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Abstract
The paper deals with indirect evaluation of the effective thermal or hydraulic
conductivity of a random mixture of two different materials from the known
effective complex permittivity of the same mixture. The method is based
on deriving information about the microstructure of the composite from
measurements of its effective properties; we call this approach inverse
homogenization. This structural information is contained in the spectral
measure in the Stieltjes representation of the effective complex permittivity.
The spectral measure can be reconstructed from effective measurements
and used to estimate other effective properties of the same material. We
introduce S-equivalence of the geometric structures corresponding to the same
spectral measure, and show that the microstructures of different mixtures can
be distinguished by the homogenized measurements up to the introduced
equivalence. We show that the identification problem for the spectral
function has a unique solution, however, the problem is extremely ill-
posed. Several stabilization techniques are discussed such as quadratically
constrained minimization and reconstruction in the class of functions of
bounded variation. The approach is applicable to porous media, biological
materials, artificial composites and other heterogeneous materials in which
the scale of microstructure is much smaller than the wavelength of the
electromagnetic signal.

1. Introduction

This paper deals with heterogeneous materials in which the scale of inhomogeneity is much
smaller than the wavelength of the electromagnetic signal. Examples of such media are
numerous: sea ice with a random structure of brine and ice, fluid-filled lungs, porous bones
or oil-bearing rocks and artificial composites. In these materials, fine scale variations of the
random microstructure cannot be resolved by the effective electromagnetic measurements.
Only information about the averaged or homogenized structure is present in the measurements
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of the effective complex permittivity. On the other hand, the different effective properties of
the same mixture are related through its geometry. This phenomenon is a basis for widely
used empirical and semi-empirical relations, such as for instance, Kozeny–Carman or Katz–
Tompson relations providing an estimate for permeability of a porous material. Geometric
characterization of the medium is often introduced through the ‘formation factor’ F which
relates the properties of one phase in the mixture to the effective properties of the material:
F = σ/σ ∗, where σ is the conductivity of a fluid filling in the porous material, and σ ∗ is the
effective conductivity.

In principle, the geometric structure of a fine scale random material can be reconstructed
using direct methods such as, for example, x-ray computed tomography. The reconstructed
geometry can be characterized by the correlation functions; using them some properties
of the medium can be evaluated [9, 16]; these are the volume fractions of the materials,
specific surface area, or fractal dimension. Computation of the effective properties of such
a complicated finely scaled medium is a large computational problem. This paper uses an
indirect method of characterizing the geometric structure of the mixture. The method is based
on deriving information about a geometric ‘structural function’ of the composite from its
effective properties; we call this approach inverse homogenization [15].

Accounting for the geometry of the composite was exploited starting from the pioneering
work of Prager [32], in deriving coupled bounds on the effective material properties. Coupled
or cross-property bounds use measurements of one effective property to improve bounds on
other effective properties. The work of Prager who used bounds on the effective magnetic
permeability µ∗ to improve bounds on the thermal conductivity γ ∗ and on the permeability
of the same material at other temperatures, was followed by a number of papers by different
authors.

This paper proposes to measure the effective response of the random medium for a range
of different parameters of the applied fields; we demonstrate that the geometric structural
function of the mixture can be reconstructed from such data. The geometric structural function
is associated with the spectral measure µ in the Stieltjes integral representation of the effective
property of the mixture. This analytic representation of the effective complex permittivity
ε∗ was developed by Bergman [4, 5], Milton [29], and Golden and Papanicolaou [23] in
the course of computing bounds for the effective permittivity of an arbitrary two component
mixture. The spectral function µ was used to derive microstructural information about the
composite [15,21,27,28], to appraise the accuracy of the permittivity measurements [20], and
to model the effective complex conductivity of geological mixtures [14, 24, 36] or of random
resistor networks [17]. This function was calculated from reflectivity measurements in [18].

Here we show that the spectral function µ in the Stieltjes integral representation can
be uniquely reconstructed if the effective property of the mixture is known on an open set,
say on an arc in a complex plane. This is the case when measurements of the effective
complex permittivity ε∗ are available in an interval of frequency of applied electromagnetic
field, provided that the properties of the constituents are frequency dependent. The spectral
measure is determined by the structure of the mixture, it is the same for different effective
properties. Having reconstructed this function from one set of data, we can use it to compute
other effective properties such as thermal or hydraulic conductivity of the same mixture.

From the computational point of view, the problem of reconstruction of the spectral
measureµ is extremely ill-posed: it is equivalent to the inverse potential problem, in particular,
to the inverse problem of gravitational potential. This problem has many applications in
geophysics and is well studied in mathematical as well as geophysical literature (see, for
instance, monographs on the inverse source problem [2, 25] and on the geophysical inverse
problem [31]).
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To obtain a stable reconstruction of the spectral measure, we develop a regularization
approach based on constrained least squares minimization. Constraint in a form of the
l2-norm of the solution gives oversmoothed reconstruction. Total variation of the solution
introduced as a constraint leads to reconstruction in a class of functions of bounded variation.
Since the function µ is indeed a function of bounded variation, total variation penalization
seems to be an appropriate technique. We should also note that computation of the effective
thermal conductivity or other effective properties involves a smoothing operator, which relaxes
the influence of noise in the data. Hence, in spite of severe ill-posedness of the measure
reconstruction, the final result is reasonably stable.

2. Problem of estimation of different effective properties of a random mixture

We consider a stationary random medium, occupying a region O in R
d , where d = 2 or d = 3.

The medium is a fine scale mixture of two materials with the values of the complex permittivity
εj and the thermal conductivity γj in a region Oj , j = 1, 2, with O = O1 ∪ O2. We assume
that the characteristic size of the inhomogeneities is microscopical in comparison with the
size of the region O, and introduce the characteristic function χ of the region O1 occupied by
the first material for a realization η ∈ �, where � is the set of all realizations of the random
medium:

χ(x, η) =
{

1, x ∈ O1,

0, otherwise.
(1)

The characteristic function of the domain occupied by the second material is 1 − χ(x, η).
Suppose that two different fields are applied in this random medium, the electric field, Eε , and
the temperature gradient field, Eγ . The complex permittivity of the medium is modelled by a
(spatially) stationary random field ε(x, η), x ∈ R

d and η ∈ �, ε(x, η) = ε1χ(x, η) + ε2(1 −
χ(x, η)). Similarly, the thermal conductivity is γ (x, η) = γ1χ(x, η) + γ2(1 − χ(x, η)). Since
the stationary fields are described by similar equations, we can introduce the notation σ equal
to ε to denote an electric field, and equal to γ to denote a temperature gradient field. The
stationary random fieldsEσ (x, η) and Jσ (x, η) are related by Jσ (x, η) = σ(x, η)Eσ (x, η) and
satisfy the equations

∇ · Jσ = 0, ∇ × Eσ = 0, 〈Eσ (x, η)〉 = ek, σ = ε, γ. (2)

Here ek is a unit vector in the kth direction, for some k = 1, . . . , d, and 〈 · 〉 means ensemble
average over � or spatial average over all of R

d . The effective tensor σ∗ is defined as a
coefficient of proportionality between the averaged fields: 〈Jσ 〉 = σ∗〈Eσ 〉. Hence the effective
property tensors ε∗ and γ∗ are 〈Jε〉 = ε∗〈Eε〉 and 〈Jγ 〉 = γ∗〈Eγ 〉.

We notice that both problems are related by the same function χ :

∇ · (ε1χ(x, η) + ε2(1 − χ(x, η))) Eε = 0, ε∗ = 〈εEε〉 (3)

and

∇ · (γ1χ(x, η) + γ2(1 − χ(x, η))) Eγ = 0 γ∗ = 〈γEγ 〉. (4)

Suppose that one of the effective properties, ε∗ (see (3)), can be measured. The problem is to
find the other effective property γ ∗ using (4).

We consider here isotropic mixtures and focus on one diagonal coefficient ε∗ = ε∗
kk and

γ ∗ = γ ∗
kk . Due to homogeneity of effective parameters, ε∗(cε1, cε2) = cε∗(ε1, ε2) for any

constant c, ε∗ depends only on the ratio h = ε1/ε2. Let m(h) = ε∗(h)/ε2. The function
m(h) is analytic off (−∞, 0] in the h-plane, and it maps the upper half plane to the upper
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half plane [4, 23]. Hence m(h) is a Herglotz function [3]. We recall that a Herglotz function
φ(ζ ), ζ ∈ C, is analytic for Im ζ �= 0, and such that Im φ(ζ ) and Im ζ have the same sign for
all ζ . Such a function admits the integral representation (see [3, p 262]),

φ(ζ ) = αζ + β +
∫ ∞

−∞

ζu + 1

u− ζ dν (u) (5)

with a bounded and nondecreasing function ν(u) on −∞ < u <∞. Here β is real, and α � 0.
Provided the first moment of ν is finite, this representation can be brought to the following
form:

φ(ζ ) = αζ + β ′
∫ ∞

−∞

dµ (u)

u− ζ , (6)

where

dµ (u) = (1 + u2) dν (u), and β ′ = β −
∫ ∞

−∞
u dν (u). (7)

Based on this approach, a representation for ε∗ was developed in [4] for periodic composites
(see also [7, 30]). A general integral representation for ε∗ with a positive Borel measure µ on
[0, 1] was obtained in [23], and can be formulated as follows. Introduce a function F(s):

F(s) = 1 −m(h), s = 1/(1 − h). (8)

The function F(s) is analytic off the unit interval [0, 1] in the s-plane, and admits the integral
representation

F(s) = 1 − ε∗

ε2
=

∫ 1

0

dµ (z)

s − z . (9)

Here the positive measure µ on [0, 1] is the spectral measure of the self-adjoint operator #χ ,
where # = ∇(−$)−1(∇·).

The integral representation (9) is the Stieltjes transformation of the measure µ, it presents
F(s) as a Stieltjes function. An important feature of this representation is that it separates
the properties of the mixture constituents, which are contained in the variable s, from the
structural information about the geometry of the mixture, which is contained in the measure
µ. We exploit this property to provide an integral representation for the effective thermal
conductivity γ ∗. We introduce a complex variable s ′ = 1/(1 − γ1/γ2) and show that the
effective properties ε∗ and γ ∗ are related through the measure µ.

Proposition 1. The effective properties ε∗ and γ ∗ of the same two-component stationary
random medium are related through their integral representation with the same function µ:

ε∗(s) = ε2 − ε2

∫ 1

0

dµ (z)

s − z , s = 1

1 − ε1/ε2
, (10)

γ ∗(s ′) = γ2 − γ2

∫ 1

0

dµ (z)

s ′ − z , s ′ = 1

1 − γ1/γ2
. (11)

If the functionµ is known from the measurements of ε∗, evaluation of the effective thermal
conductivity γ ∗ reduces to a calculation of the integral in (11).

We consider first a normalized problem and outline derivation of the spectral integral
representation for the effective property following [23]. Then we derive conditions for the
measured values of the effective permittivity ε∗ that allow us to uniquely recover the functionµ.



Inverse homogenization for evaluation of effective properties of a mixture 1207

3. Spectral representation for the effective property

We consider a random mixture of two materials with the values of the conductivity h in the
region O1, and of the unit conductivity in the region O2. The conductivity of the medium is a
random function σ(x, η),

σ(x, η) = hχ(x, η) + (1 − χ(x, η)). (12)

The electric and current fields, E(x, η) and J (x, η), satisfy (2), hence

∇ · (hχ + 1 − χ)E = 0. (13)

The last expression can be brought to the form

∇ · χ E = s ∇ · E, s = 1

1 − h. (14)

Let ∇φ be a perturbation of the constant field ek , so that E = ek + ∇φ. Then,

∇ · χ (∇φ + ek) = s $φ, (15)

where (−$) is the Laplace operator, and

(∇φ + ek) +
1

s
∇(−$)−1∇ · χ(∇φ + ek) = ek. (16)

Let # = ∇(−$)−1(∇·), so that # is an operator projecting vector fields onto a subspace
of curl free, zero mean fields. Then

E = s(sI + #χ)−1ek. (17)

The formula (17) represents E as a function of the operator #χ . Using the spectral resolution
of #χ with the projection valued measure Q, one can derive the following representation for
E:

E(s) =
∫ 1

0

s

s − z dQ(z) ek. (18)

Next we obtain the integral representation for the function F(s) on the plane of the complex
variable s. Consider a function F(s),

F(s) = 1 − σ ∗(s) = 1 − 〈(hχ + 1 − χ)E, ek〉 = 〈s−1 χ E, ek〉. (19)

Using (18) we obtain

F(s) = 〈χ (sI + # χ)−1ek, ek〉 =
∫ 1

0

〈χ dQ(z) ek, ek〉
s − z . (20)

Introduce a function µ corresponding to the spectral measure Q, dµ(z) =
〈χ dQ(z)ek, ek〉. We notice that µ is a positive function of bounded variation, and measure of
any subinterval [z′, z′′) ⊂ [0, 1] is µ([z′, z′′)) = µ(z′′)− µ(z′). We have

F(s) =
∫ 1

0

dµ (z)

s − z . (21)

Recalling that h = ε1/ε2, so that s = 1/(1 − ε1/ε2), we find that (21) results in the
representation for ε∗ in (10).

Now, for given values γ1, γ2 in (4), we can introduce s ′ = 1/(1 − γ1/γ2), s ′ /∈ [0, 1]. The
integral representation for the effective thermal conductivity γ ∗ is

γ ∗(s ′) = γ2(1 − F(s ′)) = γ2

(
1 −

∫ 1

0

dµ (z)

s ′ − z
)
. (22)

As a result, the effective property γ ∗ can be readily evaluated if the function µ is known.
We associate the measure µ with the structural function of the mixture.

Obviously, we could consider evaluation of the effective magnetic permeability, hydraulic
conductivity, or diffusion coefficient, of the same medium, with an appropriate substitution of
the corresponding physical fields.
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4. Uniqueness of reconstruction of the spectral measure

The following theorem describes conditions when the function µ can be recovered from the
measured effective property.

Uniqueness theorem. The measure µ can be uniquely reconstructed if the function F(s) is
known on an open set C of the complex variable s with a limiting point.

Let an analytic function F(s) be given on an open set C. It can be uniquely analytically
continued on the whole domain of analyticity. The point s = ∞ corresponds to a homogeneous
medium, ε1 = ε2, with F(∞) = 0. The Laurent expansion of the function F(s) centred at
infinity is

F(s) =
∞∑
k=1

ck

sk
. (23)

Using the Laurent expansion of the integral kernel, we obtain a series representation,

F(s) =
∞∑
n=0

1

sn+1

∫ 1

0
zn dµ (z). (24)

The integrals in (24) are Stieltjes moments µn of the measure µ:

µn =
∫ 1

0
zn dµ (z), n = 0, 1, 2, . . . . (25)

Comparing the series

F(s) = µ0

s
+
µ1

s2
+
µ2

s3
+ · · · , (26)

with (23), the moments {µn} of the measure µ can be determined. The problem of
reconstruction of the measure µ on the unit interval from its known moments {µn} is the
Hausdorff moment problem. This problem has a unique solution [1, 34].

Conditions for the moment problem to possess a unique solution when µ(z) is constant
outside a given finite interval were formulated by Hausdorff. Let us introduce some notation:

δkµn = µn −
(
k

1

)
µn+1 + · · · + (−1)kµn+k =

∫ 1

0
tn(1 − t)k dµ. (27)

The two following lemmas formulate necessary and sufficient conditions for a sequence
of moments µn to generate a measure µ [34].

Lemma 1. A necessary and sufficient condition for the one-dimensional Hausdorff moment
problem to have a solution, is that all differences δkµn are non-negative:

δkµn � 0, k, n = 0, 1, 2, . . . . (28)

To formulate the second condition, introduce λNn,

λNn =
(
N

n

)
δN−nµn =

(
N

n

) ∫ 1

0
tn(1 − t)N−n dµ (29)

and

M1 = lim
N→∞

N∑
n=0

|λNn|. (30)
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Lemma 2. A necessary and sufficient condition that the one-dimensional Hausdorff moment
problem has a unique solution a function µ of bounded variation, is that M1 < ∞.
Furthermore, ∫ 1

0
| dµ (t)| = M1. (31)

It can be easily seen that for the sequence of moments (25) corresponding to the measure
µ, these conditions are automatically satisfied. This completes the proof.

Remark. The set C of the theorem can be taken as an arc in the complex plane. Exploiting
analytic dependence of the complex permittivity ε1 = ε1(ω) and ε2 = ε2(ω) on frequency ω
we conclude that measurements of ε∗(ω) in an interval of frequency ω ∈ (ω1, ω2) provide the
required values of the function F(s).

5. S-equivalence of structures

One can uniquely recover the measure µ and reconstruct information about the microstructure
of the mixture from the measurements of the complex permittivity ε∗ in a continuous interval
of frequencyω and the values of the permittivity of the pure materials. However, the functionµ
does not necessarily uniquely determine the structure of the material. Therefore we introduce
a new concept of S-equivalence of structures, reflecting classes of microstructures equivalent
from the point of view of the spectral measure.

Definition. Given two structures with the effective properties ε∗1 and ε∗2 and the permittivity
of the pure materials ε1 and ε2 we define their microstructures as S-different, if there exist a
pair of materials with the properties ε̃j ∈ C, j = 1, 2, such that ε∗1(ε̃1, ε̃2) �= ε∗2(ε̃1, ε̃2).
Otherwise, these two structures are S-equivalent.

On the s-plane, the S-equivalence of the two structures means that the corresponding
functions F i(s), i = 1, 2, coincide ∀s ∈ C. Applying the uniqueness theorem, we conclude
that S-equivalent structures correspond to the same spectral function µ. In contrast, for S-
different structures, there exists a point s̃ ∈ C such that F 1(s̃) �= F 2(s̃). Using the analyticity
of the functions F i we conclude that the S-different structures correspond to different spectral
functionsµ. The inverse homogenization approach is based on recovering the spectral measure
µ associated with the geometric structural function. It allows us to distinguish S-different
microstructures, but it is not sensitive to the S-equivalent geometries. It then follows that
S-equivalent structures have the same effective properties for any initial materials filling in the
geometric structure. The next proposition results as a corollary from the uniqueness theorem.

Proposition 2. If the function F(s) is known on an open set C in the complex s-plane, the
geometries of different mixtures are distinguishable by the effective measurements up to the
introduced S-equivalence of the structures.

In order to recover geometrical information from the measurements of the effective
complex permittivity, we can reconstruct the measure µ which generates measured values ε∗.
Comparison of the expansion ofF(s) (26) with a similar expansion of a resolvent representation
for F(s) [23] yields

µn = (−1)n〈χ(#χ)nek, ek〉. (32)

Ifp1 andp2 = 1−p1 are the volume fractions of the components in the mixture, thenµ0 = p1,
and if the material is statistically isotropic, µ1 = p1p2/d where d is dimension. In general,
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the known (n + 1)-point correlation function of the medium allows calculation of µn [23].
The integral representation (9) was used to produce bounds on ε∗, or F(s), obtained by fixing
s in (9), varying over admissible measures µ (or admissible geometries), such as those that
satisfy only µ0 = p1, and finding the corresponding range of values of F(s) in the complex
plane [6, 12, 23, 29, 30].

In [15], when only several data points were available, we described a set of measures
consistent with the measurements:

M = {µ : Fµ(s) = 1 − ε∗/ε2}. (33)

In that case, we could not determine the moments, nor the structure of the material. Indeed,
there exist a great variety of microstructures generating the same response under the applied
field. Instead, we could determine an interval confining the first moment of the measure µ,
which provides an interval of uncertainty for the volume fraction of one material in the mixture.
When several measurements corresponding to the same structure of material are available, such
as for example, measurements for several different frequencies, the bounds for the volume
fraction are given by an intersection of all admissible intervals [14,15,28,36]. The uniqueness
theorem establishes the requirements for the measurements needed to uniquely reconstruct the
spectral measure µ. The set M is reduced in this case to one point. The moments µn (25) of
this function µ contain geometric information about the structure. Different microgeometries
corresponding to the same sequence µ0, µ1, . . . are the S-equivalent structures that are not
distinguishable by homogenized measurements.

6. Reduction to the inverse potential problem

Here we demonstrate that the problem of reconstruction of the spectral measure µ can be
regarded as inverse potential problem. Let K(ζ, z) be a fundamental solution of the Laplace
operator, (−$), in R2,

K(ζ, z) = −1

2π
ln |ζ − z|, (34)

and let the potential U(· ;µ) of a measure µ be

U(· ;µ) =
∫
K(ζ, z) dµ (z). (35)

The potential problem with a real-valued measure can be embedded in a complex plane
ζ = x + iy as follows: introduce complex differentiation

∂/∂ζ = (∂/∂x − i ∂/∂y)/2, ∂/∂ζ̄ = (∂/∂x + i ∂/∂y)/2 (36)

and consider a complex potential of the measure µ:

Uζ (· ;µ) = −1

4π

∫
dµ (z)

ζ − z = −1

2π

∂

∂ζ

∫
ln |ζ − z| dµ (z). (37)

It can be shown that the logarithmic and complex potentials of a real-valued measure are
equivalent (see [25]).

Proposition 3. Function F(s) in (9) admits a representation

F(s) = ∂

∂s

∫
ln |s − z| dµ (z), ∂/∂s = (∂/∂x − i ∂/∂y). (38)
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Indeed, if real-valued measures µ1 and µ2 are supported on [0, 1], and their logarithmic
potentials are equal outside a region containing the unit interval, the equality of their complex
potentials follows from (37). On the other hand, for a real-valued measure µ with a compact
support, the logarithmic potential U is also real-valued. Hence, if F(s) = 0 outside a region
containing the support of µ then ∂U/∂s = 0 and ∂U/∂x = ∂U/∂y = 0. Hence the potential
U is constant, and from asymptotic behaviour at infinity follows that the constant is zero.

We notice that the Stieltjes integral representation is a key representation in a remarkable
connection between Pade approximants, orthogonal polynomials and continued fractions (see
an extensive monograph [3] on this subject). Various numerical procedures based on these
different approaches can be developed for solution of the problem. However, as we will see
in the next section, the problem is ill-posed and requires regularization to develop a stable
numerical algorithm.

The problem of reconstruction of the measure µ is equivalent to the inverse potential
problem. The potential function u is a solution to the Poisson equation

−$u = ψ, supp(ψ) ⊂ �, (39)

where ψ is the density of the mass distribution in �. The solution of the problem is given by
the Newtonian potential (35) with dµ (z) = ψ dz, z ∈ �. The forward problem is to find u
outside � given ψ . The problem is well posed: its solution exists for any integrable ψ , and
for a distribution, and unique and stable with respect to standard functional spaces. Usually,
measured data of the normal derivative or the gradient of the potential u are available on a part
of the boundary ∂� of the domain�. The inverse problem is to find ψ given values of ∂u/∂n,
or ∇u. Generally, the solution of this problem is non-unique. However, it is possible to show
uniqueness for special kinds of density ψ , such as for a harmonic function or a characteristic
function of an unknown star-shaped domain. The main feature of this inverse problem is its
ill-posedness, that manifests itself in many computational difficulties.

7. Regularized problem

We consider (38). Let A be an operator mapping the set of measures M[0, 1] on the unit
interval onto the set of complex potentials defined on a curve C: ζ(s) = 0:

Aµ(s) = f (s) + ig(s) = ∂

∂s

∫ 1

0
ln |s − z| dµ (z), s ∈ C. (40)

When the curve C does not intersect the unit interval of the real axis, the kernel of the operator
A is continuous on M × L2(C). Hence the operator A is a completely continuous operator.
The inverse operator A−1 in this case is not bounded, and the inverse problem is ill-posed.
Practically, this means that small variations in the data or computational noise in a numerical
algorithm can lead to arbitrary large variations of the solution. This ill-posedness of the problem
is well known in the inverse potential theory. It makes it impossible to improve resolution by
increasing the accuracy of the measurements without regularization.

To construct the solution we formulate the minimization problem:

‖Aµ− F‖ → min
µ∈M

, (41)

where ‖ · ‖ is the L2(C)-norm, F is the function of the measured data, F(s) = 1 − ε∗(s)/ε2,
s ∈ C. The solution of the problem does not continuously depend on the data, and the problem
requires a regularization technique. The measurements are of limited precision, therefore only
a perturbed function F δ is available. In addition, an upper error bound δ for the noise level
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is usually known, ‖F − F δ‖ � δ. Consider a set Mδ of functions µ satisfying the measured
data within the δ-error

Mδ = {
µ ∈ M : ‖Aµ− F δ‖ � δ

}
. (42)

Unboundness of the operator A−1 implies that the set (42) is unbounded, which leads to
arbitrary large variations in the solution.

In order to construct a regularization algorithm we introduce a stabilization functionalJ (µ)
which constrains the set of minimizers. As a result, the solution depends continuously on the
input data. Instead of minimizing (41) over all functions in M, we seek to minimize it over a
convex subset of functions which satisfy J (µ) � β, for some scalar β > 0. A particular choice
of J significantly determines the solution. Since the solution of the constrained minimization
problem

min
µ: J (µ)�β

‖Aµ− F δ‖ (43)

occurs on the boundary of the constrained region (see, for instance, [8]) where J (µ) = β, we
can reformulate (43) in terms of an unconstrained minimization problem using the Lagrange
multipliers method. This approach leads to an equivalent formulation that uses the Tikhonov
regularization functional J α(µ, F δ), so that the problem (43) is equivalent to solving the
unconstrained minimization problem with a regularization parameter α (see [11, 35]):

J α
(
µ,F δ

) = ‖Aµ− F δ‖2 + αJ (µ) , J α
(
µ,F δ

) → min
µ∈M

. (44)

8. Quadratic penalization

Different types of stabilization functionals generate different solutions. In the case of a
quadratic stabilization functional, such as norm or semi-norm of the solution (or a quadratic
functional of the solution), the minimization problem becomes

min
µ∈M

{∥∥Aµ− F δ∥∥2
2 + α ‖Lµ‖2

H

}
, (45)

where H is an appropriate space of functions and L is a chosen linear operator.
The advantage of using a quadratic stabilization functional is a linearity of the

corresponding Euler equation resulting in efficiency of the numerical schemes:

µα = (
A∗A + αL∗L

)−1
A∗F δ. (46)

The reconstructed solution necessarily possesses a certain smoothness. We illustrate this
smoothing effect using as an example the regularization scheme with theL2-norm stabilization
functional. Consider singular value decomposition of the operator A with a singular system
(λn, ψn, φn): Aφn = λnψn, A∗ψn = λnφn for all n = 1, 2, . . . .

Figure 1 shows the first few singular values of the discretized operatorA computed for the
numerical example below. Only the first two of the singular values are significantly different
from zero. It is obvious that the inversion of this operator cannot be performed numerically
without developing a regularized computational scheme.

Using the quadratic penalization approach with L = I , the unique solution (46) of the
minimization problem can be written in the form

µα =
∞∑
n=1

λn

λ2
n + α

(F δ, ψn) φn. (47)

The smallest eigenvalue ofA∗A+ αI is larger thanα, and the operator is continuously invertible.
On the other hand, the damping effect of the regularization parameter shows itself in strong
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Figure 1. The first ten singular values of the operator A.

attenuation of the components of the solution corresponding to high-frequency oscillating
eigenfunctions ψn. Indeed, for α � λn,

λn

λ2
n + α

≈ 1

λn
, (48)

the regularizing effect does not appear in the corresponding components of the solution. But
for α � λn,

λn

λ2
n + α

≈ λn

α
� λn, (49)

and the high-frequency components are eliminated. This results in stability of the reconstructed
solution, containing however, only a smooth counterpart.

9. Total variation regularization

Since the functionµ is a function of bounded variation, we consider an alternative nonquadratic
stabilization functional that imposes constraint on the variation of the solution in the domain.
The total variation functional Jtv(µ) is the variation of the function µ:

Jtv(µ) =
∫ 1

0
| dµ (z)|. (50)

The constrained least square minimization with the total variation functional was successfully
used in image reconstruction and denoising problems [13, 37] as well as in the inverse
conductivity problem [19], and inverse potential problem in [10] and in the pioneering work of
Sabatier [33], studying properties of the solution stemming from the non-negativity constraint.
It was noticed that the total variation penalization does not impose smoothness on the solution
which permits recovering blocky and contrast structures.

For an absolutely continuous function µ with the derivative ψ(z), corresponding to the
mass density in the potential problem,

Jtv(µ) =
∫ 1

0
|µ′(z)| dz =

∫ 1

0
|ψ(z)| dz. (51)
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A constraint for the variation of the function ψ is used in image reconstruction and inversion
algorithms:

Jtv(ψ) =
∫ 1

0
|ψ ′(z)| dz. (52)

Since ‖ψ‖L1 � ‖∂ψ/∂x‖L1 [22], the penalization based on (52) taken as the stabilizing
functional also constrains the variation of µ. In the next section we show results of
numerical simulation using total variation constraint as a stabilizing condition in the problem
of reconstruction of the measure µ. The gradient of the Jtv functional is calculated using a
scheme developed in [19].

10. Discretization problem

We discretize the problem to construct a numerical scheme. Let the unit interval [0, 1]
be partitioned into subintervals [xi−1, xi) of the length $x. We approximate the function
dµ (z) by a linear combination of point masses δzi concentrated in the central point zi of each
subinterval as follows:

dµ =
∑
i

µi δzi , µi = µ([xi−1, xi)) = µ(xi)− µ(xi−1). (53)

For an absolutely continuous function µ, with dµ = ψ dx,

µi =
∫ xi

xi−1

ψ(x) dx = ψi$x, (54)

where ψi is the mean value of ψ on the ith subinterval.
The value of (Aµ)(s) at the points s on the curve C is

(Aµ)(s) = ∂

∂s

∑
i

ln |s − zi |µi, s ∈ C. (55)

We can discretize the problem keeping the same notation F for the vector of data measured at
points s1, s2, . . . , sN on the curve C:

‖Km− F‖2 + αJ (m)→ min
m∈Rn

, (56)

where we introduce a vector m = (µ1, µ2, . . . , µn)T and K = {aki} is a matrix with complex
entries

aki = ∂

∂s
ln |s − zi |

∣∣∣∣
s=sk

, sk ∈ C. (57)

11. Numerical example

To demonstrate the developed technique we consider a numerical example simulating
properties of a two-component mixture of known simple geometry. We assume that the mixture
is a dilute periodic composite, consisting of ellipsoids of volumevwith the complex permittivity
ε1 embedded in a much larger homogeneous host of the permittivity ε2. The effective complex
permittivity of such a medium is calculated as

ε∗ = ε2 + ε2
v

V

ε1 − ε2

ε2 + n(ε1 − ε2)
(58)

whereV is the total volume, and n is depolarization factor. It can be easily seen that ε∗ diverges
when

ε1 = −(1 − n)ε2/n. (59)
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Figure 2. Water dispersion curve.
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Figure 3. Reconstruction of a point mass 0.5 δ1/3 concentrated at z = 1/3. The numerical algorithm
is based on the l2-norm stabilization functional introduced to constrain the set of solutions.

This gives a pole at h0 = −(1 − n)/n or transforming to the s-plane, the pole at z0 =
1/(1−h) = n. We consider a case when the embedded particles are of spherical shape, in this
case n = 1/3. Hence the measure µ corresponds to the point mass concentrated at z0 = 1/3.

We also assume that one of the components is water, the permittivity of water depends on
frequency. Let this dependence be described by the Debye relaxation function

ε = ε∞ +
εs − ε∞
1 + iωτ

. (60)

Here εs is the static dielectric constant (the value at zero frequency), ε∞ is the value at high
frequency, ω = 2πf is the angular frequency, with f representing the frequency of the field,
and τ the relaxation time. In the present numerical example these parameters have the values
εs = 80, ε∞ = 4.9, τ = 7.20 ps. Figure 2 shows the water dispersion curve. The second
component in the mixture is assumed to have complex permittivity of sandstone, which does
not vary with frequency.

We calculate the effective complex permittivity of the mixture with this simple geometry
for a number of sampling points in a specified range of frequency and use the imaginary part
as data points for the inversion procedure.
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Figure 4. The results of reconstruction of µ(z) using the algorithm with a quadratic stabilization
functional constraining the l2-norm of the solution. The true solution is a step function
0.5 H(z− 1/3).
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Figure 5. Imaginary part of the function F . Calculated values are represented by dots, the curve
indicates the measured data.

Figure 3 shows the results of reconstruction of a point mass 0.5 δ1/3 concentrated at
z = 1/3 using the algorithm with quadratic stabilization functional constraining the l2-norm
of the solution. The corresponding function µ(z) is shown in figure 4. The true solution is a
step function 0.5 H(z − 1/3). One can see that the reconstructed solution is reminiscent of
the true step function, however, it is much smoother.

Figure 5 shows a good agreement between the measured values of the imaginary part of the
function F and the values computed using the reconstructed measure µ. Here the calculated
values are shown by dots, the curve indicates the measured data. Such a good agreement
even in the quadratic stabilization case, is readily explained by the smoothing properties of
the operator A. This indicates that the reconstructed function µ can be successfully used for
evaluation of other effective properties, as well as computation of the real part of ε∗ from the
measured imaginary part based on Kramers–Kronig’s relations [20, 26].

However, in a number of interesting applications, such as percolation and estimation
of the hydraulic conductivity of a porous medium, the initial materials’ constants are in the
vicinity of the spectral interval. In this case, special care should be taken to ensure accurate
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Figure 6. Reconstruction of the measure µ using the total variation stabilization functional. The
true solution is a point mass 0.1 δ1/3.

reconstruction of the function µ. To pursue this, we developed a numerical scheme based on
a total variation stabilization functional. In this numerical simulation the true solution is a
point mass 0.1 δ1/3. The reconstruction of this delta function solution using the total variation
stabilization functional is shown in figure 6.

12. Conclusion

The geometric structural function associated with the spectral measure µ in the Stieljes
representation of the effective complex permittivity of a mixture is uniquely recovered provided
the effective permittivity measurements are available in a continuous range of frequency of the
applied field. This geometric structural function contains information about the microstructure
of a mixture. We introduceS-equivalence of the geometric structures corresponding to the same
spectral measure µ, and show that the microstructures of different mixtures can be identified
up to the introduced equivalence. The reconstructed spectral measure µ is used to calculate
other effective properties of the same mixture.
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