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}Optimal Survey Design Using
‘Focused Resistivity Arrays

Elena Cherkaeva and Alan C. Tripp

Abstract— The first problem which needs to be solved when
planning any geoelectrical survey is a choice of a particular
electrode configuration that can give the maximal response from
a target inhomogeneity. We formulate a problem of maximizing
the response as an optimization problem for an applied current
intensity distribution on the surface. The solution of this problem
is the optimal intensity distribution of the current, which max-
imizes the response from the inclusion. This problem is solved
numerically with Singular Value Decomposition of an impedance
matrix. The optimal current array is modeled as a carrent of
varying optimal intensity injected at different electrodes. The
problem does not need any information about the inclusion but
its measured impedance matrix. Thus an optimal current array
can be designed for every particular resistivity distribution. The
optimal current patterns are found for a number of meodels
of a conductive inclusion, and responses due to the optimal
current are compared with responses due to conventional arrays.
This method can be applied to any background and inclusion
resistivity distribution.

I. INTRODUCTION

HE direct current geoelectric prospecting technique has

been used extensively in economic and scientific geo-
logical investigations. In any particular use, it is important to
utilize all the power of the technique which it can provide.
One way of doing this in borehole electrical logging is to
use current focusing tools such as the Schlumberger “guarded
electrode,” focusing system of coils in induction logging [1],
the Laterolog [2], and the Microlaterolog [3], [4]. These tools
and more recent tools such as discussed by [5] and [6] have
been developed for a particular purpose to wit they force the
current into the formation perpendicular to the wall of the
hole by maintaining equipotential distribution on the surface
of a borehole. The same idea of maintaining constant potential
values at different electrodes is used in [7] for synthetically
focused resistivity measurements.

The choice of a particular array of transmitter and re-
ceiver electrodes to use in other geophysical and geotechnical
applications have depended on model specific numerical ex-
perimental design in which the responses of various trial arrays
were compared [8]. This technique is able to distinguish an
optimal array for a given model among various trial arrays but
is not capable of determining whether a better array exists.
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This “trial and error” technique for comparing the efficacy
of various electrode arrays is adequate for many applications,
particularly if the geological setting of the target is very
inhomogeneous or if logistical considerations require a very
simple array. In these cases, finding an optimal array is
either impossible due to lack of geological information or
is irrelevant due to the practical problems in conducting
the survey. However, we anticipate an increasing number of
geological applications in which 1) the geological background
may be fairly well characterized or in which measurements
are differential in time and 2) the need for enhanced detecting
or resolving capability will compensate for increased logisti-
cal difficulties. Such possible applications include monitoring
water leakage at dam sites, monitoring contaminant plume
migration, detecting buried “garbage” in a homogeneous fill
material, or well-logging. »

Given these possible applications, we have begun to ex-
amine the possibility of theoretically determining electrode
arrays which are optimal for model detection or resolution
given g priori information concerning the geological set-
ting of the survey. A foundation for 6ur work comes from
work done in biomedical imaging and electrical tomography
[91-[12]. The mathematical background for our discussion
is developed in [13] where this technique is applied to the
problem of resolution and determining the reliability of a
solution of an inverse problem for noisy measurements. In
this paper, we adapt and extend the previous theoretical works
to a geological setting. We present numerical experiments
and show how injection current patterns which-are optimal
in detecting perturbations from an a priori model can be
determined.

We use a system of pole-kpole electrodes as-a basis for
construction of the optimal array. A similar technique can
be exploited for utilizing other electrode arrays. The prob-
lem of maximizing the response from a target inhomogene-
ity is formulated as an optimization problem for an ap-
plied current intensity distribution on the surface. This prob-
lem is solved numerically with Singular Value Decompo-
sition of an impedance matrix. The optimal. cutrent array
is modeled as a set of currents of different intensity in-
jected at different electrodes. The best current patterns are
found for a number of models of a conductive inclusion,
and responses due to the optimal current are compared with
responses due -to conventional arrays. This method can be
applied to any background and inclusion resistivity distribu-
tion.
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Fig. 1. Model A.
II. MATHEMATICAL FORMULATION OF THE PROBLEM 0.4
A. Continuous Current Distributions 3
‘o
We introduce here the mathematical description of the g 0-3
problem. We consider the case of direct current injection. Let %
a domain D be a region of the Earth, on the suiface 9D of § 0.2
which is applied a current f. 4
The potentials and currents for the host medium ~ and the E
perturbed medium ~ + o satisfy the conductivity equations g 0.1
. ow
V-(y+0)Vw=0inD, (y+o)=—=FfondD (1) o ) ) ) . -
d on 50 100 150 200 250 300
an Su Distance {(m)
V-4Vu=0in D, Ton = f on 9D. 2) (a)
The potential values w and u are measured on the earth’s 0.2
surface and they are dependent on an array of injected
currents f. 0.15
We consider the norm of the difference between response
voltages w and u on the surface for the applied current f to §.
be a measure of information content Z of the specific data set, :g 0.1
associated with the current f [11]: >
0.05
P =l -ulfom = [ @-u? O
aD
The best current distribution on the surface is one that ot

maximizes the response from the inclusion, i.e. maximizes the
value Z,

My = maxZ(f) @)

max

= max, lw — |l Ly o)

Likewise, the second best current distribution gives a value

. M», which is less than M; but is greater than all other values

of 7. Continuing this process leads to a hierarchy of injection
currents.

Equation (4) is an eigenvalue problem which has been
considered in connection with the problem of distinguishability
in a number of papers [9], [11], [12].

The currents are of unit norm because we wish to find the
geometry of the optimal injection currents. Since the voltages
scale with the current, larger voltage anomalies can always be
found by uniformly increasing the magnitude of the injection
currents.

Distance {(m)

(®)

Fig. 2. Model A. A plot of the optimal transmitter (a) current intensity and
(b) secondary responses for three different transmitter current patterns: 1)
response of the optimal current (solid line); 2) response of the current of
equal intensity at all electrodes (dot-dashed line); and 3) response of the unit
current at the central electrode (dashed line).

Although statistical noise will influence array design for
practical applications, we will not consider it here.

B. Construction of the Optimal Current Electrode Array

In actual field applications of the geoelectric technique,
the transmitter and receiver electrodes are confined to a
finite number of discrete points. Thus the theory for array
optimization requires a matrix context.
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Fig. 3. Model B.
Again let v be the conductivity of a background or an
initial trial model and let v + o be the conductivity of a 0.4
perturbed medium. Assume that the n transmitter nodes are o
indexed by i and that f = [f(1), f(2),---, f(n)]* is a vector g 0.3t
of injection current intensities whose strength at node ¢ is f(¢). &
The corresponding potentials are measured at m nodes. Thus : 0-2
u and w are the vectors of measured potentials for the media g
v and v+ ¢. An arbitrary current f and measured potentials E 0-1
u and w are related one to another through 5 o
1]
u=2.f ) \/
-0 * 1 [ 2 4 " n
and } 50 100 150 . 200 250 300
w = Z’y+of ) 6) Distance (m)
@
where Z., and Z.,,, are the impedance matrices. Equations (5)
and (6) are-perfectly general and hold for any array of
transmitter and receiver electrodes. To discuss. the design of 0.06
optimal arrays of transmitter electrodes, it is expeditious to
introduce source basis vectors. We consider the case when 0.0
the number of transmitter electrodes is equal to the number g
of receiver electrodes. We will define a set of basis vectors E
{Jk}, k= 17 IR LD by jk = [jk(l)).]k(2)7 e 7jk(n)]T’ where 3 0-02
o [1, ifi=k 0 ———
(1) = {0, otherwise. @
Thus the basis vector j; defines a unit nodal current at =0.02{

transmitter node k.

The numerical entries of Z, and Z,,, can be immediatly
identified in terms of the potential responses to the currents
9% from (5) and (6). Equation'(5) shows that the measured
potential vector wy corresponding to the injection current
Jr numerically equals the kth column of the impedance
matrix Z.: '

uk(1) 211 21k Z1n 0
ug(2) 22k 0

.. L N .. 8
ug (k) 21k Zkk Zkn 1 (8)
uk(n) Zpk ° 0

Here 2, are the entries of the impedance matrix Z.,.

50 100 200

Distance (m)
()

Fig. 4. Model B. A plot of the optimal transmitter (a) current intensity and
(b) secondary responses for three different transmitter current patterns: 1)
response of the optimal current (solid line); 2) response of the current of
equal intensity at all electrodes (dot-dashed line); and 3) response of the unit
current at the central electrode (dashed line).

250

It can be seen immediately from this equation that the kth
column of Z, is numerically equal to the left hand side:

I=1 :
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Fig. 5. Model C.
Since the basis vectors {jix},k = 1,---,n span the space
0.35 1  of all point current distributions, we can consider any current
8 0.3 f -distributed among the nodes as a weighted sum
o]
50.25 n n
: 0.2 f= Zakjk where Zai =1. (12)
8 k=1 k=1
go.15
@ The weights «y, ‘are normalized to 1 to provide a basis for
g 0 comparing different electrod ince f bitr
g paring different electrode arrays, since for any arbitrary
0.05 array more transmitter power will of course lead to a greater -
0 ‘ voltage response.
50 100 150 200 250 300 For a current f the potential vector given by the background
Distance (m) Y is
(@ N
0.14 Zyf =2, (Z akjk) (13)
k=1
0.12f
o1 while the potential vector measured over v + o is
%‘ ¢.08f n
5 Tl = Zoo | D O (14)
£ 0.06} k=1
0-04 Then
0.02 ) n
i (Zyto = Z)f = (Zyro — Z2) Y oge (19)
k=1

150 300

Distance (m)
®)

Fig. 6. Model C. A plot of the optimal transmitter (a) current intensity and
(b) secondary responses for three different transmitter current patterns: 1)
response of the optimal current (solid line); 2) response of the current of
equal intensity at all electrodes (dot-dashed line); and 3) response of the unit
current at the central electrode (dashed line).

200

Dimensionally
(10)

Therefore, the matrices Z, and Z,,, can be written as
matrices with columns equal to 4 and @y, respectively. Thus,

zik = ug(i)[volts]/1[amps] = ﬂk(i)[ohﬁls].

Z’y = {ﬁ'bﬁ?a"':ﬁn} and Z’y—}—o’ = {1171,11?2,' : 712)71}

(11)

represents the vector of anomalous potentials.

We now have the problem in a form which is amenable to
mathematical analysis. Suppose we wish to find a source f
which maximizes the response of a perturbation ¢ about an a
priori conductivity model «. Then we wish to find the set of
coefficients {wy} which solves the problem

(16)

max

" 2
ai=1
Zk:l k E

where the norm is the Euclidean sum of squares.

Given an appropriate modeling algorithm, we can calculate
the impedance matrices Z.., and Z, or given measurements
we can construct the impedance matrix Z.,,, from the mea-
sured data. In this case (16) constitutes an eigenvalue problem.

B {ar}:

H(Z'y+o' - Zw) Z 0k
k=1
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Fig. 7. - Model D.
Let a vector o with components «y, be a vector of current 0.4 -
intensities injected at different electrodes. The problem (16)
states that : g 0.3
. Il
EYy
M= ma 7z — Zy ). 17 2
e [|(Zyro = Zo)ol an gt
This problem is an eigenvalue problem for the matrix §
Znyo — Z, its solution is the eigenvectors « and the eigen- ¢ 0-1
values M such that ‘:5
o B v
| a= -2 w 5T/
where |M| = M. This problem can be solved numerically. —0-1 50 100 150 200 250 300
We solve it using a standard subroutine of Singular Value Distance (m)
Decomposition (SVD) from LINPACK package [14]. Another (a)
way of solving the problem of maximization of the response
based on the power method is utilized in the paper [10]. 0.04f
‘Equation (18) shows that the intensities of the optimal
injected current {a4}, being a solution of the ejgenvalue 0.03¢
problem (17), are proportional to the values of the measured
voltage difference §s 0.02¢
S
n -
~ 2 3
Mo = (Zyio(i k) — Zy(i, k) a9 =%
k=1
0
where Z.,1,(i,k) and Z.,(i, k) are the (7, k)th entries of the
impedance matrices. 0.0} )
- Thus the eigenvalue problem (17) has the solution 50 100 150 200 250 300
. . Distance (m)
{My,a'}, {Mz,0%}, - {M,,e"}, where o ={at} ®)
2
(20) ~ Fig. 8. Model D. A plot of the optimal transmitter (a) current intensity and

which is found numerically.

The values M; and the corresponding currents J;
3o g, form an eigensystem. These currents are orthogonal
and can be used as a basis for any injection current pattern.
The current J;, which corresponds to the maximal eigenvalue
Mj, gives the most amount of information about the inclusion.
The remaining eigenvalues form a monotonically decreasing
sequence. Using the injection currents corresponding to these
eigenvalues will reveal more information about the model if
the data are noise free, although the amount of information
gained will diminish with each successive eigenvalue. If the
data have noise, then there may be a value NV such that for all

¢ > N, eigenvalues M; will be within the noise of the data

(b) secondary responses for three different transmitter current patterns: 1)
response of the optimal current (solid line); 2) response of the current of
equal intensity at all electrodes (dot-dashed line); and 3) response of the unit
current at the central electrode (dashed line).

in some statistical sense. In this case, using eigencurrents for
i > N will not lead to useful information concerning o.

It is useful to have a measure of the optimality of an arbi-
trary injection current. Since the eigencurrents are orthogonal,
a measure of information content Z (3) of an arbitrary current
injection pattern f can be calculated as

P = wM} 1)
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where «; are the coefficients of the expansion of the current
f in terms of the eigencurrents J;.

C. Physical Interpretation of the Optimal
Current Electrode Array

We have shown how to design arrays which give a maximal
response from a target inhomogeneity given an a priori back-
ground model. It is shown [13] that the current maximizing
the response from the inclusion also maximizes the scattering
current energy over the inclusion. This corresponds to the
concentration of current in the vicinity of the inclusion.

Let us consider a linearized problem by assuming that the
conductivity perturbation is small. The linearized equation is
an equation for the scattering potential v = w — u, and is
obtained from (1) and (2)

V-4Vu=0in D, 'ya—u=fon82)'

Ov

V- -4Vv=-V-gVuin D, '76—200n8'D.
n

Here f is the applied current injected at point electrodes (12)

with intensity oy at the kth electrode, u is a potential of the

electrical field in the model background problem, and v is

a fluctuation of the potential caused by the presence of the

inclusion. ‘ '
Analogously with (19), the coefficients {ay} are propor-

tional to the values of the measured voltage difference. Thus

in the linearized problem

Vi

M

Q; =

and

v = Z(Z'H-a(i’k) - Z’y(i7 k))ak‘ 23)
k=

1

Using this property of the optimal current and (22) we find
the expression for the energy of the scattering current £;. Thus

/ Js - Edx
D

/ oVu - Vudz
D

n
PRLTL
k=1

Here we exploit (22) and (23) and the fact that o = 0 on
the boundary 8D. J, is the scattering current, J, = oVu,
and FE is the background electric field, so that the expression
fD Jy - Edz is the energy &, of the scattering current.

Since the optimal current maximizes the value of M, (24)
implies that it maximizes the energy of the scattering current

N 2 2
M? = {/ JU-E’dz} = {/ Js .de} =£2
D o

where D, is a domain occupied by inclusion o.

Thus the optimal current intensity distribution on the surface
focuses current inside the earth to the vicinity of inclusion.
This is the reason it maximizes the response from the target
inclusion.

24

=M.

(25)
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Fig. 9. Model E and a plot of optimal borehole transmitter current density
for this model.
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Fig. 10. Model E. Secondary voltage responses for three different borehole
transmitter currents: 1) response of the optimal current (solid line); 2) response
of the current of equal intensity at all electrodes (dot-dashed line); and 3)
response of “the best” unit current for a single electrode (dashed line).

Fig. 14 in the next section shows current distributions inside
the earth generated by the optimal current array designed for
the particular problem of the detection of an inclusion, and by
a conventional array.

III. RESULTS OF COMPUTER SIMULATIONS

A. Models

We have conducted a number of computer simulations in
order to check the theory and to show its application to some
simple models. The models used in the calculations are the
following. '
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Fig. 12.. Model F. Secondary voltage responses for three different borehole
transmitter currents:- 1) responise of the optimal current (solid line); 2) response

of the current of equal intensity at all electrodes (dot-dashed line); and 3)
response of “the best” unit current for a single electrode (dashed line).

1) Model A: The background is a homogeneous halfspace
of registivity 100 ). m, while the inhomogeneity is a cube 40
m x 40 m x 40 m, located at a depth of 30 m. The resistivity
of the inclusion is 1 ©-m. The model is shown in Fig. 1.

2) Model B: The background for the model B is model A.
The inclusion is an additional smaller sized cube of resistivity
1 ©-m. The size of the inclusion is 20 m X 20 m X 20 m,
while the depth to its top is 30 m. Model B is depicted in
Fig. 3.

3) Models C and D: Models C and D are similar to the
models A and B with the difference that the background
medium is a layered earth with a 10 Q- m layer of thickness
5 m, embedded in a 100 Q-m halfspace at a depth of

BACKGROUND MEDIUM.
(Section view).
Resistivity of halfspace 100 ohm.m,
resistivity of embedded body 20 ohm.m.

15
E 40
< 65
o
a
90
200 250
Distance (m)
REAL MEDIUM.
(Section view).
Resistivity of inclusion 20 ohm.m.
15
E a0
565
2,
a
90
50 ~ 100 150 200 250

Distance (m)

Fig. 13. Cross section of models used for illustrating current focusing. The
embedded body in the background model is 100 m x 50 m x 50 m, while
the inclusion is a 20 m thick body located near the background body.

10 m. Models C and D are illustrated in Figs. 5 and 7,
respectively. ,

4) Models E and F: Models E and F are similar to the
models A and C with the difference that transmitter electrodes
are located in a borehole. Models E and F are illustrated in
Figs. 9 and 11, respectively.

B. Calculations

For every model for a given possible set of transmitter
electrode positions, we calculate responses of the background
medium and of the disturbed medium for three different types
of excitation using an integral equation 3-D program [15].

The first excitation is the optimal current distribution’ with
different intensities of the injected currents-at different elec-
trodes, with unit total intensity. The optimal current is designed
specially for every model. It is the current pattern that maxi-
mizes the response from the target inclusion.

The second type of applied current is a current of equal
intensity at all electrodes, also with unit total intensity.

‘The third type is a unit current concentrated at the electrode
which gives a maximal response for a single transmitter
electrode site.

Models A-D were used for investigating optimal surface
transmitter current patterns. In each of these cases, a profile
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Fig. 14. Current distribution in the vicinity of the inclusion shown on the previous figure, for a focused transmitter current and for a uniform

transmitter current intensity.

of 31 possible electrode positions straddled the center of
the inhomogeneity in a vertical plane of symmetry. Figs. 1
through 8 present cross sections of the particular models,
optimal injection current patterns along the traverse, and
comparisons of the secondary response of the optimal currents
and the suboptimal currents. From each of these figures, it is
apparent that the optimal current utilizes the a priori structure
in directing current to the perturbation. This is exactly the
behavior which we would expect from our theory.

Models E and F were used to investigate the applications
of the theory to borehole-to-surface measurements. In these
cases, the sources are located in a vertical borehole 10 m from
the left hand side of the inclusion while voltages are measured
along a surface traverse in a vertical plane of symmetry of the

inclusion. Here again, the optimal array focuses current into
the region of the inhomogeneity. In Fig. 11, for example, the
injected current is dipolar, with current being focused through
the inclusion.

As in the case of the surface measurements, the secondary
responses for the optimal injection current pattern is clearly
superior those of the suboptimal injection currents.

C. Concentration of the Current to the Region of Inclusion

We will now give a numerical illustration of concentration
of the current to the region of inclusion. Consider the models
given in Fig. 13. Background consists of a 100 m x 50 m X
50 m 20 ©-m body buried 65 m deep in a 100 €2-m half-
space. An inclusion has been placed near the main body. The
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dimensions of the inclusion are 50 m X 50 m x 20 m, while
its resistivity is 20 -m.

Fig. 14 illustrates a contour of total current in a cross section
of the background and inclusion, both for the focused array and
for an array of equal current intensity. As shown, the focusing
current concentrates energy in the vicinity of the inclusion,
thus increasing the resolution of the inclusion. In this and
all other numerical experiments, it should be emphasized that
the background structure is known, but the only information
concerning the inclusion is its measured impedance matrix.

IV. CoNCLUSION

The problem and its solution can be viewed from different
points. Suppose that we know approximately what sort of

inclusion is under consideration. Then given an appropriate

forward modeling algorithm we can calculate the impedance
matrices and find the corresponding eigencurrents numerically.
In this case we numerically simulate a problem which is
similar to a real one, and having solved it we obtain the
optimal current patterns to use in a real situation. Another
application assumes that we know nothing about the inclusion
but its measured impedance matrix. In this case we can use
the measured impedance matrix and find the optimal curréent
intensity distribution over the electrodes, thus designing the
optimal array vis-a-vis the hypothesized a priori model. Lastly,
since optimal currents focus energy in the region of the
inclusion we can use this method as an imaging technique.
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