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Abstract

The spectral representation of the effective complex permittivity of a two-component composite medium is used to

develop an approach to coupling of various effective properties of a random mixture. The spectral function contains all

information about the microstructure, hence providing a coupling link between the various effective properties of the

same composite material. It is demonstrated that the representation can be reconstructed from measurements of one

effective property and used then to evaluate other properties of the same material. The reconstruction problem is very

ill-posed and requires regularization. Several numerical examples of reconstruction of the spectral function from

broadband measurements of the effective complex permittivity and the measurements of the effective thermal

conductivity are shown. The approach can be used for indirect estimation of the thermal conductivity (or other

properties) of the medium from broadband measurements of the effective complex permittivity.

r 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Different effective properties of finely structured
heterogeneous mixture are coupled through its
microgeometry. Formalization of this coupling is
very important for predicting properties of com-
posite materials in material design, as well as for
indirect evaluation of the effective properties—
when direct measurements are difficult to make.
Implicit accounting for the geometry of the
composite was started in the pioneering work of
Prager [1] in deriving coupled bounds on the
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effective material properties. Coupled or cross-
property bounds use measurements of one effec-
tive property to improve bounds on other effective
properties. The work of Prager was followed by a
number of papers by different authors Avellaneda,
Berryman, Cherkaev, Gibiansky, Milton, Torqua-
to, and others (see references in monographs
[2–4]). Various empirical relations or relations
derived for specific geometries are used in practice,
such as for instance, Kozeny–Carman or Katz–
Tompson relations providing an estimate for
permeability of a porous material which can be
linked to electrical conductivity and other proper-
ties of a composite [5,6]. The present work uses
explicit analytic representation of various effective
properties of a composite through its geometric
d.
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structural function associated with the spectral
measure m in the Stieltjes analytic integral repre-
sentation of the effective complex permittivity e�:
This analytic integral representation of the effec-
tive permittivity e� of a mixture of two materials
with permittivity e1 and e2 was developed by
Bergman, Milton, and Golden and Papanicolaou
[7–11] in the course of computing bounds for the
effective permittivity of an arbitrary two compo-
nent mixture. The integral representation gives a
function F ðsÞ as an analytic function outside the
½0; 1�-interval in the complex s-plane:

F ðsÞ ¼ 1�
e�

e2
¼
Z 1

0

dmðzÞ
s � z

; s ¼
1

1� e1=e2
: ð1Þ

Here the positive measure m is the spectral measure
of a self-adjoint operator Gw; with w being the
characteristic function of the domain occupied by
one material, and G ¼ rð�DÞ�1ðr�Þ: The spectral
function m was used to derive microstructural
information about the composite [12–14], to
bound the effective permittivity [10,8,15], to
appraise the accuracy of the permittivity measure-
ments [16], and to model the effective complex
conductivity of geological mixtures [17,18] or of
random resistor networks [19], it is calculated from
reflectivity measurements at different temperatures
in Ref. [20].

The present paper discusses coupling of differ-
ent properties of a stationary random mixture
through the spectral function m: It is demonstrated
in Ref. [6] that different properties of a random
mixture admit a representation similar to Eq. (1)
with the same function m; and that the effective
response of the random medium for a range of
different parameters of the applied field determines
the function m: Hence, when computed from
measurements of one effective property (say, from
measurements of e�), the function m can be used to
evaluate the effective response of the same medium
for other applied fields as well. From the
computational point of view, the problem of
reconstruction of the spectral measure m is
extremely ill-posed: It is equivalent to the inverse
potential problem and requires regularization. We
show computational results of recovering the
spectral function m from numerically simulated
effective measurements of the complex permittivity
of a second-rank composite using regularized
algorithms developed in Refs. [6,22]. As an
example, the thermal conductivity of St. Peters
sandstone is estimated using the reconstructed
function m: We also show an example of calcula-
tion of the function m from experimental measure-
ments of the thermal conductivity of Berea and
Tensleep sandstones [22]. Computed values of the
thermal conductivity are in good agreement with
measured values in Ref. [24].
2. Motivation

The knowledge of the thermal conductivity of a
material is important in examining any phenom-
ena concerning conductive heat flow. Some
geophysical applications include oil reservoir
simulation, high level nuclear waste containment
modeling, and geothermal reservoir production
simulation. Determination of the in situ distribu-
tion of thermal conductivity over a scale of meters
to tens of meters using heat sources is not done
typically because of the time required to diffuse a
temperature field over these distances and because
of the energy required for placing and maintaining
calibrated heat sources. The present paper suggests
an indirect approach to evaluation of the thermal
conductivity of a composite medium or geological
formation based on coupling of various effective
properties of a composite material.

Geophysical materials are often two-scale
media: Spatial variation of the complex permittivity
on the large scale can be reconstructed from
the measurements of the electromagnetic field on
the surface and in boreholes. On a small scale, the
medium is a random mixture of two components.
For a two-component material such as a porous
medium filled with fluid, the inverse homogeniza-
tion theory suggests that the complex permittivity
of the mixture, known over a broad frequency
band, determines the thermal conductivity of the
same composite. A coupling link between different
properties of a porous medium is based on the
spectral representation of the effective properties
of the two-component composite medium. This
indirect approach to evaluation of effective
properties of a medium can be of importance in
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applications where direct measurements are re-
stricted or unavailable.
3. Coupled spectral representation of effective

properties of a two-component mixture

We consider a stationary random mixture of
two materials with the complex permittivity ei and
thermal conductivity ki; i ¼ 1; 2:

Theorem. Assuming that the known properties ei ¼
eiðpÞ; i ¼ 1 or 2, of materials in a stationary

random mixture depend on a parameter p, measure-

ments of the effective complex permittivity e�ðpÞ in

an interval pAðp1; p2Þ uniquely determine the

effective thermal conductivity k� of the mixture

for given values of the components ki; i ¼ 1; 2:

The key observation is that the effective proper-
ties e� and k� are coupled through the function m
in their integral representation:

e�ðsÞ ¼ e2 � e2

Z 1

0

dmðzÞ
s � z

; s ¼
1

1� e1=e2
; ð2Þ

k�ðs0Þ ¼ k2 � k2

Z 1

0

dmðzÞ
s0 � z

; s0 ¼
1

1� k1=k2
: ð3Þ

If the function m is known from the measurements
of e�; evaluation of the effective thermal con-
ductivity k� reduces to a simple calculation.
Indeed, let the function F ðsÞ (1) corresponding to
e�; be represented as

F ðsÞ ¼
X

n

an

s � zn

: ð4Þ

The corresponding spectral function m has the
form:

dmðzÞ ¼
X

n

andðz � znÞ dz: ð5Þ

Then the effective thermal conductivity of the
mixture with the thermal conductivity of the
components k1 and k2 can be calculated as

k� ¼ k2 1�
X

n

an

s0 � zn

 !
ð6Þ

with s0 defined in Eq. (3).
It was shown in Ref. [6] that the measure m can
be uniquely reconstructed from the measurements
of e� if the data are available on an arc in the
complex plane. This is the case when the complex
permittivity of one of the materials in the mixture
depends on the frequency, and the measurements
of the e� are available in a continuous interval of
frequency of the applied field. Another example
could be provided by a porous medium saturated
with different fluids. In both cases, the materials in
the mixture change their properties, but the
microgeometry does not change. Transformed to
the s-plane, the data points will correspond to the
same function F ðsÞ with different values s belong-
ing to some arc, sAC: The idea is to consider (1) as
an integral equation and try to solve it and to find
the corresponding function m:
4. Ill-posedness of the problem and regularization

The problem of reconstruction of the spectral
measure m can be reduced to an inverse potential
problem. The function F ðsÞ admits a representa-
tion as a logarithmic potential of the measure m

F ðsÞ ¼
@

@s

Z
ln js � zj dmðzÞ;

@=@s ¼ ð@=@x � i@=@yÞ: ð7Þ

The reconstruction problem for the logarithmic
potential is extremely ill-posed and requires
regularization to develop a stable numerical
algorithm. Let A be an operator in Eq. (7)
mapping the set of measures M½0; 1� on the unit
interval onto the set of complex potentials defined
on a curve C : zðsÞ ¼ 0:

AmðsÞ ¼ f ðsÞ þ igðsÞ

¼
@

@s

Z 1

0

ln js � zj dmðzÞ; sAC: ð8Þ

To construct the solution we formulate the
minimization problem:

jjAm� F jj-min
mAM

; ð9Þ

where jj � jj is the L2ðCÞ-norm, F is the function of
the measured data, F ðsÞ ¼ 1� e�ðsÞ=e2; sAC: The
solution of the problem does not continuously
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depend on the data: Unboundness of the operator
A�1 leads to arbitrarily large variations in the
solution, and the problem requires a regularization
technique.

A regularization algorithm developed in Ref. [6]
is based on constrained minimization: It intro-
duces a stabilization functional JðmÞ which con-
strains the set of minimizers. As a result, the
solution depends continuously on the input data.
Instead of minimizing (9) over all functions in M;
minimization is performed over a convex subset of
functions which satisfy JðmÞpb; for some scalar
b > 0: We used a quadratic stabilization functional
and a total variation functional. Since the solution
of the constrained minimization problem

min
m: JðmÞpb

jjAm� Fdjj ð10Þ

occurs on the boundary of the constrained region
where JðmÞ ¼ b; we can reformulate (10) in terms
of an unconstrained minimization problem using
the Lagrange multipliers method. This approach
leads to an equivalent formulation that uses the
Tikhonov regularization functional Jaðm;FdÞ; so
that problem (10) is equivalent to solving the
unconstrained minimization problem with a reg-
ularization parameter a (see Ref. [23]):

Jaðm;F dÞ ¼ jjAm� Fdjj2 þ aJðmÞ;

Jaðm;F dÞ-min
mAM

: ð11Þ

The advantage of using a quadratic stabilization
functional JðmÞ ¼ jjLmjj2; is the linearity of the
corresponding Euler equation resulting in effi-
ciency of the numerical schemes:

ma ¼ ðA�A þ aL�LÞ�1A�F d: ð12Þ

However, the reconstructed solution necessarily
possesses a certain smoothness. The alternative
regularization based on the non-negativity con-
straint [21], does not impose smoothness on the
solution, this permits recovering sharp features of
the solution. In this approach the non-negativity
of the function m is used explicitly in the algorithm,
which becomes a constrained minimization algo-
rithm:

jjAm� F jj- min
mAMþ

; ð13Þ
where Mþ is a subset of non-negative functions on
unit interval.
5. Numerical examples

5.1. Frequency dependent complex permittivity of

the medium

As a first test example we consider a very simple
microgeometry formed by ellipsoids of volume v

with a dielectric constant e1 embedded in a much
larger homogeneous host with a dielectric constant
e2:

e� ¼ e2 þ v=Ve2
e1 � e2

e2 þ nðe1 � e2Þ
: ð14Þ

Here V is the total volume, n is depolarization
factor, n ¼ 1

3
for spheres. It can be seen that e�

diverges when e1 ¼ �ð1� nÞe2=n; after transfor-
mation to the s-plane this gives a pole at z0 ¼ 1

3
:

We assume that the complex permittivity of water
is given by the Debye relaxation function:

ewater ¼ eN þ
es � eN
1þ iot

: ð15Þ

Here es is the static dielectric constant (the value at
zero frequency), eN is the value at high frequency,
o ¼ 2pf is the angular frequency, with f being the
frequency of the field, and t is the relaxation time.
In the present numerical example these parameters
have the values: es ¼ 80; eN ¼ 4:9; t ¼ 7:20 ps:
The second component in the mixture is assumed
to have complex permittivity of sandstone, which
does not vary with frequency.

Numerically simulated values of the imaginary
part of the effective complex permittivity in a
range of frequency were used to recover the
function m: Results of reconstruction of the
spectral function m for this example using Tikho-
nov regularization are shown in Fig. 1. The left
figure shows solutions computed with different
parameters a: Solutions calculated with too small
values of regularization parameter a are shown on
the right. These shown in the right figure results
indicate that the problem cannot be solved without
regularization. The true delta function solution at
z0 ¼ 1

3
; can be reconstructed almost exactly with a



ARTICLE IN PRESS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.01

0.00

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-25

-20

-15

-10

-5

0

5

10

15

20

Fig. 1. Reconstruction of the spectral function using Tikhonov regularization. The true solution is a delta function at z0 ¼ 1
3: Smooth

functions on the left figure are computed with different parameters a: Solutions calculated with too small values of regularization

parameter a are shown on the right.
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non-negativity constraint used for regularizing this
problem in Ref. [21].

5.2. Reconstruction of the spectral function for the

second rank laminate

The effective complex permittivity of the second
rank laminate structure shown in Fig. 2 can be
calculated analytically. The corresponding func-
tion %FðsÞ has components FxðsÞ and FyðsÞ in the
directions x and y:

%F ¼
Fx 0

0 Fy

 !
¼ I �

e�

e2
; e� ¼

e�x 0

0 e�y

 !
; ð16Þ

where the functions FxðsÞ and FyðsÞ in the s-plane
are:
mx 0

0 my

 !
¼

0:12dðs � 0:09Þ þ 0:076dðs � 0:91Þ 0

0 0:1dðsÞ þ 0:1dðs � 0:8Þ

 !
: ð20Þ
FxðsÞ ¼ m1
A1

s � s1
þ

A2

s � s2

� �
;

FyðsÞ ¼ m1
p2

s
þ

p1

s � m2

� �
: ð17Þ

Here m1 and m2 are volume fractions of materials
in the first rank layers, while p1 and p2 are volume
fractions in the second rank layers. Parameters
s1; s2 are the following:

s1 ¼ 1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p2m1m2

p
Þ;

s2 ¼ 1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4p2m1m2

p
Þ ð18Þ

and A1;A2 are given as

A1 ¼
1� p2m2 � s1

s2 � s1
; A2 ¼

1� p2m2 � s2

s1 � s2
: ð19Þ

Numerically simulated values of e�x and e�y were
used to calculate the spectral measures mx and my:
The results of computation using the inversion
method [21] are shown in the right Fig. 2. The
parameters of the laminate were taken as m1 ¼
0:2; m2 ¼ 0:8 for the first rank layers, and p1 ¼
0:5; p2 ¼ 0:5 for the second rank layers. The true
spectral function found analytically is
Reconstructed solution shown on the right in
Fig. 2, very well identifies the support of the
spectral function as well as its amplitude.

5.3. Reconstruction of the spectral function from

experimental data for thermal conductivity

We applied the algorithm to reconstruction
of the function m from experimental thermal
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conductivity data measured in Ref. [22]. In this
work the samples of various sandstone materials
were saturated with different fluids with known
thermal conductivity ks: The sandstone is a
random mixture of sandgrains (about 90% quartz)
and saturating fluid (gas). The thermal conductiv-
ity of the quartz was assumed to be
20 mcal=cm s�C: We analyze two sets of measure-
ments of the effective thermal conductivity k� for
Berea sandstone and for Tensleep sandstone. The
data sets were very small, and one data point in
both sets was far away from the rest of the
measurements. We did not consider this outermost
point since we did not have enough information to
try to fit it in. The reconstructed spectral functions
corresponding to these two data sets are shown in
Fig. 3. Fig. 4 shows the original data points
together with the calculated values for the effective
thermal conductivity, as well as these values
transformed to the s-plane. The constructed
function can be used to evaluate other properties
of the same sandstone by exploiting Eq. (6). Of
course, the accuracy of approximating the effective
behavior of composite depends on the distance of
the point s0 to the set of measured data points used
in computation. This resolution issue will be
addressed separately.
e�ðoÞ ¼ egrain 1�
egrainðd � 1Þ

	

5.4. Comparison with experimental data

For appraisal of the suggested indirect method
of computation of the effective properties of the
composite from a known effective complex per-
mittivity, the approach was applied to the data for
St. Peters sandstone, which is composed of
sandgrains and has 11% porosity. Assuming the
porous space is filled with water, with known
dependence of ewater on frequency, given by
Eq. (15), measurements of the effective e�ðoÞ were
simulated using the Maxwell–Garnett formula for
a two phase composite material.
dpwaterðegrain � ewaterðoÞÞ
þ ewaterðoÞ þ pwaterðegrain � ewaterðoÞÞ



: ð21Þ
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Table 1

Thermal conductivity of St. Peters sandstone

Wet sandstone Dry sandstone

Measured 6.36 3.56

Computed 6.63 3.55

E. Cherkaev, D. Zhang / Physica B 338 (2003) 16–2322
Here d is the dimension, d ¼ 3; and pwater ¼ 0:11 is
the fraction of water in the mixture. These
simulated data of e�ðoÞ were used to compute
the spectral function m; which was used then to
calculate the thermal conductivity of the rock.
Computed and measured data for wet (sandgrains
and 11% of water) and dry (sandgrains and 11%
of air) sandstone are summarized in Table 1.
Experimental data taken for comparison from
Ref. [24] are shown as well in the table. Values of
the thermal conductivity computed using the
developed algorithm are in good agreement with
the measured data. This comparison suggests that
the method can be used for indirect evaluation of
various effective properties of a random mixture
computing them from measured complex permit-
tivity or other properties of the composite.

6. Conclusion

Coupling of various effective properties of the
mixture permits the use of the permittivity data to
evaluate the thermal conductivity of the material.
The approach might provide an alternative indir-
ect method of evaluation of the material properties
of the medium using remote electromagnetic
measurements.
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