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Abstract

Following previous work on bounds for complex dielectrics, bounds on the complex
conductivity of a mixture of two isotropic components can be developed which are
independent of any special assumption concerning the geometry of the mixture. If
certain broad restrictions are assumed, such as isotropy of the mixture, then the bounds
can be made more restrictive. These bounds reveal the range of the induced
polarization response which can be caused by a mixture of two materials of known
complex conductivity. The bounds can also be generalized for spectral responses. The
bounds are conservative lithologically in the sense that many of the special models
corresponding to boundary responses have lithological counterparts.

The chief use for the given bounds is to gain insight into the nature of the induced
polarization response. It is also possible to use the bounds to estimate the volume
fractions of the components. We illustrate how this is done for the case of a general
anisotropic medium.

Introduction

The ultimate objective of interpreting induced polarization (IP) data is to gain some
insight into the composition of a rock. There are two aspects to this task. The first,
which we call ‘physical property modelling’, is to deduce a model of the complex
resistivity distribution, or an approximation thereof, whose response to impressed
sources matches the field data in some optimal sense. The second aspect, which we call
‘lithological modelling’, is to assign a lithological interpretation to each complex
resistivity unit. Thus the ultimate goal of an IP survey is to predict the geological
distribution of specific minerals of interest, by successful physical property and
lithological modelling.

Both modelling methods are dogged by uncertainty. Physical property modelling is a
classic example of an ill-posed geophysical problem in that, given typical field data,
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there will be a large class of complex resistivity distributions which will model the data
equally well. The interpreter must then decide which set of models should be given
further consideration or, as is often done, which set of models is closest to
preconceptions. The deduced but non-unique physical properties must then be
given a geological interpretation. There are large classes of lithologies which have the
same macroscopic intrinsic complex resistivities. These uncertainties in the
interpretation must be treated using as much valid a priori information as possible.
Even so, although the IP method is extremely useful in finding ore, the degree of
imprecision in giving a geological interpretation to data sets is perhaps under-
appreciated and is most certainly underquantified.

One procedure employed in induced polarization exploration for disseminated
sulphides was the use of various mixing formulae to try to relate the IP measurement to
lithology by varying the geometry and concentration of the sulphide (Wait 1982).
However, these studies can be viewed in a new light, in so far as composite media
theories have given bounds on the effective complex conductivity for very broad
assumptions concerning the geometry of the mixture. Moreover, there is a hierarchy of
bounds linked by increasingly stringent assumptions, into which previous efforts with
spheroids, etc. fall. Furthermore, these bounds can be inverted to volume percentage
bounds.

These bounds will be discussed and it will be shown how they might be applied to the
lithological interpretation of IP data.

First, we adapt theoretical bounds on complex permittivities of composite materials
(Bergman 1978, 1980; Milton 1980, 1981), to give bounds on the complex spectral
conductivities of two-component mixtures. These bounds are realized in many
situations by specific mixture geometries, which can simulate ore textures.

Secondly, we show how these bounds may be inverted to give bounds on component
volume fractions, assuming that the component complex conductivities are known.

Throughout, we have assumed that the complex conductivity distribution of an ore
can be approximated using two discrete components. The applicability of this
assumption, which is a matter for research, involves petrophysical considerations
outside the scope of the paper.

Theory

The strategy followed here is to combine the notion of the mineral complex
conductivity spectrum with rigorous and obtainable bounds for composite materials
to illustrate the range and character of responses which can be achieved from a two-
component mixture. We will briefly present the two ideas and then illustrate how they
can be combined.

Mathematical characterization of complex conductivity

The electric constitutive relationship linking a time–harmonic electric current density J
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and the associated time–harmonic electric field E is (Harrington 1961)

J ¼ ðj þ jq«ÞE; ð1Þ

where jþ jq« is the admittivity of the medium and is a function of the conductivity j,
the dielectric permittivity « and the angular frequency q. Both j and « are scalar or
tensor complex functions of q. We assume the convention discussed by Pelton (1977)
and relate the entire complex behaviour of the admittivity for typical exploration
frequencies below the kHz range to j.

Because a complex conductivity spectrum can span many frequency decades,
representing the response by a few parameters facilitates investigation. A popular
method of doing this is to use a superposition of phenomenological Cole–Cole
relaxation models of the form

jðqÞ ¼ j0=½1 ¹ mð1 ¹ 1=f1 þ ðjqtÞcgÞÿ; ð2Þ

where j0 is the direct current conductivity, with a subsequent distribution of the
parameters c, m and t (Cole and Cole 1941; Pelton 1977).

We adopt this model and consider only mixtures of two components: one a non-
polarizable component and the other a polarizable component represented by a single
Cole–Cole dispersion relationship. Generalization of the procedure for components
requiring more than one Cole–Cole dispersion is straightforward.

Mathematical bounds on two-component mixtures

Assume that we know the complex conductivities of two components which are mixed
together in some fashion. It is possible to find bounds on the bulk complex conductivity
of the mixture which are tight in the sense that the bulk conductivity of some mixtures
actually lies on the boundary. Moreover, the nature of the bounds gives insight into the
uncertainties of lithological interpretation.

The basic theory which we adopt was developed by Bergman (1978, 1980) and
Milton (1980, 1981) for bounding the bulk complex permittivity of a mixture of two
components of complex permittivities. Because the physically measurable quantities
are the electric current J and the electric field E, bounds on the complex transfer
function between them can be referred directly to complex conductivities. For a
rigorous derivation and discussion of the basic bounds, see Bergman (1978, 1980) and
Milton (1980, 1981).

Assume that a rock is a mixture of materials of two complex scalar conductivities j1

and j2. These two conductivities, for a specific value of q, are plotted in Fig. 1, which is
broadly based on a figure from Milton (1981). If we assume that nothing is known
concerning the geometry or the volume percentage of the component materials, then
the diagonal elements of the mixture complex bulk conductivity tensor lie within the
region Q. The upper bound for this region is the straight line connecting j1 and j2,

j ¼ j1p1 þ j2p2; ð3Þ
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where p1 and p2 are the volume fractions of the components 1 and 2. The lower bound
is the arc

j ¼ ½ðp1=j1Þ þ ðp2=j2Þÿ
¹1
: ð4Þ

These bounds are actually obtained by the principal values of anisotropic materials
consisting of laminations of materials 1 and 2, as shown in Fig. 2. The line boundary
gives the bulk conductivity for the principal axis perpendicular to the laminations,
while the arc gives the bulk conductivities for the other two principal axes which are
parallel to the laminations.

Now assume that we have information concerning the volume fraction of the two
components and let the points A and B be the points on the previous line and arc
boundaries which correspond to the given volume fraction. Then the area Q0 between
the two arcs connecting A and B contains the diagonal elements of the bulk
conductivity tensor of all mixtures with the given volume fractions p1 and p2. The
upper arc is defined by the equation

j ¼ j2 þ p1j2ðj1 ¹ j2Þ=½j2 þ vp2ðj1 ¹ j2Þÿ; ð5Þ
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Figure 1. General representation of the bounds in complex conductivity space. The region Q

bounded by the line and the arc passing through j1 and j2 gives the bounds for the principal
values of a general conductivity tensor. The arcs passing through A and B define the region Q0,
which bounds the principal conductivities for a particular volume fraction, while the arcs
intersecting at X and Y, defining the region Q0 0, give the effective conductivity bounds for the
particular volume fraction if the material is isotropic.



where 0 # v # 1 parameterizes the curve. The lower arc is defined by the equation

j ¼ j1 þ p2j1ðj2 ¹ j1Þ=½j1 þ vp1ðj2 ¹ j1Þÿ; ð6Þ

where again 0 # v # 1. The arc boundaries of Q0 are obtained by the diagonal elements
of the conductivity tensor of a coated elliptical cylinder geometry, whose cross-section
is shown in Fig. 3. The boundary is also attained by the three principal conductivities of
a medium of densely packed coated spheroids. More details concerning the dimensions
of the component increments are given by Milton (1981).

If we assume that the material is isotropic, then the bulk conductivity is contained in
the region Q00, bounded by arcs connecting X and Y. These arcs have the form

j ¼ p1j1 þ p2j2 ¹ p1p2ðj2 ¹ j1Þ
2
=d½u1j1 þ u2j2ÿ; ð7Þ
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Figure 2. Representation of anisotropic laminated material whose principal conductivities lie on
the boundaries of Q.

Figure 3. (After Milton 1981). Representation of a coated elliptical cylinder geometry whose
principal conductivities attain the boundaries of Q0. The placement of j1 and j2 in core and
coating, or vice versa, determines the particular arc upon which the principal conductivities will
fall.



where u1 $ p2/d and u2 $ p1/d are varied subject to the constraint u1 þ u2 ¼ 1, and

j ¼ ½p1=j1 þ p2=j2 ¹ ðd ¹ 1Þp1p2ð1=j2 ¹ 1=j1Þ
2
=d½u1=j1 þ u2=j2ÿ

¹1
; ð8Þ

where u1 $ p2(d – 1)/d and u2 $ p1(d – 1)/d are varied subject to the constraint u1 þ

u2 ¼ 1. In both of these expressions, d is the dimensionality of the mixture; in our case
d ¼ 3. These bounds are generalizations into the complex space of the more familiar
Hashin–Shtrikman bounds for a real conductivity (Hashin and Shtrikman 1962). The
assumption that the composite is isotropic constrains the bounds for the bulk
conductivity dramatically, and hence a correct assumption of isotropy is very useful.
On the other hand, assuming an anisotropic medium is isotropic can drastically bias the
range of possible bulk conductivities and hence in the inverse sense can lead to poor
estimates of volume fractions and component identities. For any given frequency, it is
always true that Q00 ⊂ Q0 ⊂ Q.

The boundary of Q00 defined by (7) is attainable at five points by known composites,
as discussed by Milton (1981). Hence this boundary is tight in so far as any other
bounds must touch these bounds at least at the five attainable points. The boundary
described by (8) is actually not attainable by an isotropic material and hence the
boundary is too liberal and a tighter bound is conceptually possible.

Spectral bounds

Because the resistivities of rock matrix and semiconducting ore minerals are typically
orders of magnitude apart in value, the bounds which we are discussing enclose a very
large region of complex conductivity space, even when some stringent geometric
restrictions, such as property isotropy, are imposed. Because the bounds are attainable,
this state of affairs is not an indictment of the bounds but rather reveals the versatility
which nature possesses in achieving a range of complex conductivities with two simple
components. Of course, the very range of responses attainable by a two-component
mixture makes the lithological interpretation problem very difficult. Thus, given a
certain complex conductivity measurement, how can one hope to deduce the identity
and geometry of the components given the range of responses possible from a mixture?
Although we discuss this problem below, an additional constraint on the problem
which can be of use is the variation of the effective conductivities with respect to
frequency. That is, the bounded regions of effective conductivity space will vary as a
function of frequency if the component conductivities vary as a function of frequency.

To illustrate this effect, first consider Fig. 4. This figure illustrates the complex
spectra for two components of a mixture. The first component has a real DC value of j

which we have assumed for simplicity to be 1. Its complex response is governed by a
Cole–Cole dispersion with the parameters c ¼ 0.5, m ¼ 0.1 and t ¼ 0.5. The response
is calculated at one point per decade from q1 ¼ 0.0001 rad/s to q7 ¼ 1000 rad/s. The
second component is assumed to be non-polarizable, with a real part of 0.5. The
contrast between the real values of j1 and j2 has been kept artificially low to facilitate an
informative plot.
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Figure 5 illustrates the region Q as a function of the excitation frequency. These
dynamic bounds are applicable for any geometric arrangement of the two components.
Assumptions concerning component volume fraction or mixture isotropy will lead to
dynamic bounds for the Q0 or Q00 regions.

Complex bounds 595

q 1998 European Association of Geoscientists & Engineers, Geophysical Prospecting, 46, 589–601

Figure 4. Sample spectral response for a polarizable material, calculated from q1 ¼ 0.0001 rad/s
to q7 ¼ 1000 rad/s at one point per decade.

Figure 5. Spectral Q bounds for the material whose spectral response is illustrated in Fig. 4.



Correspondence of realizable bounds with geological assemblages

The bounds on the effective complex conductivities are in many cases realizable, that
is, there are physical mixtures whose conductivities assume boundary conductivities.
This is important in so far as the bounds are not too large in the region of these
conductivities and the bounds give us an idea of the range of conductivity responses
which might in fact be encountered, rather than simply telling us what responses could
not be encountered, as do non-realizable bounds. But this does not tell us whether these
physically realizable bounds are in fact geologically realizable. This is a difficult
question whose explication is beyond the scope of this paper. However, some insight
into the problem may be gained if we assume that the geometry of rock texture largely
translates into the geometry of electrical conductivity. With this proviso, we now
examine the lithological attainability of bounding models with some simple examples of
ore textures.

Ore petrology

First consider tabular or elongate-lentoid bodies comprised of alternating highly and
poorly conductive planar laminae, which are the natural counterparts of the laminae
whose principal conductivities attain the boundaries of Q.

The best examples of planar-laminated ore textures can be found among deposits
formed by subaqueous chemical precipitation and sedimentation directly upon a
contemporaneous surface. Those with ore textures best approximating the model
include firstly the Precambrian banded iron formations (Garrels, Perry and Mackenzie
1973) and related exhalite gold deposits such as Homestake, USA (Sawkins and Rye
1974), and secondly the ‘black-shale-hosted’ (BSH) deposits such as Sullivan, Canada
(Freeze 1966) and Rammelsberg, Germany (Anger et al. 1966). The banded iron
formations (BIF), which account for most of the world’s iron production, are tabular
bodies, up to a square kilometre or more in area and tens of metres thick, consisting
predominantly of alternating, millimetre- to centimetre-thick laminae of chert or
reddish, haematitic, microcrystalline quartz and magnetite or haematite. The BSH
deposits, which can be as large as the BIF, are comprised of comparably sized sulphide
laminae, principally galena, sphalerite and chalcopyrite, which may or may not be
interstratified with laminae of quartz, sericite, chlorite, barite and the common
carbonate minerals in various combinations. Planar-laminated ore textures are also
found locally in epithermal precious-metal vein systems such as Oatman, Arizona,
although they are not nearly as well developed as in the BIF and BSH deposits.
Individual planar laminae in the veins tend to be discontinuous, to ‘pinch and swell’
along strike, and to be disrupted by botryoidal (i.e. appearing like a bunch of grapes)
textures. Figure 6 illustrates a ‘geologically laminated’ model.

Geological analogues to the space-filling coated ellipsoidal or spheroidal geometries
attaining the boundaries of Q0 are harder to find. Nearly perfect spheroids of any size
are extremely rare among metallic mineral deposits, let alone conductive spheroids with
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non-conductive shells. Perhaps the best natural examples of these spheroids are found
in the oolitic iron ores, for example in the Silurian Clinton formation of eastern USA,
which are comparable in size to BIF and contain abundant, disseminated, millimetre-
sized oolites consisting variably of haematite, goethite, chamosite (iron-rich chlorite)
and siderite, commonly embedded in a matrix of clay, calcite or siderite. Many of the
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Figure 6. Schematic diagrams of some typical ore textures approximating the complex
conductivity models discussed in this paper. A: Rhythmically interlaminated textures common in
the Precambrian banded iron formations (BIF) and the black-shale-hosted (BSH) sulphide
deposits. The black bands represent conductive metallic minerals while the white bands
represent poorly conducting phases. B: More crudely interlaminated textures commonly found
in epithermal precious-metal vein deposits. The black bands, which contain the precious metals,
represent electrically conductive metallic sulphides (e.g. chalcopyrite) and sulphosalts (e.g.
tetrahedrite). The white bands represent a variety of poorly conductive gangue minerals. C:
Disseminated textures common in, for example, porphyry copper and Carlin-type gold deposits.
In this case, disseminated sulphide, in a poorly conducting matrix, is peripherally oxidized to
non-conductive ‘limonite’.



oolites consist of alternating shells of these minerals. Those composed entirely of
conducting haematite with shells of chamosite, siderite or goethite do occur locally but
seldom account for the majority of the oolites in a given orebody.

Imperfect natural analogues for the coated conductive spheroid model can be found
among the disseminated sulphide systems typical of, for example, porphyry copper
deposits (e.g. Lowell and Guilbert 1970) and Carlin-type sediment-hosted gold
deposits (e.g. Percival, Bagby and Radtke 1988). These sulphide systems typically
contain 1–10 volume percentage millimetre-sized, roughly equant, although seldom
truly spheroidal, hydrothermal sulphide (principally pyrite) grains disseminated
throughout matrices of variable composition but commonly containing abundant
quartz and sericite or other hydrothermal layer silicates. The closest conceptual match
to the model occurs when these sulphides are partially and peripherally oxidized to
non-conductive ‘limonite’, dominantly various combinations of goethite and jarosite.

The porphyry copper lithological model has been the subject of a great deal of
theoretical and experimental investigation (e.g. Wait 1958; Halverson et al. 1981).
Figure 6 represents a particular ore lithology.

Component volume fraction estimation

The bounds presented give the global extent of the complex conductivities of a
composite material of two components. However, they can also be used to determine
bounds for component volume fractions.

Suppose that we have deduced a complex resistivity model and we are confronted
with the lithological interpretation problem, i.e. what lithology does a particular
complex resistivity unit represent? This problem itself has two components. First,
assuming a two-component mixture, what are the conductivities and volume fractions
of the components? Secondly, what do these physical properties imply about the
lithology? We will illustrate the application of the bounds derived above to one aspect of
the first problem by deriving volume fraction bounds for the components of the
mixture. This ‘inverse volume fraction’ problem has been considered by McPhedran,
McKenzie and Milton (1982) and McPhedran and Milton (1990), who present several
numerical inversion schemes. The explicit bounds which we derive below were first
presented by Cherkaeva and Tripp (1996).

Suppose that we have a measurement of the effective complex conductivity of a rock
unit and that the unit is a mixture of two components. We will assume, as is the case in
many exploration scenarios, that one of the components is a background rock which is
very poorly polarizable but whose conductivity can be estimated and that some
estimate can be made of the complex conductivity of the polarizable component.

Further suppose that we have measured a scalar complex rock conductivity j(q) ¼

(jr(q),ji(q)) as a function of frequency and we have made some broad assumptions
concerning the geometry of the mixture which will determine the bounding region into
which the conductivity falls. The lower and upper boundaries of this region for a
particular volume fraction p of the polarizable material and a frequency q are l(p,q)
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and u(p,q), respectively. Now since the bounds are all continuous with respect to p,
measured j(q) will lie on a lower boundary for some pl and will lie on an upper
boundary for some pu. Hence j(q) ¼ l( p1,q) ¼ u( pu,q) and by continuity
pu(q) # p # p1(q). Now such an expression will hold for every q and since the ore
volume fraction will not change as a function of frequency, a set of bounds will be
∩q(pu(q), p1(q)). Hence the inversion algorithm consists of two parts. In the first part,
the values pu(q) and p1(q) are determined and in the second part an intersection of the
intervals is executed.

If nothing can be said about the geometry of the composite, then the bounded region
for the complex conductivities has the form Q shown in Fig. 1. We will assume that the
effective conductivity lies in the interior of this region, since if it lies on one of the
boundaries we can uniquely determine the volume fraction of the constituent
components.

Hence, for a given frequency, the volume fraction bounds of the polarizable material
are

pl ¼ Imðãl blÞ=ImðblÞ ð9Þ

and

pu ¼ 1 ¹ ðImðãubuÞ=ImðbuÞÞ; ð10Þ

where pl # p # pu and au ¼ (je – j1)/(j2 – j1), bu ¼ (je – j1)/j1, al ¼ (je – j2)/(j1 – j2)
and bl ¼ (je – j2)/j2. The value je is identified with the scalar complex conductivity or
conductivity principal value of a rock unit, as modelled using field data, and the tilde
denotes complex conjugation.

To appreciate the extent of these bounds, consider Figs 7 and 8. Figure 7 gives the Q

bounds for the fourth, or most polarizable, spectral measurement of our sample case,
together with an arc which is entirely contained in Q. This arc is parameterized by a
normalized arc-length parameter t, which runs from 0 to 1. Thus any measured
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Figure 7. Spectral Q bound for the fourth spectral measurement together with a curve,
parameterized by t, entirely contained in Q.



conductivity along the arc can be identified with a value of t and will have associated
volume fraction bounds, as given by (9) and (10).

Figure 8 gives a plot of the upper and lower bounds for the volume percentage p1 of
the component 1, plotted as a function of the position of the composite conductivity
along the arc, again parameterized in terms of t. The bounds are very small, given the
fact that the geometry of the mixture is indeterminate.

If bounds are derived for each spectral measurement, the intersection of all the
individual bounds will give global bounds which are never bigger than the smallest of
the individual bounds and which could be significantly smaller.

If the mixture is isotropic, bounds for the volume fraction should be derivable in a
similar fashion using (7) and (8).

Conclusions

We have discussed the extension of bounds on the bulk dielectric of a two-component
mixture to complex conductivity mixtures encountered in the induced polarization
technique. These bounds give insight into the range of possible responses arising from
two known components, and in particular illustrate what a strong assumption isotropy
is in bounding the response. These bounds have been inverted to give bounds on the
volume fractions of mixture components, and thus give a formal solution to one aspect
of the lithological interpretation problem. Throughout it has been assumed that a
particular material could be approximated by a two-component material, which may
be difficult in practice.
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Figure 8. Volume fraction Q bounds for p1 as a function of t.
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