

Also we �nd that the best policy for the inclusion is to be dispersed into in�nitely
small pieces which are distributed uniformly throughout the body; the optimal inclu-
sions form a composite material! Shapes of inclusions are found using the theory of the
composite materials with extremal properties or the theory of bounds, see for example
(Lurie and Cherkaev, 1984).

Solving the problem we �nd an a priori bound of the sensitivity of measurements
which is needed for detection of inclusions no matter how they are located. This bound
has an explicit and simple analytical form which makes it convenient for use, it does
not depend on the shape of the body.

Equations

The steady state conductance of the model body is described by the interior Neu-
mann problem

r � (�Br wB) = 0 in 
; �B
@wB

@n
= J on @
;

Z
@

J ds = 0 (1)

where wB is the electrical potential inside the model body, �B is its conductivity. The
energy EB(J) associated with the process is equal to

EB(J) =
Z
@

wB J ds: (2)
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The tested sample di�ers by its conductivity from the model one, its conductivity
is

�(x) = �I �(x) + �B (1� �(x)); (3)

where �(x) is the index function of a domain ! occupied by the inclusions:

�(x) =

(
1; if x 2 !

0; if x 2 
� !
: (4)

The conductance process in the real body is also described by (1) where one must
change �B by � and wB by w, with the energy E(J) of the process, E(J) > EB(J) 8J .

The normalized di�erence d between E(J) and EB(J) distinguishes the body with
and without inclusions. Inclusions are detected if this di�erence is greater than a given
parameter � of the sensitivity of the measurements:

d =
E(J)� EB(J)

EB(J)
=

R
@
(w � wB)J dsR

@
wBJ ds
> �: (5)

d is a homogeneous functional of J , it depends on an injected current J and on a
position � of the inclusion:

d = d (�; J): (6)

Both arguments are subject to integral constraints. The set � of admissible currents J
is described as:

� = fJ : j � n = J on @
; r � j = 0 in 
g: (7)

The set X of � is restricted by �xing the total volume of inclusion (damaged material):

X = f �(x) :
Z


�(x) dx = m0 g: (8)

Extremal problem

Dealing with the problem of ensured detection of unknown inclusions, we consider
two di�erent questions. The problem

P1 = max
J2�

min
�2X

d(�; J) (9)

describes the following situation. For each applied current J we �nd the most incon-
venient for the detection position of inclusions and the corresponding lower bound for
detectability, then the current J is chosen to maximize this bound.

The problem
P2 = min

�2X
max
J2�

d(�; J) (10)

answers the question: what inclusions location is the most di�cult to detect by any
boundary current?
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For each particular location of the inclusion � one can determine the current wich
maximizes the response di�erence d(�; J)

D�(�) = max
J2�

d(�; J) = d(�; J�); J� = Argmax d(�; J) (11)

upon all injected currents which provide a unit energy for the standard body. A similar
problem of maximization of L2(@
) norm of voltage response di�erence was considered
in (Isaacson, 1986).

The parameter D�(�) depends on the shape and position of the inclusion � and
shows the maximal ability of the boundary measurements to detect it. D�(�) is equal
to the maximal eigenvalue of the problem

D�(�) = max
J2�

R

(�(�(x))

�1j2 � ��1B j2B) dxR
@
 wBJ ds

(12)

where �(�(x)) is a conductivity distribution inside the real body. The problem became
of the form of minimization of the maximal eigenvalue of a linear operator by a control
�. The question of multimodality is to be addressed to this problem.

The problem (10) asks for the lower bound for the �rst (maximal) eigenvalue �1 =
D� of the spectral problem (12) for an arbitrary location of inclusions.

The value of the functional P1 is never greater than the value of the functional
P2; solving the �rst problem we obtain a lower bound for the solution of the second
problem. Interesting, that P1 < P2 and these two problems have di�erent solutions
which means that the problem does not possess a saddle point solution.

ONE APPLIED CURRENT

Location of a small inclusion. Optimal currents

Let us consider a small inclusion, and let us concentrate on the dependence of
the increment of the functional on the current density. The value of the functional
d in the right hand side of (9) is proportional to the square of current density: d =
 maxJ2� minx2
 j

2(x), the coe�cient  depends on the shape of an inclusion.
Clearly, the optimal location of an in�nitesimal small inclusion is in the point where

the modulus of the current density reaches its minimal value.
Hence the best strategy of the electrical current is to maximize this minimum

upon all admissible boundary currents. This requirement, together with di�erential
restrictions (7) implies that the best current should have a constant density within the
sample body,

j�(x) = �o = const(x) (13)

where � is the magnitude of the constant �eld and o : joj = 1 is its ort.
To �nd injected current J which generates a constant current density inside a ho-

mogeneous body it is enough to solve an elementary problem: the domain 
 is disposed
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to the constant vector �eld �o which penetrates it. We set the normal component of
the injected current equal to the scalar product of this �eld and the normal n to the
boundary of the domain: J(s) = �n(s) � o:

Note that the problem possesses in�nitely many optimal solutions: the direction of
the optimal current o is arbitrary.

The optimal location of a pair of inclusions

Here we determine the optimal shape of an in�nitely small inclusion.
To do this we consider the problem with a spherical inclusion placed in an uniform

�eld jx and determine the position of the next small inclusion which minimizes the
measured energy di�erence.

Doing standard analysis of the perturbed �elds we conclude that the most preferable
location of the next inclusion is the area near the �rst inclusion. The center of the
\best" second inclusion lies on the line of the direction of the applied �eld which passes
through the center of the �rst inclusion. Physically speaking, the second inclusion tries
to hide itself in the \shadow" of the �rst one.

Continuation of this process leads to a chain of inclusions distributed along a line
of an exterior �eld or to a strip elongated in that direction.

We can continue this procedure and take an ellipsoidal inclusion, and again �nd
regions of minimal values of current density, which are the most preferable for the
inclusion intending to hide itself. We end up with a needlelike inclusions which disturb
the �eld to the minimal extent being placed along the lines of the electric �eld. The
location of this strip is arbitrary.

Composites and the optimal type of microstructures

The general problem of the inclusion of the most hidden shape may not have a clas-
sical solution unless additional geometrical parameters of inclusion are not restricted.
The possible degeneration of the problem may be caused by the sequence of the inclu-
sions which increase in the number unrestricted while the size of each inclusion tends
to zero. Such a behaviour of the material properties is known to be common in the
optimization problems. The reason for this is that the class of all possible inclusions
is not closed until all distributions of in�nitely small inclusions are included in it as
well. The last distributions can be described in terms of the e�ective properties of the
corresponding structures.

The set of e�ective properties of composites which contains the initial materials of
the �xed volume fraction (denoted by m) is called the Gm-closure of the initial set of
material properties.

We compare the energy of the standard body with the energy of the sample made
of a composite material. The last one can have di�erent concentration of the inclusion
material in its di�erent parts m = m(x); but the total amount of the material must be
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obviously prescribed: Z


m(x) dx = m0: (14)

The optimal microstructures belong to the upper boundary of the Gm-closure restric-
tions on the e�ective properties tensor ��:

Tr(�� � �)�1 �
1

(1�m0)
[

n

�B � �
+
m0

�B
]�1

�� � m0 �I + (1�m0) �B (15)

where n = 2 or 3 is the space dimension.
The initial problem of the best detection is reformulated as following: Find an ap-

plied current J with �xed energy EB which maximizes the detectability of a composite
distribution in the body assuming that the parameters of a composite �� 2 Gm-closure
minimize the detectability.

It is easy to show now that properly oriented laminates are the best maximally
hidden structures. Indeed, the energy of a composite body reachs its minimum if the
eigendirection of the minimal eigenvalue �min of that tensor is codirected with the
applied current; the energy di�erence is equal to:

m0 (�B � �I)

�B �m0 (�B � �I)
: (16)

It takes especially simple form if we denote as � a ratio of conductivity di�erences to
the background conductivity:

d =
m0 �

1�m0 �
; � =

�B � �I

�B
: (17)

Thus we obtain a �rst answer to the question under consideration - what the mini-
mal value of the detectability parameter is. If we have only one current at our disposal
to apply on the boundary then the optimal policy is to apply the current which gener-
ates the constant current density distribution inside the body. The most unfortunate
position of inclusions then is a laminated composite with laminates oriented along the
�eld.

SEVERAL APPLIED CURRENTS

Reformulation of the problem

Now we come to the second problem under consideration. The problem P2 asks
for the location of inclusions the most hidden for any applied boundary currents. The
found laminated inclusion distribution is not optimal for this problem: it can be easily
detected by applying the current in the direction perpendicular to the laminates.
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This observation shows how to reformulate the problem P2. Suppose one can
apply several currents Ji(x) with smaller magnitude instead of applying one current
J�. The total energy of the system of currents is kept constant. This corresponds to
the situation when either a constant current with random orientation is applied and
the mean of detectability is maximized, or when two orthogonal currents are injected
in the same sample.

Now laminated composites are not optimal, because a current in the orthogonal
direction gives a higher value for detectability. Instead laminates of the second rank
can be used to minimize the sum of the energy di�erences due to two currents in
orthogonal directions because these structures minimize any convex combination of
stored energies caused by di�erent sources.

Still the optimal currents densities must be constant throughout the body to pre-
vent the position of inclusions in the less `enlightened' parts of the sample where the
magnitude of the current densities is minimal. Locally, one have to minimize the
functional

Iminmax = min
��

Z



X
(i)

ji � �
�1
� � ji dx (18)

where �� belongs to (15), then choose the currents ji subject to the total energy re-
striction X

(i)

j2i = 1: (19)

One can check that it is enough to consider two or three orthogonal currents ji (their
number is equal to the dimension of the space). Also, the detectability in this problem is
a saddle function of parameter of composite family (15) and of magnitudes of orthogonal
currents. Hence the reformulated problem possesses a saddle point solution which
is the following: The best applied currents have equal and constant density in each
point of the domain. The inclusions form an isotropic e�ective medium; the optimal
conductivity is

�� = �B + m (
1

�I � �B
+

1�m

n �B
)�1: (20)

Detectability P2 now can be easily calculated as:

P2 =
�B � ��

��
=

m0 �

1�m0 �� (1�m0) �n�1
(21)

where n is dimension, and � is de�ned earlier in (17).

REFERENCES

Isaacson, D. (1986). Distinguishability of conductivities by electric current com-
puted tomography, IEEE Trans. Med. Imaging, MI-5, 91-95.

Lurie, K. and A. Cherkaev (1984) Exact estimates of conductivity of composites
formed by two isotropically conducting media taken in prescribed proportion Proc.

Royal Soc. of Edinbourgh, sect.A, 99 (P1-2), pp. 71-87.

7


