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Abstract. The analytic continuation method of homogenization theory provides Stieltjes integral
representations for the effective parameters of composite media. These representations involve the
spectral measures of self-adjoint random operators which depend only on the composite geometry.
On finite bond lattices, these random operators are represented by random matrices and the spectral
measures are given explicitly in terms of their eigenvalues and eigenvectors. Here we provide the
mathematical foundation for rigorous computation of spectral measures for such composite media, and
develop a numerically efficient projection method to enable such computations. This is accomplished
by providing a unified formulation of the analytic continuation method which is equivalent to the
original formulation and holds for finite and infinite lattices, as well as in continuum settings. We also
introduce a family of bond lattices and directly compute the associated spectral measures and effective
parameters. The computed spectral measures are in excellent agreement with known theoretical results.
The behavior of the associated effective parameters is consistent with the symmetries and theoretical
predictions of models, and the computed values fall within rigorous bounds. Some previous calculations
of spectral measures have relied on finding the boundary values of the imaginary part of the effective
parameter in the complex plane. Our method instead relies on direct computation of the eigenvalues
and eigenvectors which enables, for example, statistical analysis of the spectral data.

Key words. Composite materials, random resistor network, percolation, homogenization, spectral
measure, random matrix.
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1. Introduction

Over the years a broad range of mathematical techniques have been developed that
reduce the analysis of complex composite materials with rapidly varying structures in
space, to solving averaged, or homogenized equations involving an effective parame-
ter. Homogenization for composite media with rapidly varying coefficients of thermal
conductivity, electrical conductivity, electrical permittivity, or magnetic permeability,
for example, was established by Papanicolaou and Varadhan [62] for the steady state,
static case with real parameters [56]. This work was extended by Golden and Papani-
colaou [33, 34] to the quasi-static frequency dependent case with complex parameters.
Analysis of the effective dielectric problem for the fully frequency dependent case de-
scribed by the Helmholtz equation is given in [68].

The analytic continuation method (ACM) of homogenization theory for two-
component media in the quasi-static limit was developed by Bergman [7], Milton [53],
and Golden and Papanicolaou [33], leading to Stieltjes integral representations for the
effective parameters. The Golden-Papanicolaou formulation of this method is based on
the spectral theorem and resolvent formulas involving random self-adjoint operators.
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This formulation demonstrated that the measures underlying these integral representa-
tions are spectral measures associated with the random operators, which depend only on
the composite geometry. These measures contain all the information about the mixture
geometry, and provide a link between microgeometry and transport. Local geometry
is encoded in “geometric” resonances in the measures [46], while global connectivity is
encoded by spectral gaps [58, 46] and the presence of δ-components in the measures
at the spectral endpoints [58]. A remarkable feature of the method is that once the
spectral measures are found for a given composite geometry, by the spectral coupling of
the governing equations [13, 56, 14, 18], the effective electrical, magnetic, and thermal
transport properties are all completely determined by these measures.

The integral representations yield rigorous forward bounds on the effective parame-
ters of composites, given partial information on the microgeometry [7, 53, 33, 8, 10]. One
can also use the integral representations to obtain inverse bounds, where data on the
electromagnetic response of a sample, for example, is used to bound its structural param-
eters, such as the volume fractions of the components [51, 52, 16, 13, 17, 75, 9, 15, 21, 32],
and even the separation of the inclusions in matrix particle composites [59]. Fur-
thermore, the spectral measure can be uniquely reconstructed [13] when the data is
given for a continuous interval of electromagnetic frequency. This, in turn, can be
used to calculate other effective parameters, such as the viscoelastic modulus [15], ef-
fective thermal conductivity [14, 18], and recover the associated structural parame-
ters [13, 17, 75, 9, 15, 21, 32]. For classes of composites which undergo a percolation tran-
sition [70, 73], the integral representations have been used to obtain detailed information
regarding the critical behavior of the effective parameters in the scaling regime [30, 58].
The relationship between the effective parameters and the system energy [58] has also
led to a physically consistent statistical mechanics model for two-component dielectric
media which is also mathematically tractable [57].

Despite the many applications which have stemmed from the ACM, explicit analyt-
ical calculations of the effective parameters and spectral measures have been obtained
for only a handful of composite microstructures. There are various numerical methods
which have been used to compute the effective parameters of two-component composites.
These computations may, in principle, be used to compute the corresponding spectral
measures through the Stieltjes–Perron inversion theorem [43, 56]. This theorem states
that the measure is recovered as a weak limit of the imaginary part of the effective
parameter in the complex plane.

Highly accurate numerical computations of the effective permittivity for a class
of continuum composites which have sharp corners are described in [41]. The
computations are based on a multigrid recursive compressed inverse preconditioning
method [42, 40, 39] developed for calculation of the effective conductivity of random
checkerboards. In [20] the effective conductivity of the 2D random resistor network
(RRN) was computed using an efficient algorithm that implements Y -∆ transformations
of the network. In [36, 12, 35] the Fast Multipole Method was exploited to compute
the electrostatic fields and the effective conductivity for two-component matrix particle
composites.

In [41, 20] the spectral measures associated with the composite microstructures of in-
terest were computed using the Stieltjes–Perron inversion theorem [43, 56]. However, the
presence of δ-components or essential singularities in the measures, for example, makes
it difficult to resolve details of the spectrum using this approach. To help overcome
this limitation, here we develop a mathematical framework which provides a rigorous
way to directly compute the spectral measures and effective parameters for finite lattice
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composite microstructures, or discretizations of continuum composites. In particular,
we provide a novel formulation of the ACM which is equivalent to the original formu-
lation [33] and holds for both the finite lattice setting and the infinite settings. This
analysis demonstrates that, in the finite lattice setting, the random operators underly-
ing the integral representations of the effective parameters are represented by random
matrices, and the spectral measures are determined explicitly by their eigenvalues and
eigenvectors.

As a consequence, our approach provides a direct connection between the statistical
behavior of spectral data of random matrices and the behavior of the effective transport
processes of composites. This, in turn, has provided a direct connection between the
ACM and random matrix theory, and has shown that transitions in the connectedness
or percolation properties of composites are reflected in the short and long range eigen-
value correlations of the underlying random matrices [57]. Moreover, this transitional
behavior provides a mechanism for the collapse of gaps in the spectral measures [57],
which leads to critical behavior in the effective transport coefficients of composites [58].
This characterization of critical behavior of transport in composites by the statistical
properties of eigenvalues and eigenvectors of random matrices is a key feature of the
ACM and our computational approach.

2. Mathematical methods

We now formulate the effective parameter problem for random two-phase conductive
media in the continuum and lattice settings, yielding Stieltjes integral representations
for the effective conductivity and resistivity tensors. In Section 2.1, we review and
extend the ACM for the continuum setting [33], while the lattice setting is discussed in
Section 2.2. The mathematical framework underlying the infinite lattice setting [11, 29],
reviewed in Section 2.2.1, is analogous to that of the continuum case [11], and the
integral representations for the effective parameters follow with minor modifications
in the theory. In Section 2.2.2, we develop a mathematical framework for the finite
lattice setting, leading to discrete integral representations for the effective parameters,
summarized in Theorem 2.1, which are analogous to that of the infinite, continuum and
lattice cases. In order to derive the integral representations for the finite lattice setting,
significant modifications must be made to the underlying mathematical framework.
Toward this goal, in Section 2.2.3 we provide a novel formulation of the ACM which
unifies the infinite settings and the finite lattice setting. The proof of Theorem 2.1 is
given in Section 2.2.4.

2.1. Continuum setting. Consider a random two-phase conductive medium
filling all of Rd, which is determined by the probability space (Ω,P ). Here, Ω is the set
of all geometric realizations of our random medium, which is indexed by the parameter
ω∈Ω representing one particular geometric realization, and P is the associated prob-
ability measure. Details regarding the underlying sigma-algebra are discussed in [62].
Let σ(~x,ω) and ρ(~x,ω), ~x∈Rd, be the local complex conductivity and resistivity tensors
associated with the conductive medium, which are related by σ=ρ

−1 and have com-
ponents σjk(~x,ω) and ρjk(~x,ω), j,k=1, . . .,d, that are (spatially) stationary random
fields.

A stationary random field, f :Rd×Ω→C, is a field such that the joint distribution
of f(~x1,ω), . . . ,f(~xn,ω) and that of f(~x1+~ξ,ω), . . . ,f(~xn+~ξ,ω) is the same for all ~ξ∈Rd

and n∈N [33, 62]. More specifically, we assume that there is a group of transformations
τx :Ω→Ω and measurable functions f ′(ω)= f(0,ω) on Ω such that f(~x,ω)= f ′(τ−xω)
for all ~x∈Rd and ω∈Ω, with τxτy = τx+y. Moreover, we shall assume that the group
is one-to-one and preserves the measure P , i.e., P (τxA)=P (A) for all P -measurable
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sets A [33, 62]. For notational simplicity, we will not distinguish between the functions
f ′ :Ω→C and f :Rd×Ω→C, as the context of each is clear.

The group of transformations τx acting on Ω induces a group of operators Tx on
the Hilbert space L2(Ω,P ) defined by (Txf)(ω)= f(τ−xω) for all f ∈L2(Ω,P ). Since τx
is measure preserving, the operators Tx form a unitary group and therefore have closed
densely defined infinitesimal generators Li in each direction i=1, . . .,d with domain
Di⊂L2(Ω,P ) [33, 62]. Thus,

Li=
∂

∂xi
Tx

∣

∣

∣

∣

x=0

, i=1, . . .,d, (2.1)

where xi is the ith component of the vector ~x and differentiation is defined in the sense
of convergence in L2(Ω,P ) for elements of Di [33]. The closed subset D =∩d

i=1Di of
L2(Ω,P ) is a Hilbert space [33] with inner product 〈·, ·〉D given by 〈f,g〉D = 〈f,g〉L2 +
∑d

i=1〈Lif,Lig〉L2 , where 〈·, ·〉L2 is the L2(Ω,P ) inner product.

Consider the Hilbert space H =
⊗d

i=1L
2(Ω,P ) with inner product 〈·, ·〉 defined by

〈~ξ,~ζ 〉= 〈~ξ ·~ζ 〉, where ~ξ ·~ζ denotes the dot-product on Cd and 〈·〉 means ensemble average
over Ω or, by an ergodic theorem [33], spatial average over all of Rd. Define the Hilbert
spaces [33] of “curl free” H× and “divergence free” H• random fields

H×=
{

~Y ∈H | ~∇× ~Y =0 weakly and 〈~Y 〉=0
}

, (2.2)

H•=
{

~Y ∈H | ~∇· ~Y =0 weakly and 〈~Y 〉=0
}

,

where we have used the simplified notation 〈~Y 〉=0 ⇐⇒ 〈Yi〉=0 for all i=1, . . .,d, ~∇·
~Y =

∑d
i=1LiYi, and ~∇× ~Y =0 means LiYj−LjYi=0 for all i,j=1, . . .,d. Consider the

following variational problems [33]. Find ~Ef ∈H× and ~Jf ∈H• such that

〈σ( ~E0+ ~Ef ) · ~Y 〉=0 ∀ ~Y ∈H× (2.3)

〈ρ( ~J0+ ~Jf) · ~Y 〉=0 ∀ ~Y ∈H• ,

respectively. When the bilinear forms Ψ(~ξ,~ζ )=σ~ξ ·~ζ and Φ(~ξ,~ζ )=ρ~ξ ·~ζ are bounded
and coercive, these problems have unique solutions [33, 62] satisfying the quasi-static
limit of Maxwell’s equations [45]

~∇× ~E=0, ~∇· ~J =0, ~J=σ ~E, 〈 ~E 〉= ~E0, (2.4)

~∇× ~E=0, ~∇· ~J =0, ~E=ρ ~J, 〈 ~J 〉= ~J0.

Here, ~E(~x,ω)= ~E0+ ~Ef (~x,ω) is the random electric field, where ~Ef is the fluctuating

field of mean zero about the (constant) average ~E0. Similarly, ~J(~x,ω)= ~J0+ ~Jf (~x,ω)

is the random current density. Moreover, the components of ~Ef and ~Jf are stationary
random fields [33].

As ~Ef ∈H× and ~Jf ∈H•, Equation (2.3) yields the energy (power) [45] constraints

〈 ~J · ~Ef 〉=0 and 〈 ~E · ~Jf 〉=0, respectively, which leads to the following reduced energy

representations 〈 ~J · ~E〉= 〈 ~J 〉 · ~E0 and 〈 ~E · ~J 〉= 〈 ~E〉 · ~J0. The effective complex conductiv-
ity and resistivity tensors, σ∗ and ρ

∗, are defined by

〈 ~J 〉=σ
∗ ~E0, (2.5)

〈 ~E 〉=ρ
∗ ~J0.
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Consequently, we have the following energy representations involving the effective pa-
rameters

〈 ~J · ~E〉=σ
∗ ~E0 · ~E0, (2.6)

〈 ~E · ~J 〉=ρ
∗ ~J0 · ~J0.

We assume that the composite is a locally isotropic random medium so that
σjk(~x,ω)=σ(~x,ω)δjk and ρjk(~x,ω)=ρ(~x,ω)δjk, where δjk is the Kronecker delta and
j,k=1, . . .,d. We further assume that the composite is a two-component medium, so
that σ(~x,ω) takes the complex values σ1 and σ2, and ρ(~x,ω) takes the complex values
1/σ1 and 1/σ2, and satisfy [33]

σ(~x,ω)=σ1χ1(~x,ω)+σ2χ2(~x,ω), (2.7)

ρ(~x,ω)=σ−1
1 χ1(~x,ω)+σ−1

2 χ2(~x,ω).

Here, χi(~x,ω) is the characteristic function of medium i=1,2, which equals one for all
ω∈Ω having medium i at ~x and zero otherwise, with χ1=1−χ2. For simplicity, we
focus on one component, σ∗

jk =[σ∗]jk and ρ∗jk =[ρ∗]jk, of these symmetric tensors, for
some j,k=1, . . .,d.

Due to the homogeneity of these functions, e.g., σ∗
jk(aσ1,aσ2)=aσ∗

jk(σ1,σ2) for
any complex number a, they depend only on the ratio h=σ1/σ2, and we define the
tensor-valued functions m(h)=σ

∗/σ2, w(z)=σ
∗/σ1, m̃(h)=σ1ρ

∗, and w̃(z)=σ2ρ
∗

with components

mjk(h)=σ∗
jk/σ2, wjk(z)=σ∗

jk/σ1, (2.8)

m̃jk(h)=σ1ρ
∗
jk, w̃jk(z)=σ2ρ

∗
jk,

where z=1/h. The dimensionless functions mjk(h) and m̃jk(h) are analytic off the
negative real axis in the h-plane, while wjk(z) and w̃jk(z) are analytic off the negative
real axis in the z-plane [33]. Each take the corresponding upper half plane to the upper
half plane and are therefore examples of Herglotz functions [22, 33].

A key step in the ACM is obtaining Stieltjes integral representations for σ
∗ and

ρ
∗. These follow from resolvent representations for the electric field ~E [33] and current

density ~J [58]

~E= s(sI−Γχ1)
−1 ~E0= t(tI−Γχ2)

−1 ~E0, s∈C\[0,1], (2.9)

~J = t(tI−Υχ1)
−1 ~J0= s(sI−Υχ2)

−1 ~J0, t∈C\[0,1],

where I is the identity operator on Rd and we have defined the complex variables s=
1/(1−h) and t=1/(1−z)=1−s. The operator Γ= ~∇(∆−1)~∇· is based on convolution

with the free-space Green’s function for the Laplacian ∆= ~∇· ~∇=∇2, and the operator
Υ= ~∇×(~∇× ~∇×)−1 ~∇× involves the vector Laplacian ∆=−~∇× ~∇×+~∇~∇· when d=
3 [33, 58]. These (non-random) integro-differential operators and the origin of the
resolvent equations in (2.9) are discussed in more detail below.

If the current density ~J(~x,ω) and the electric field ~E(~x,ω) are sufficiently smooth
for all ~x∈Rd when ω∈Ω, Equation (2.9) is obtained as follows. The operator ∆−1 is
well defined in terms of convolution with respect to the free-space Green’s function of
the Laplacian ∆ [33, 26, 69]. Similarly, the inverse ∆−1 of the vector Laplacian ∆ is
defined in terms of component-wise convolution with respect to the free-space Green’s
function of the Laplacian.
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Applying the integro-differential operator ~∇(∆−1) to the formula ~∇· ~J =0 in Equa-

tion (2.4) yields Γ ~J =0, where Γ= ~∇(∆−1)~∇· is an orthogonal projection [33] from H

onto the Hilbert space H× of curl-free random fields, Γ :H 7→H×. More specifically, for

every sufficiently smooth ~ζ ∈H× there exists [45] a scalar potential ϕ which is unique

up to a constant such that ~ζ= ~∇ϕ. Consequently, since ∆= ~∇· ~∇, it is clear that Γ~ζ= ~ζ
for all such ~ζ ∈H× [26, 69].

For simplicity, we discuss only the analogous properties of divergence free vector
fields and the projection operator Υ= ~∇×(~∇× ~∇×)−1 ~∇×, restricting our attention
to d=3 to avoid a more involved discussion regarding differential forms [19]. Apply-

ing the integro-differential operator −~∇×(∆−1) to the formula ~∇× ~E=0 in Equa-

tion (2.4) yields Υ ~E=0. Here, Υ=−~∇×(∆−1)~∇× is an orthogonal projection from
H onto the Hilbert space H• of divergence-free random fields, Υ :H 7→H•, of trans-
verse gauge [58]. This can be seen as follows. For every sufficiently smooth ~ζ ∈H•

we have the representation ~ζ= ~∇×( ~A+ ~C), where ~A is a vector potential associated

with ~ζ and the arbitrary vector field ~C satisfies ~∇× ~C=0 [45]. Without loss of gen-

erality, the vector field ~C can be chosen so that ~A satisfies ~∇· ~A=0 [45]. Hence,
~∇×~ζ= ~∇× ~∇× ~A= ~∇(~∇· ~A)−∆ ~A=−∆ ~A. The vector field ~C chosen in this manner

gives the transverse gauge of ~ζ [45]. Choosing the members of H• to have transverse

gauge, the action of ~∇× ~∇× on H• is given by that of −∆. Therefore, the action of Υ
on H• is given by that of

Υ= ~∇×(~∇× ~∇×)−1~∇×=−~∇×(∆−1)~∇×, (2.10)

and it is clear from the above discussion that Υ~ζ= ~ζ for all such ~ζ ∈H• [26, 69]. In

general, the differential operators ~∇, ~∇· and ~∇× are interpreted in a weak sense in
terms of the operators Li in (2.1) [33], and the equalities Γ~ζ= ~ζ and Υ~ζ= ~ζ displayed
above are in the L2(Ω,P ) sense [26, 69].

We now derive the resolvent formulas in Equation (2.9). Write σ and ρ in Equa-
tion (2.7) as σ=σ2(1−χ1/s)=σ1(1−χ2/t) and ρ=(1−χ2/s)/σ1=(1−χ1/t)/σ2. Re-

call that ~E= ~E0+ ~Ef , where ~E0 is a constant field and ~Ef ∈H×, so that Γ ~E= ~Ef and

similarly Υ ~J= ~Jf in L2(Ω,P ). Consequently, from Γ ~J=0 and Υ ~E=0 we have the
following formulas which are equivalent to that in (2.9):

~Ef =
1

s
Γχ1

~E=
1

t
Γχ2

~E, (2.11)

~Jf =
1

s
Υχ2

~J=
1

t
Υχ1

~J.

On the Hilbert space H×, the operators Γ and χi, i=1,2, act as projectors [33].
Therefore Mi=χiΓχi, i=1,2, are compositions of projection operators on H×, and are
consequently positive definite and bounded by 1 in the underlying operator norm [64, 72].
They are self-adjoint with respect to the H -inner-product 〈·, ·〉 [33]. Therefore, on the
Hilbert space H× with weight χ1 in the inner-product, 〈·, ·〉1= 〈χ1 ·, ·〉 for example,
Γχ1 is a bounded linear self-adjoint operator with spectrum contained in the interval
[0,1] [33, 63, 72]. Hence, the resolvent operator (sI−Γχ1)

−1 in (2.9) is also a bounded
linear self-adjoint operator with respect to the same inner-product for s∈C\[0,1] [72].
Similarly, (tI−Υχ1)

−1 in (2.9) is a bounded linear self-adjoint operator on H• with
respect to the inner-product 〈·, ·〉1 for t∈C\[0,1].

To obtain integral representations for σ∗ and ρ
∗, it is more convenient to consider

the functions Fjk(s)= δjk−mjk(h) and Ejk(s)= δjk−m̃jk(h) which are analytic off [0,1]
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in the s-plane, and Gjk(t)= δjk−wjk(z) and Hjk(t)= δjk− w̃jk(z) which are analytic
off [0,1] in the t-plane [33]. For the formulation of the effective parameter problem in-

volving H× and σ
∗, define the coordinate system so that in (2.5) the constant vector ~E0

is given by ~E0=E0~ej , where ~ej is the standard basis vector on Rd in the j th direction

for some j=1, . . .,d. In the other formulation involving H• and ρ
∗, define ~J0=J0~ej .

Equations (2.5) and (2.9) and the spectral theorem for bounded linear self-adjoint op-
erators [63, 72] then yield the following Stieltjes integral representations [33, 6, 8, 58]
for the effective parameters σ∗

jk and ρ∗jk (see sections 2.2.3 and A.1 for more details):

mjk(h)= δjk−Fjk(s), Fjk(s)= 〈χ1(sI−Γχ1)
−1~ej ·~ek〉=

∫ 1

0

dµjk(λ)

s−λ
, (2.12)

wjk(z)= δjk−Gjk(t), Gjk(t)= 〈χ2(tI−Γχ2)
−1~ej ·~ek〉=

∫ 1

0

dαjk(λ)

t−λ
,

m̃jk(h)= δjk−Ejk(s), Ejk(s)= 〈χ2(sI−Υχ2)
−1~ej ·~ek〉=

∫ 1

0

dηjk(λ)

s−λ
,

w̃jk(z)= δjk−Hjk(t), Hjk(t)= 〈χ1(tI−Υχ1)
−1~ej ·~ek〉=

∫ 1

0

dκjk(λ)

t−λ
.

Equation (2.12) displays Stieltjes integrals involving spectral measures of random
operators. More specifically, dµjk(λ) and dαjk(λ) are spectral measures associated
with the random operators χ1Γχ1 and χ2Γχ2, while dηjk(λ) and dκjk(λ) are spectral
measures associated with the random operators χ2Υχ2 and χ1Υχ1, respectively. In
particular, there is a one-to-one correspondence between the bounded linear self-adjoint
operator χ1Γχ1 on H×, for example, and a family of projection operators Q(λ), param-
eterized by λ∈ [0,1], which satisfies limλ→0Q(λ)=0 and limλ→1Q(λ)= I, where 0 and
I are the null and identity operators on H×, respectively [72]. The strictly increasing
function µjk(λ)= 〈Q(λ)~ej ,~ek〉1 of the spectral variable λ is of bounded variation [72].
The spectral measure dµjk(λ) is a Stieltjes measure [27] associated with the function
µjk(λ) [72] (see Section A.1 for more details). For notational simplicity, we will often
refer to the measure µjk, not to be confused with the function µjk(λ).

By the Stieltjes–Perron inversion theorem [43, 56], the matrix valued function µ(λ)
with components µjk(λ), j,k=1, . . .,d, for example, is given by the weak limit µ(λ)=
−(1/π)limε↓0 Im(F(λ+ ıε)), i.e.,

∫ 1

0

ξ(λ) dµ(λ)=− 1

π
lim
ε↓0

∫ 1

0

ξ(λ) Im(F(λ+ ıε))dλ, (2.13)

for all smooth test functions ξ(λ), where [F(s)]jk =Fjk(s) and [dµ(λ)]jk =dµjk(λ).
From Equation (2.13) and the identities mjk(h)=hwjk(z) and m̃jk(h)=hw̃jk(z), which
follow from Equation (2.8), it has been shown [58] that the functions µjk(λ) and αjk(λ),
and the functions ηjk(λ) and κjk(λ) are related by

λµjk(λ)= (1−λ)αjk(1−λ)+λ̺(λ), d̺(λ)=wjk(0)δ0(dλ)+mjk(0)(λ−1)δ1(dλ),

λκjk(λ)= (1−λ)ηjk(1−λ)+λ ˜̺(λ), d˜̺(λ)= m̃jk(0)δ0(dλ)+ w̃jk(0)(λ−1)δ1(dλ).
(2.14)

Here, mjk(0)=mjk(h)|h=0 and wjk(0)=wjk(z)|z=0, for example, and δa(dλ) is the delta
measure concentrated at λ=a.

Equations (2.12) and (2.14) demonstrate the many symmetries between the func-
tions mjk(h), wjk(z), m̃jk(h), and w̃jk(z), and the respective measures µjk, αjk, ηjk,
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and κjk. Because of these symmetries, for simplicity, we will focus on mjk(h) and µjk,
and will reintroduce the other functions and measures where appropriate.

A key feature of equations (2.5), (2.8), and (2.12) is that the parameter information
in h and E0 is separated from the geometry of the composite, which is encoded in the
spectral measure µjk via its moments µn

jk [33, 11],

µn
jk =

∫ 1

0

λndµjk(λ)= 〈χ1[Γχ1]
n~ej ·~ek〉, n=0,1,2, . . .., (2.15)

where the second equality follows from the spectral theorem displayed in Equation (A.2).
Since χ1 operates pointwise on Rd and the constant vectors ~ej, j=1, . . .,d, are non-
random, we see from Equation (2.15) that the mass µ0

jk of the measure µjk is given
by

µ0
jk =p1δjk, (2.16)

where p1= 〈χ1〉 is the volume fraction of material component one. This demonstrates
that the diagonal components µkk, k=1, . . .,d, of µ are positive measures, while the off-
diagonal components µjk, j 6=k=1, . . .,d, have zero mass and are consequently signed
measures [27, 64]. The positivity of the measure µkk also follows from the fact that Q(λ)
is a self-adjoint projector on H× so that 〈Q(λ)~ek ·~ek〉1= 〈Q(λ)~ek ·Q(λ)~ek〉1= ‖Q(λ)~ek‖21
is a strictly increasing function of λ [72]. Therefore, the Stieltjes measure of an arbitrary
set A⊆ [0,1] is positive [27],

µkk(A)=

∫

A

dµkk(λ)=

∫

A

d‖Q(λ)~ek‖21≥ 0, (2.17)

where ‖·‖1 denotes the norm induced by the inner-product 〈·, ·〉1 [27, 64].
The higher order moments µn

jk, n=1,2,3, . . ., in principle, may be found using a per-
turbation expansion of Fjk(s) about a homogeneous medium, (σ1=σ2, s=∞) [33, 11].
In particular µ0

jk =p1δjk, generically, and µ1
jk =(p1p2/d)δjk for a statistically isotropic

random medium [33, 31, 11], where p2=1−p1= 〈χ2〉 is the volume fraction of material
component 2. In the case of a square bond lattice, which is an example of an infinitely
interchangeable random medium [11], µ2

kk =p1p2(1+(d−2)p1)/d
2 for any dimension d

and µ3
kk =p1p2(1+p1−p21)/8 for d=2. In general, the moments µn

jk depend on the
(n+1)-point correlation functions of the random medium [33, 11].

A principal application of the ACM is to derive forward bounds on the diagonal
components σ∗

kk of the tensor σ
∗, k=1, . . .,d, given partial information on the micro-

geometry [7, 53, 33, 8]. This information may be given in terms of the moments µn
kk,

n=0,1,2, . . ., of the measure µkk [55, 33]. Given this information, the bounds on σ∗
kk

follow from the special structure of Fkk(s) in (2.12). More specifically, it is a linear
functional of the positive measure µkk. The bounds are obtained by fixing the contrast
parameter s, varying over an admissible set of measures µkk (or geometries) which is
determined by the known information regarding the two-component composite. Knowl-
edge of the moments µn

kk for n=1, . . .,J confines σ∗
kk to a region of the complex plane

which is bounded by arcs of circles, and the region becomes progressively smaller as
more moments are known [55, 28]. When all the moments are known, the measure µkk

is uniquely determined [1], hence σ∗
kk is explicitly known. The bounding procedure is

reviewed in Section 2.3.
We conclude this section with a discussion regarding some consequences of the

energy constraints 〈 ~J · ~Ef 〉=0= 〈 ~E · ~Jf 〉, which follow from Equation (2.3), and are at
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the heart of the existence and uniqueness of solutions to the systems of equations in (2.4).

We first note that the formulas Γ ~E= ~Ef and Υ ~J= ~Jf are sufficient conditions for these
constraints. The sufficiency of these conditions can be seen by writing σ=σ2(1−χ1/s)

and ρ=(1−χ1/t)/σ2 in ~J=σ ~E and ~E=ρ ~J , respectively, to obtain

〈 ~J · ~Ef 〉=σ2(〈 ~E · ~Ef 〉−〈χ1
~E · ~Ef 〉/s), 〈 ~E · ~Jf 〉=(〈 ~J · ~Jf 〉−〈χ1

~J · ~Jf 〉/t)/σ2, (2.18)

for s 6=0 (h 6=∞) and t 6=0 (h 6=0). Now, if we have Γ ~E= ~Ef then ~∇· ~J =0 yields the

formula ~Ef =Γχ1
~E/s of Equation (2.11). Therefore, as Γ is a self-adjoint operator on

H [33, 69, 72, 26], we have

〈χ1
~E · ~Ef 〉= 〈χ1

~E ·Γ ~E〉= 〈Γχ1
~E · ~E〉= s〈 ~Ef · ~E〉. (2.19)

Consequently, from Equation (2.18) we have 〈 ~J · ~Ef 〉=0 for s 6=0. The argument in-

volving the operator Υ and the vector field ~Jf is analogous.
We see from Equation (2.18) that the energy constraints are equivalent to the fol-

lowing “field representations” for the contrast parameters s and t:

〈χ1
~E · ~Ef 〉/〈 ~E · ~Ef 〉= s=1− t=1−〈χ1

~J · ~Jf 〉/〈 ~J · ~Jf 〉, (2.20)

when 〈 ~E · ~Ef 〉 6=0 (if and only if 〈χ1
~E · ~Ef 〉 6=0 when s 6=0 from (2.19)), for example.

Moreover, the energy constraints provide the limiting behavior of the ratio R(h)=

〈 ~E · ~Ef 〉/〈χ1
~E · ~Ef 〉=1/s, for example,

lim
h→0

R(h)=1, lim
h→1

R(h)=0, lim
h→+∞

R(h)=−∞, (2.21)

which is otherwise a very complicated object in the absence of these energy constraints.
We also note that Equation (2.20) provides a relationship between the members ~Ef and
~Jf of the Hilbert spaces H× and H•, respectively.

The energy constraints also lead to detailed decompositions of the system en-
ergy 〈 ~J · ~E〉 in terms of Stieltjes integrals involving the measures µjj , αjj , ηjj ,

and κjj [58, 57]. For example, 〈 ~J · ~Ef 〉=0, ~E= ~E0+ ~Ef , ~E0=E0~ej, 〈 ~Ef 〉=0,

and σ=σ2(1−χ1/s) together imply that 0= 〈σ ~E · ~Ef 〉= 〈σ2(1−χ1/s)( ~E0 · ~Ef +E2
f )〉=

σ2

[

〈E2
f 〉−〈χ1

~E · ~Ef 〉/s
]

, where E2
f = | ~Ef |2. Equation (2.9) and the spectral theorem

displayed in Equation (A.2) then yield [58]

〈E2
f 〉

E2
0

=

∫ 1

0

λdµjj(λ)

|s−λ|2 =

∫ 1

0

λdαjj(λ)

|t−λ|2 . (2.22)

Equation (2.22), in turn, leads to Stieltjes integral representations of all such energy
components involving these measures [57]. Analogous energy decompositions involving
~Jf and the measures ηjj and κjj similarly follow. In [57] this energy decomposition
has lead to a physically transparent statistical mechanics model of two-phase dielectric
media.

2.2. Lattice setting. In this section, we formulate the effective parameter
problem for the infinite and finite, two-component bond lattice on Zd (formulations
for other lattice topologies are analogous). The infinite bond lattice, reviewed in Sec-
tion 2.2.1, is a special case of the stationary random medium considered in Section 2.1.
In Section 2.2.2, we develop a mathematical framework for the ACM in the finite lattice
setting, a key theoretical contribution of this work.
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2.2.1. Infinite lattice setting. Consider a two-component bond lattice on
all of Zd determined by the probability space (Ω,P ), and let σ(~x,ω) be the local com-
plex conductivity tensor with components σjk(~x,ω)=σj(~x,ω)δjk, j,k=1, . . .,d. Here,
σj(~x,ω) is the conductivity of the bond emanating from ~x∈Zd in the positive j th di-
rection for ω∈Ω, which is a stationary random field that takes the complex values σ1

and σ2 with probabilities p1 and p2=1−p1, respectively [29, 11]. The configuration

space Ω= {σ1,σ2}dZ
d

represents the set of all realizations of the random medium and
the probability measure P is compatible with stationarity. Analogous to Equation (2.7),
the local conductivity σj(~x,ω) of the two-phase random medium takes the form [29]

σj(~x,ω)=σ1χ
j
1(~x,ω)+σ2χ

j
2(~x,ω), j=1, . . .,d. (2.23)

Here, χj
i (~x,ω) is the characteristic function of medium i=1,2, which equals one for

all realizations ω∈Ω having medium i in the j th positive bond at ~x, and equals zero
otherwise.

In this lattice setting, the differential operators ~∇× and ~∇· in Equation (2.4) are
given [29, 11] in terms of forward and backward difference operators D+

j and D−
j ,

respectively, where

D+
j =T+

j −I, D−
j = I−T−

j , j=1, . . .,d. (2.24)

Here, I is the identity operator on Zd, and T+
j =T+ej and T−

j =T−ej are the gen-

erators (through composition) of the unitary group Tx acting on L2(Ω,P ) defined by
(Txf)(0,ω)= f(~x,ω), for any f ∈L2(Ω,P ) which is a stationary random field [29]. Define

H =
⊗d

i=1L
2(Ω,P ) and let ~E, ~J ∈H be the random electric field and current density,

respectively, where ~E(~x,ω)= (E1(~x,ω), . . . ,Ed(~x,ω)) and Ej(~x,ω) is the electric field in

the bond emanating from ~x in the positive j th direction, and similarly for ~J(~x,ω).

As in Section 2.1 we write ~E= ~E0+ ~Ef , where ~Ef is the fluctuating field of mean

zero about the (constant) average ~E0. The variational problem in (2.3) for this lattice
setting has a unique solution satisfying Kirchhoff’s circuit laws [33, 11],

D+
i E

j−D+
j E

i=0,

d
∑

k=1

D−
k J

k=0, J i=σiEi, 〈 ~E〉= ~E0, (2.25)

where i,j=1, . . .,d and the components Ei(~x,ω) and J i(~x,ω) of ~E(~x,ω) and ~J(~x,ω) are
stationary random fields. Equation (2.25) is a direct analogue of Equation (2.4) when
written in component form [33]. The effective complex conductivity tensor σ∗ is defined

by 〈 ~J 〉=σ
∗ ~E0, and has components σ∗

jk =σ2mjk(h), j,k=1, . . .,d, where h=σ1/σ2.
The representation formula for mjk(h) in (2.12) still holds in this infinite lattice setting,
with Γ in (2.9) now given by

Γ=∇+(∆−1)∇−, ∇±=(D±
1 , . . . ,D

±
d ), (2.26)

where ∆−1 is based on discrete convolution with the lattice Green’s function for the
Laplacian ∆=∇−∇+ [11]. The formulation of the ACM for the effective resistivity
tensor ρ

∗ in the infinite lattice setting is analogous to that for σ
∗ given here. In

Section 2.2.2 we discuss in detail the operator Υ underlying the integral representations
for ρ∗ in the lattice setting.
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2.2.2. Finite lattice setting. Consider a finite, two-component bond lattice
on Zd

L⊂Zd determined by the probability space (Ω,P ), where

Z
d
L= {~x∈Z

d | 1≤xi≤L, i=1, . . .,d}, (2.27)

L∈N, L≥ 2, and xi is the ith component of the vector ~x. Let σ(~x,ω) be the local com-
plex conductivity tensor with components σjk(~x,ω)=σj(~x,ω)δjk, j,k=1, . . .,d, where
σj(~x,ω) is defined in Equation (2.23) for ~x∈Z

d
L and ω∈Ω. The configuration space

Ω= {σ1,σ2}dZ
d
L represents the set of all 2N realizations of the finite random bond lat-

tice, where N =dLd and P is the associated (discrete) probability measure. Define

H =
⊗d

i=1L
2(Ω,P ) and let ~E, ~J ∈H be the random electric field and current density,

respectively, which satisfy Kirchhoff’s circuit laws in (2.25) with appropriate boundary
conditions. Analogous to Equation (2.5), the effective complex conductivity tensor σ∗ is

defined by 〈 ~J 〉=σ
∗ ~E0, and has components σ∗

jk =σ2mjk(h), where ~E0= 〈 ~E〉 and 〈·〉 de-
notes ensemble average over Ω. In a similar way we define the functions σ∗

jk =σ1wjk(z)
and ρ∗jk = m̃jk(h)/σ1= w̃jk(z)/σ2 introduced in Equation (2.8).

In this section, we obtain discrete versions of the integral representations for mjk(h)
and w̃jk(z) displayed in Equation (2.12) for this finite bond lattice setting, involving
spectral measures µjk and κjk associated with real-symmetric random matrices. The
formulation involving the functions m̃jk(h) and wjk(z) in (2.12) is analogous. Toward
this goal, we define a bijective mapping Θ from the d-dimensional set Zd

L onto the one
dimensional set NL⊂N, Θ :Zd

L→NL, given by

NL= {i∈N | i≤dLd}, Θ(~x)=x1+
d

∑

k=2

(xk−1)Lk−1. (2.28)

Under the bijection Θ the components Ej(~x,ω), j=1, . . .,d, of the random electric

field ~E(~x,ω)= (E1(~x,ω), . . .,Ed(~x,ω)) are mapped to vector valued functions Ej(~x,ω) 7→
~Ej(ω)= (Ej

1(ω), . . . ,E
j
Ld(ω)) so that

Θ( ~E(~x,ω))= ( ~E1(ω), . . . , ~Ed(ω))∈C
N , N =dLd, (2.29)

for each ω∈Ω, and similarly for ~J(~x,ω). Moreover, the bijection Θ maps the standard
basis vector ~e1=(1,0, . . .,0)∈Zd, for example, to the vector (~1,~0, . . . ,~0)∈ZN , where ~1
and ~0 are vectors of ones and zeros of length Ld, respectively, and similarly for the ~ej
for j=2, . . .,d. Therefore, the vectors êi, i=1, . . .,d, satisfying

êi=Θ(~ei)/L
d/2, êi · êj = δij, (2.30)

serve as the standard basis vectors on NL.
On NL, the difference operators D±

j , j=1, . . .,d, in Equation (2.24) are given in
terms of finite difference matrices Dj [23], where the rows of Dj correspond to the
bonds of the lattice, the columns correspond to the nodes, and the numbering of the
nodes on NL is determined by the bijection Θ in (2.28). In this finite lattice setting, the
Laplacian ∆ and the projection operator Γ in (2.26) are replaced by the real-symmetric
matrices ∆=∇T∇ and Γ=∇(∆−1)∇T , respectively, where ∇T =(DT

1 , . . . ,D
T
d ). The

matrices ∆ and Γ depend only on the topology and the boundary conditions of the
underlying finite bond lattice and Γ is a projection matrix satisfying Γ2=Γ.

The matrix Γ is invariant under arbitrary permutations in the numbering of the
nodes on NL, and is therefore independent of the specific form of the bijective map-
ping Θ :Zd

L 7→NL in Equation (2.28). More specifically, let Ξ be a permutation matrix
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satisfying Ξ−1=ΞT such that ~ξ TΞ is the vector ~ξ T with the entries permuted in an
arbitrary manner. Such a permutation in the numbering of the nodes is equivalent to
the mapping Dj 7→DjΞ, j=1, . . .,d. By the properties of transposition and inversion for
products of matrices [44], it is easily verified that the matrix Γ=∇(∆−1)∇T is invariant
under this mapping. Similarly, permuting the numbering of the bonds is equivalent to
the mapping Dj 7→ΞDj, and under this mapping Γ 7→ΞΓΞT .

The projection matrix representation of the operator Υ for the lattice setting is
obtained as follows. For simplicity, we restrict our attention to d=2,3. For d=3, the
curl operation ~∇× is given by

~∇×~ζ=det





~e1 ~e2 ~e3
∂1 ∂2 ∂3
ζ1 ζ2 ζ3



=C~ζ, C=





0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0



, (2.31)

where ~ζ= ~ζ(~x) for ~x∈R3, we have denoted ∂i, i=1,2,3, to be partial differentia-

tion in the i th direction ~ei, and C is the curl operator ~∇× in matrix form. One
can check directly that C 2=−CTC=−∆+ ~∇~∇·, where ∆ is the vector Laplacian.
The two-dimensional case follows from (2.31) by setting ~ζ(~x)= [ζ1(~x),ζ2(~x),0]

T with
~x=[x1,x2,0]

T , yielding

~∇×~ζ=(∂1ζ2−∂2ζ1)~e3=(~∇·R~ζ2)~e3, ~∇·=
[

∂1 ∂2
]

, R=

[

0 1
−1 0

]

, (2.32)

where R is a 90◦ rotation matrix, we have defined ~ζ2=[ζ1 ζ2]
T , and the action of ~∇·R

on ~ζ2 is given by that of the operator [−∂2 ∂1].
In view of equations (2.25) and (2.31), the matrix representation of the curl operator

~∇× for the infinite lattice setting on Z3 is given by C in (2.31) under the mapping
∂i 7→D+

i , i=1,2,3, while on NL the curl operator is given by C in (2.31) under the
mapping ∂i 7→Di. In two dimensions, pointwise rotations of fields by 90◦ convert curl
free fields to divergence free fields, and vice versa [56]. With this in mind and in
view of Equation (2.32), in two-dimensions it is natural to define the curl operator

by ~∇×= ~∇·R=[−∂2 ∂1]. Consequently, for the infinite lattice setting on Z2 we have
~∇×=[−D+

2 D+
1 ], while on NL we have

~∇×~ζ=C~ζ, CT =
[

−DT
2 DT

1

]

, (2.33)

where CTC=∇T∇=∆, the matrix representation of the Laplacian. From the above
discussion and in view of Equation (2.10), in the lattice setting, it is natural to define
the operator Υ as

Υ= ~∇×(~∇× ~∇×)−1~∇×=C(CTC)−1CT , (2.34)

which is clearly a projection operator satisfying Υ2=Υ. With this definition of curl and
Υ for two dimensions, we have Υ=RTΓR.

Analogous to the properties of the matrix Γ, in the finite lattice setting the matrix
Υ is invariant under arbitrary permutations in the numbering of the nodes. More
specifically, let Ξ be defined as above and define Ξ=diag(Ξ, . . . ,Ξ), so that Ξ−1=ΞT .
Such a permutation in the numbering of the nodes is equivalent to the mapping C 7→
CΞ. It is straight forward to verify that Υ is invariant under this mapping. Similarly,
permuting the numbering of the bonds is equivalent to the mapping C 7→ΞC, and under
this mapping Υ 7→ΞΥΞT .
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We now discuss the matrix representation of the characteristic function χj
1(~x,ω)

on NL. By writing the constitutive relation Jj(~x,ω)=σj(~x,ω)Ej(~x,ω) displayed in
Equation (2.25) as Jj(~x,ω)=σ2(1−χj

1(~x,ω)/s)E
j(~x,ω), we see that the characteristic

function χj
1(~x,ω) in (2.23) operates on the electric field Ej(~x,ω) in each individual

bond j=1, . . .,d emanating from ~x∈Zd
L. In view of this and Equation (2.29), on NL the

characteristic function χj
1(~x,ω) is represented by a block diagonal matrix χ1(ω),

χ1(ω)=diag(χ1
1(ω), . . . ,χ

d
1(ω)), χ2(ω)= I−χ1(ω), (2.35)

where χj
1(ω), j=1, . . .,d, is a diagonal matrix of size Ld×Ld with zeros and ones

distributed according to P along the main diagonal and I is the identity matrix on
RN . Moreover, the matrix χj

1(ω) acts on the vector ~Ej(ω)=Θ(Ej(~x,ω)) in (2.29) for
each j=1, . . .,d. Consequently, χ1(ω) is also a real-symmetric projection matrix of size
N×N , which determines the geometry and component connectivity of the two-phase
random medium. In summary, on NL the operators M1=χ1Γχ1 and K1=χ1Υχ1 are
represented by real-symmetric random matrices of size N×N [32, 58]. The matrix rep-
resentations of the operators M2=χ2Γχ2 and K2=χ2Υχ2 are then determined by the
relation χ2(ω)= I−χ1(ω).

The following theorem provides a rigorous mathematical formulation of integral
representations for the effective parameters of two-phase random media with finite lat-
tice composite microstructure. The theorem and proof are formulated in terms of the
random matrix M1=χ1Γχ1. The formulations involving the matrices M2=χ2Γχ2 and
Ki=χiΥχi, i=1,2, are analogous.

Theorem 2.1. For each ω∈Ω, let M1(ω)=U(ω)Λ(ω)U(ω) be the eigenvalue decom-
position of the real-symmetric matrix M1(ω)=χ1(ω)Γχ1(ω). Here, the columns of the
matrix U(ω) consist of the orthonormal eigenvectors ~ui(ω), i=1, . . .,N , of M1(ω) and
the diagonal matrix Λ(ω)=diag(λ1(ω), . . . ,λN (ω)) involves its eigenvalues λi(ω). If the

electric field ~E(ω) satisfies ~E(ω)= ~E0+ ~Ef (ω), with ~E0= 〈 ~E(ω)〉 and Γ ~E(ω)= ~Ef(ω),
then the effective complex conductivity tensor σ

∗ has components σ∗
jk =σ2mjk(h),

j,k=1, . . .,d, which satisfy

mjk(h)= δjk−Fjk(s), Fjk(s)=

∫ 1

0

dµjk(λ)

s−λ
, dµjk(λ)=

N
∑

i=1

〈δλi
(dλ)χ1Qiêj · êk〉,

(2.36)

where Qi=~ui~u
T
i . Furthermore, the mass µ0

jk of the measure µjk satisfies

µ0
jk = 〈χ1êk · êk〉δjk =dpk1 δjk. (2.37)

Here, we have defined pk1 = 〈Nk
1 (ω)〉/N to be the average number fraction of type-one

bonds in the positive kth direction, Nk
1 (ω)=Trace(χk

1(ω)) is the total number such bonds
for ω∈Ω, and the matrix χk

1(ω) is defined in Equation (2.35).

Taking ~E= ~E0+ ~Ef with the condition Γ ~E= ~Ef as a definition greatly simplifies the
proof of Theorem 2.1, by avoiding the formulation and proof of some technical lemmas
regarding the commutativity of the matrices Di, D

T
i , i=1, . . .,d, and (∆−1). To assume

the condition Γ ~E= ~Ef is natural, as we showed in Equation (2.19) that it is a sufficient

condition for the energy constraint 〈 ~J · ~Ef 〉=0, which is at the heart of the existence of
solutions to the systems of equations in (2.4) and (2.25) in the infinite, continuum and
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lattice settings, respectively. In the finite lattice setting, where Γ and χ1 are matrices,
this condition leads to Equation (2.11) exactly as in Section 2.1.

The proof of Theorem 2.1 is given in Section 2.2.4, after we present a novel for-
mulation of the ACM in Section 2.2.3, which unifies the infinite settings and the finite
lattice setting and makes the proof of Theorem 2.1 more transparent. Before we do so,
we first introduce an important class of composite microstructures. Namely, the class
of finite bond lattices such that Nk

1 (ω) is a non-random constant Nk
1 for all k=1, . . .,d,

i.e., Nk
1 (ω)=Nk

1 for all ω∈Ω. Consequently, the number N1(ω)=Trace(χ1(ω)) of ones
along the main diagonal of χ1(ω) satisfies N1(ω)=N1 for all ω∈Ω, with N1=

∑

kN
k
1 .

Moreover, the number fraction of type-one bonds in the kth positive direction is given
by pk1 =Nk

1 /N and the total number fraction of type-one bonds is given by p1=N1/N ,
with p1=

∑

k p
k
1 .

Given a fixed number fraction p1 of type-one bonds, one can define a class of highly
anisotropic composites by fixing pk1 close to p1 for some k=1, . . .,d, i.e., p1−pk1 ≪1.
A class of locally isotropic random media is obtained by requiring that every bond
emanating from ~x∈Zd

L in the positive direction is of the same type, i.e., χj
1(ω)=χk

1(ω)

for all j,k=1, . . .,d and ω∈Ω. Hence N j
1 =Nk

1 for all j,k=1, . . .,d, so that Nk
1 =N1/d

and pk1 =p1/d for all k=1, . . .,d. In this case, Equation (2.37) reduces to

µ0
jk =p1δjk, (2.38)

which is a direct analogue of Equation (2.16). Equation (2.38) also holds for statistically
isotropic random media, where the total number N1 of type-one bonds is fixed and
randomly distributed in a uniform fashion among the total number N of bonds. In other
words, the main diagonals of the matrices χ1(ω), ω∈Ω, are random permutations of one
another. In this case, the Nk

1 (ω), k=1, . . .,d, are independent, identically distributed
random variables with mean 〈Nk

1 (ω)〉=p1N/d.

We note that, by the law of large numbers [25], the formula µ0
jk =dpk1 δjk in Equa-

tion (2.37) also holds in the infinite lattice setting, where pk1 =limN→∞〈Nk
1 (ω)〉/N is

the volume fraction of type-one bonds in the kth direction. Here, the infinite lattice
is obtained as the infinite volume limit L→∞ (N →∞) of the finite lattice – with Zd

L

in (2.27) redefined in a suitable way so that limL→∞Zd
L=Zd. Consequently, Equa-

tion (2.38) also holds in the infinite lattice setting for locally and statistically isotropic
random media.

2.2.3. Unifying formulation of the ACM for the finite lattice setting and

the infinite settings. When considering the formulation of Stieltjes integral repre-
sentations for the effective parameters of two-phase random media with finite lattice
composite microstructure, there is a fundamental issue with the original formulation of
the ACM given in sections 2.1 and 2.2.1. Namely, the original formulation [33] holds
for the infinite continuum and lattice settings, but it is incompatible with the finite
lattice setting of Section 2.2.2. In this section, we address this issue by providing a
novel formulation of the ACM, which is equivalent to the original formulation and holds
for both the finite lattice setting and the infinite settings.

In the infinite settings, the (infinite-dimensional) operator Γχ1 appears in the bi-
linear functional underlying the Stieltjes integral representation for the effective con-
ductivity tensor σ

∗=σ2m(h), displayed in Equation (2.12). The underlying Hilbert
space is H×, defined in (2.2), equipped with the H -inner-product weighted by the
characteristic function χ1, and Γχ1 is a self-adjoint operator on H× with respect to this
inner-product. In this abstract (infinite-dimensional) Hilbert space formulation of the
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effective parameter problem, the resolvent (sI−Γχ1)
−1 is also self-adjoint with respect

to this inner-product for s∈C\[0,1] [72].
In contrast, the finite lattice formulation of the effective parameter problem involves

a finite dimensional Hilbert space and the operators Γ and χ1 are real-symmetric, non-
commutable matrices. In this case, the matrix Γχ1 is not symmetric, it typically has
complex spectrum, and it may not even have a full set of eigenvectors. Consequently,
the resolvent (sI−Γχ1)

−1 of this matrix is not symmetric and, in general, is not defined
for all s∈C\[0,1] as required. Therefore, the integral formula of Theorem 2.1 displayed
in Equation (2.36), which follows from the spectral theorem displayed in Equation (A.4)
for the real-symmetric matrix χ1Γχ1, fails to hold for the matrix Γχ1, in general. Due
to this fundamental difference of the finite lattice setting, the mathematical framework
must be modified from that of the infinite settings discussed in sections 2.1 and 2.2.1.

We now develop a novel formulation of the ACM which holds for both the finite
lattice setting and the infinite settings, and yields the integral representations for the
effective parameters displayed in equations (2.12) and (2.36). To make the formulation
independent of the setting, whether finite or infinite, we make use of generic terms such
as symmetric operator, for example, which means real-symmetric matrix in the finite
lattice setting and self-adjoint operator in the infinite settings. Essential differences in
notation will be explicitly stated.

Recall the definition of the effective conductivity tensor 〈 ~J 〉= 〈σ ~E〉=σ
∗〈 ~E〉 and

that σ=σ2(1−χ1/s) and 〈 ~E〉= ~E0, together yielding

σ
∗ ~E0=σ2( ~E0−〈χ1

~E〉/s). (2.39)

Define the coordinate system so that ~E0=E0~ej for some j=1, . . .,d (in the matrix
formulation ~ej 7→ êj , where êj is defined in Equation (2.30)). Therefore, taking the dot
product of equation (2.39) with the (non-random) basis vector ~ek yields

σ∗
jk =σ

∗~ej ·~ek=σ2

(

δjk−〈χ1
~E ·~ek〉/(sE0)

)

. (2.40)

This demonstrates that the key functional underlying the Stieltjes integral represen-
tation for the effective complex conductivity tensor is 〈χ1

~E ·~ek〉. In fact, in view of

equations (2.12) and (2.40), we have that Fjk(s)= 〈χ1
~E ·~ek〉/(sE0).

We now derive a resolvent formula for the vector field χ1
~E involving the symmetric

operator χ1Γχ1. With use of the identity ~E= ~E0+ ~Ef we rewrite the first formula of
Equation (2.11) as

(sI−Γχ1) ~E= s ~E0, (2.41)

where I is the identity operator on the underlying vector space (Rd for the infinite
settings and RN for the finite lattice setting). It is now clear that the formula for
mjk(h)=σ∗

jk/σ2 displayed in (2.12) follows by writing the formula in Equation (2.41)

as ~E= s(sI−Γχ1)
−1 ~E0 with ~E0=E0~ej , and substituting this into (2.40). We wish to

derive an analogous formula for mjk(h) involving the symmetric operator χ1Γχ1. In

order to introduce this operator and to isolate χ1
~E in Equation (2.41), we premultiply

this formula by the projection operator χ1, yielding

(sI−χ1Γχ1)[χ1
~E]= sχ1

~E0. (2.42)
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Equation (2.42) is equivalent to the following resolvent formula for χ1
~E:

χ1
~E= s(sI−χ1Γχ1)

−1χ1
~E0, (2.43)

which is analogous to that of Equation (2.9) for the electric field ~E. Inserting

the resolvent formula for χ1
~E in (2.43), with ~E0=E0~ej, into Equation (2.40) yields

Fjk(s)= 〈(sI−χ1Γχ1)
−1χ1~ej ·~ek〉, which is a bilinear functional representation of the

function Fjk(s). Now, applying the spectral theorem for the symmetric operator χ1Γχ1,
displayed in equations (A.2) and (A.4) with f(λ)= (s−λ)−1 and g(λ)≡ 1, to this func-
tional representation of Fjk(s) yields the following Stieltjes integral representation for
mjk(h)=σ∗

jk/σ2:

mjk(h)= δjk−Fjk(s), Fjk(s)= 〈(sI−χ1Γχ1)
−1χ1~ej ·~ek〉=

∫ 1

0

dµjk(λ)

s−λ
. (2.44)

Equation (2.44) demonstrates, as in Section 2.1, that the Hilbert space underly-
ing the integral representation for σ∗

jk is given by H× equipped with the H -inner-
product weighted by χ1. However, in Section 2.1, the weighting of the inner-product
is defined by premultiplication of χ1, so that 〈f(Γχ1)~ej ,~ek〉1= 〈χ1f(Γχ1)~ej ·~ek〉 for all
complex valued functions f ∈L2(µjk) [72]. Here, the weighting of the inner-product is
defined by post multiplication of χ1, so that the inner-product 〈·, ·〉1 is instead given by
〈f(χ1Γχ1)~ej ,~ek〉1= 〈f(χ1Γχ1)χ1~ej ·~ek〉. In the infinite, continuum and lattice settings,
the two inner-product definitions are equivalent, as χ1 acts pointwise on the underlying
vector space (Rd in the continuous setting and Zd in the lattice setting). However, in
the finite lattice setting where χ1 is represented by a matrix, the two inner-product
definitions are no longer equivalent for all such functions f .

We now establish that the formula for mjk(h) displayed in Equation (2.44) is equiv-
alent to that of Equation (2.12) for the infinite, continuum and lattice settings. From
Equation (2.12) write Fjk(s;µjk)= 〈χ1(sI−Γχ1)

−1~ej ·~ek〉 and from Equation (2.44)

write F̃jk(s;νjk)= 〈(sI−χ1Γχ1)
−1χ1~ej ·~ek〉. We will argue that µjk ≡ νjk so that

Fjk(s;µjk)≡ F̃jk(s;νjk). From the spectral theorem, we have that the moments µn
jk

and νnjk, n=0,1,2, . . ., of the measures µjk and νjk satisfy

µn
jk =

∫ 1

0

λndµjk(λ)= 〈χ1[Γχ1]
n~ej ·~ek〉, νnjk =

∫ 1

0

λndνjk(λ)= 〈[χ1Γχ1]
nχ1~ej ·~ek〉.

(2.45)

However, since χ1 is a projection operator, we have that χ1=χm
1 on H× for all m∈N,

hence χ1[Γχ1]
n=[χ1Γχ1]

nχ1 on H× for all n=0,1,2, . . .. This and Equation (2.45)
imply that µn

jk ≡ νnjk for all n=0,1,2, . . .. Since the Hausdorff moment problem is de-
termined [67], i.e., knowledge of all the moments uniquely determines the measure, we
have that µjk ≡ νjk. This, in turn, implies that Fjk(s;µjk)≡ F̃jk(s;νjk), which is what
we set out to establish.

2.2.4. Proof of Theorem 2.1.

Proof. In this section, we prove the various assertions of Theorem 2.1, which
was stated in Section 2.2.2. In particular, we prove that the functional Fjk(s)=
〈(sI−χ1Γχ1)

−1χ1êj · êk〉 in (2.44) (with ~ej 7→ êj) has the integral representation dis-
played in Equation (2.36), involving a spectral measure µjk of the real-symmetric ma-
trix χ1Γχ1 with mass µ0

jk given by that in (2.37). We also provide a projection method
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for numerically efficient, rigorous computation of µjk. This projection method is sum-
marized by equations (2.57)–(2.59) below.

Toward this goal, for each ω∈Ω define the sets N1
L(ω) and N0

L(ω) by

N
1
L(ω)= {i∈NL | [χ1(ω)]ii=1}, N

0
L(ω)=NL\N1

L(ω). (2.46)

Also, define elementary permutation matrices [23] Πℓm(ω), ℓ,m=1, . . .,N , N =dLd,

which satisfy Πℓm=Π−1
ℓm =ΠT

ℓm and Πℓm
~ξ is the vector ~ξ with the ℓth and mth entries

interchanged. Since χ1(ω) is a diagonal matrix with N1(ω) ones and N0(ω)=N−N1(ω)
zeros along its main diagonal, it is clear that there exists a permutation matrix Π(ω)
which is a composition of elementary permutation matrices such that

Πχ1Π
T =

[

000 001
010 I1

]

, Π=
∏

ℓ,m∈NL

Πℓm, (2.47)

where ℓ∈N1
L, m∈N0

L, I1 is the identity matrix of size N1×N1, and 0ab is a matrix of
zeros of size Na×Nb, for a,b=0,1. Therefore, since ΠT =Π−1 we have

χ1Γχ1=ΠT

[

000 001
010 I1

]

ΓΠ

[

000 001
010 I1

]

Π=ΠT

[

000 001
010 Γ1

]

Π=ΠT

[

000 001
010 U1Λ1U

T
1

]

Π

=ΠT

[

I0 001
010 U1

][

000 001
010 Λ1

][

I0 001
010 U T

1

]

Π, (2.48)

where I0 is the identity matrix of size N0×N0. Here, we have defined the real-symmetric
matrix ΓΠ=ΠΓΠT , Γ1 is its lower right principal sub-matrix of size N1×N1, and
Γ1=U1Λ1U

T
1 is the eigenvalue decomposition of Γ1. As Γ1 is a real-symmetric matrix,

U1 is an orthogonal matrix [44]. Also, since ΓΠ=ΠΓΠT is a similarity transformation
of a projection matrix and Πχ1Π

T is a projection matrix, Λ1 is a diagonal matrix with
entries λ1

i ∈ [0,1], i=1, . . .,N1, along its diagonal [44, 23].
Consequently, Equation (2.48) implies that the eigenvalue decomposition of the

matrix χ1Γχ1 is given by

χ1Γχ1=UΛU T , U =ΠT

[

I0 001
010 U1

]

, Λ=

[

000 001
010 Λ1

]

. (2.49)

Here, U is an orthogonal matrix satisfying UTU =UUT = I, I is the identity matrix on
RN , and Λ is a diagonal matrix with entries λi∈ [0,1], i=1, . . .,N , along its diagonal.

The eigenvalue decomposition of the matrix χ1Γχ1 displayed in Equation (2.49)
demonstrates that its resolvent (sI−χ1Γχ1)

−1 is well defined for all s∈C\[0,1]. In
particular, by the orthogonality of the matrix U , it has the following useful rep-
resentation (sI−χ1Γχ1)

−1=U(sI−Λ)−1UT , where (sI−Λ)−1 is a diagonal matrix
with entries 1/(s−λi) along its diagonal. This, in turn, implies that the functional
Fjk(s)= 〈(sI−χ1Γχ1)

−1χ1êj · êk〉 displayed in Equation (2.44) (with ~ej 7→ êj) can be
written as

Fjk(s)= 〈(sI−Λ)−1 [χ1U ]T êj ·UT êk〉. (2.50)

Since ΠT =Π−1, equations (2.47) and (2.49) imply that

χ1U =ΠT

[

000 001
010 U1

]

=⇒ χ1~ui=

{

0, for i=1, . . .,N0,

~ui, otherwise.
(2.51)
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This, in turn, implies that

[χ1U ]T êj ·UT êk =[χ1U ]T êj · [χ1U ]T êk. (2.52)

We are ready to provide the integral representation displayed in (2.36) for the func-
tional Fjk(s) in Equation (2.50). Denote by Qi=~ui~u

T
i , i=1, . . .,N , the symmetric, mu-

tually orthogonal projection matrices, QℓQm=Qℓδℓm, onto the eigen-spaces spanned by
the orthonormal eigenvectors ~ui. Equation (2.51) implies that χ1Qi=Qiχ1=χ1Qiχ1, as
χ1Qi=0 for i=1, . . .,N0 and χ1Qi=Qi otherwise. This allows us to write the quadratic
form [χ1U ]T êj · [χ1U ]T êk as

[χ1U ]T êj · [χ1U ]T êk=

N
∑

i=1

(χ1~ui · êj)(χ1~ui · êk)=
N
∑

i=1

χ1Qiχ1êj · êk=
N
∑

i=1

χ1Qiêj · êk.

(2.53)

This and equations (2.50) and (2.52) yield

Fjk(s)=

∫ 1

0

dµjk(λ)

s−λ
, dµjk(λ)=

N
∑

i=1

〈δλi
(dλ)χ1Qiêj · êk〉. (2.54)

From Equation (A.3) we have that
∑

iQi= I, which implies that the mass µ0
jk of

the measure µjk is given by

µ0
jk =

∫ 1

0

dµjk(λ)=

∫ 1

0

N
∑

i=1

〈δλi
(dλ)χ1Qi êj · êk〉= 〈χ1êj · êk〉= 〈χ1êk · êk〉δjk, (2.55)

as χ1 is a diagonal matrix and the underlying probability space is finite. Therefore, as
in the continuum setting, the diagonal components µkk of the matrix valued measure
µ are positive measures with mass 〈χ1êk · êk〉= 〈χ1êk ·χ1êk〉= 〈|χ1êk|2〉≥ 0, as χ1 is a
symmetric projection matrix. The off-diagonal components µjk, for j 6=k, have zero
mass and are consequently signed measures.

Using Equation (2.35), we may write µ0
jk in Equation (2.55) in a more suggestive

form. Recall that ê1=(~1,~0, . . . ,~0)/Ld/2, where ~1 and ~0 are vectors of ones and zeros of
length Ld, respectively, and similarly for the ~ej for j=2, . . .,d. Since χ1 is a symmetric
projection matrix, equations (2.35) and (2.55) imply that

µ0
jk = 〈χ1êk ·χ1êk〉δjk =

1

Ld
〈χk

1
~1 ·χk

1
~1〉δjk =

1

Ld
〈Trace(χk

1)〉δjk =d
〈Nk

1 (ω)〉
N

δjk, (2.56)

where Nk
1 (ω)=Trace(χk

1(ω)) is the total number of type-one bonds in the positive kth

direction for ω∈Ω and N =dLd. This proves Equation (2.37) and concludes our proof
of Theorem 2.1.

We conclude this section with the formulation of a projection method for numer-
ically efficient, rigorous computation of spectral measures and effective parameters
for composite media with finite lattice microstructure. Note that the sum in Equa-
tion (2.54) runs only over the index set i=N0+1, . . . ,N , as Equation (2.51) implies that
the masses χ1Qiêj · êk of the measure µjk are zero for i=1, . . .,N0. Denote by λ1

i and
~u1
i , i=1, . . .,N1, the eigenvalues and eigenvectors of the N1×N1 matrix Γ1=U1Λ1U

T
1 ,

defined in Equation (2.48). Now, write

Πêj =

[

êπ0

j

êπ1

j

]

, (2.57)
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where êπ0

j ∈RN0 and êπ1

j ∈RN1 . Therefore, writing the matrix χ1U in Equation (2.51)

in block diagonal form, χ1U =ΠTdiag(000,U1), we have that

[χ1U ]T êj · [χ1U ]T êk=[diag(000,U
T
1 )Πêj ] · [diag(00,0,UT

1 )Πêk]= [UT
1 ê

π1

j ] · [UT
1 êπ1

k ].

(2.58)

Denote by Q1
i =~u1

i [~u
1
i ]

T , i=1, . . .,N1, the mutually orthogonal projection matrices,
Q1

ℓQ
1
m=Q1

ℓ δℓm, onto the eigen-spaces spanned by the orthonormal eigenvectors ~u1
i .

Equations (2.50), (2.52), and (2.58) then yield

Fjk(s)= 〈(sI1−Λ1)
−1[UT

1 êπ1

j ] · [UT
1 êπ1

k ]〉=
〈

N1
∑

i=1

Q1
i ê

π1

j · êπ1

k

s−λ1
i

〉

. (2.59)

Equation (2.59) demonstrates that only the spectral information of the matrices
U1 and Λ1 appear in the functional representation for Fjk(s) in (2.50) and its integral
representation in (2.36). From a computational standpoint, this means that only the
eigenvalues and eigenvectors of the N1×N1 matrix Γ1 need to be computed in order to
compute the spectral measures underlying the integral representations of the effective
parameters for finite lattice systems. This is extremely cost effective for large dilute
systems, where N≫1 and N1≪N , as the numerical cost of finding all the eigenvalues
and eigenvectors of a real-symmetric N×N matrix is O(N3) [23].

2.3. Bounding procedure. In this section, we review a procedure which yields
rigorous bounds for the effective transport coefficients of composite media [33, 28].
The bounding procedure associated with the functions Fkk(s) and Ekk(s), defined in
Equation (2.12), for example, fixes the contrast parameter s and varies over admissible
sets of measures µkk and ηkk, subject to known information regarding the composite.
This information is given in terms of the moments µn

kk and ηnkk, n=0,1,2, . . ., of these
measures. Knowledge of the moments for n=1, . . .,J confines the value of the effective
complex conductivity σ∗

kk to a region of the complex plane which is bounded by arcs of
circles, and the region becomes progressively smaller as more moments are known [55,
28]. Since the bounding procedure associated with the functions Gkk(t) and Hkk(t)
in (2.12) is analogous, we will focus on that involving Fkk(s) and Ekk(s).

The bounds for σ∗
kk and ρ∗kk follow from three important properties of the functions

Fkk(s) and Ekk(s). First, their integral representations displayed in equations (2.12)
and (2.36) separate parameter information in s and E0 from the geometry of the com-
posite, which is encoded in the underlying spectral measures µkk and ηkk via their
moments µn

kk and ηnkk, n=0,1,2, . . . [11, 33]. Second, these integral representations are
linear functionals of the spectral measures. Finally, µkk and ηkk are positive measures,
in contrast to µjk and ηjk for j 6=k. In this section, we review how these three properties
yield rigorous bounds for the diagonal components of the effective parameters σ∗

kk and
ρ∗kk [33, 28].

We start our discussion with the masses µ0
kk and η0kk of the measures µkk and ηkk

for the continuum and lattice settings. By Equation (2.16) and the symmetries between
the functions Fkk(s) and Ekk(s) displayed in Equation (2.12), in the continuum setting,
the masses µ0

kk and η0kk of the measures µkk and ηkk are generically given by µ0
kk =p1

and η0kk =p2, so that

µ0
kk+η0kk =1, k=1, . . .,d. (2.60)

By Equation (2.37), in the finite lattice setting, we have µ0
kk =dpk1 generically. The

masses µ0
kk and η0kk of the measures µkk and ηkk are related in this finite lattice setting
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as follows. From Equation (2.35) we have that χk
1(ω)+χk

2(ω)= ILd for all k=1, . . .,d
and ω∈Ω, where ILd is the identity matrix of size Ld×Ld. Consequently, by the
linearity of the trace operation, we have that Trace(χk

1(ω))+Trace(χk
2(ω))=Trace(ILd),

thus Nk
1 (ω)+Nk

2 (ω)=Ld=N/d. Averaging this formula over Ω and rearranging yields
Equation (2.60), where η0kk =dpk2 and pk2 = 〈Nk

2 (ω)〉/N is the average number fraction
of type-two bonds in the positive kth direction. For isotropic random media with finite
lattice composite microstructure, we have from (2.38) that µ0

kk =p1 and η0kk =p2. By
the discussion in the paragraph following Equation (2.38), the formulas µ0

kk =dpk1 and
η0kk =dpk2 also hold for the infinite lattice setting with pki =limN→∞〈Ni(ω)〉/N , i=1,2,
and are given by µ0

kk =p1 and η0kk =p2 for isotropic random media.
For simplicity, we will focus on one diagonal component σ∗

kk and ρ∗kk of the ef-
fective conductivity and resistivity tensors σ

∗ and ρ
∗, for some k=1, . . .,d, and set

σ∗=σ∗
kk, F (s)=Fkk(s), m(h)=mkk(h), µ=µkk, E(s)=Ekk(s), m̃(h)= m̃kk(h), and

η= ηkk. Here, F (s)=1−m(h) and E(s)=1−m̃(h). We will also exploit the symme-
tries between F (s) and E(s) in Equation (2.12) and initially focus on the function F (s)
and the measure µ, referring to the function E(s) and the measure η where appropriate.

Bounds for σ∗ are obtained as follows, while those for ρ∗ are obtained analogously.
The support of the measure µ is contained in the interval [0,1] and its mass is given by
µ0=p1, where 0≤p1≤ 1. Consider the set M of positive Borel measures on [0,1] with
mass ≤ 1. By Equation (2.12), for fixed s∈C\[0,1], F (s) is a linear functional of the
measure µ, F :M 7→C, and we write F (s)=F (s;µ) and m(h)=m(h;µ). Suppose that
we know the moments µn of the measure µ for n=0, . . .,J . Define the set M

µ
J ⊂M of

measures by

M
µ
J =

{

ν ∈M

∣

∣

∣

∫ 1

0

λndν(λ)=µn, n=0, . . .,J

}

. (2.61)

The set Aµ
J ⊂C that represents the possible values of m(h;µ)=1−F (s;µ) which is

compatible with the known information about the random medium is given by

Aµ
J = { m(h;ν)∈C | h 6∈ (−∞,0], ν ∈M

µ
J } . (2.62)

The set of measures M
µ
J is a compact, convex subset of M with the topology of

weak convergence [33]. Since the mapping F (s;µ) in (2.12) is linear in µ, it follows that
Aµ

J is a compact convex subset of the complex plane C. The extreme points of M
µ
0 are

the one point measures aδb, 0≤a,b≤ 1 [24], while the extreme points of M
µ
J for J > 0

are weak limits of convex combinations of measures of the form [47, 33]

µJ(dλ)=
J+1
∑

i=1

aiδbi(dλ), ai≥ 0, 0≤ b1< · · ·<bJ+1< 1,
J+1
∑

i=1

aib
n
i =µn, (2.63)

for n=0,1, . . .,J .
For the case of two-dimensional random media in the continuous setting, every mea-

sure µ∈M
µ
J gives rise to a function m(h;µ) that is the effective (relative) conductivity

of a multi-rank laminate [56]. However, in general [33], not every measure µ∈M
µ
J gives

rise to such a function m(h;µ). Therefore, the set Aµ
J will contain the exact range of

values of the effective conductivity [33]. This is sufficient for the bounding procedure
discussed in this section.

By the symmetries between the formulas in Equation (2.12), the support of the
measure η is contained in the interval [0,1] and its mass is given by η0=p2=1−p1, where
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0≤p2≤ 1. We can therefore define compact, convex sets M
η
J ⊂M and Aη

J ⊂C which
are analogous to those defined in equations (2.61) and (2.62), respectively, involving the
function m̃(h;η)=1−E(s;η). Moreover, the extreme points of M

η
0 are the one point

measures cδd, 0≤ c,d≤ 1, while the extreme points of M
η
J are weak limits of convex

combinations of measures of the form given in Equation (2.63).
Consequently, in order to determine the extreme points of the sets Aµ

J and Aη
J , it

suffices to determine the range of values in C of the functions m(h;µJ )=1−F (s;µJ)
and m̃(h;ηJ )=1−E(s;ηJ), respectively, where

F (s;µJ)=
J+1
∑

i=1

ai
s−bi

, E(s;ηJ)=
J+1
∑

i=1

ci
s−di

, (2.64)

as the ai, bi, ci, and di vary under the constraints given in Equation (2.63). While
F (s;µJ) and E(s;ηJ ) in (2.64) may not run over all points in Aµ

J and Aη
J as these

parameters vary, they run over the extreme points of these sets, which is sufficient due
to their convexity. It is important to note that, as the effective complex conductivity
σ∗ is given by σ∗=σ2m(h;µ)=σ1/m̃(h;η), the regions Aµ

J and Aη
J have to be mapped

to the common σ∗-plane to provide bounds for σ∗.

We will discuss the bounds for σ∗ in detail for the cases where J=0,1, and briefly
explain how the procedure is generalized to obtain a sequence of nested bounds for
J =2,3, . . . [28]. The bounds corresponding to the case where J=0 follows from the
knowledge of only the masses µ0 and η0 of the measures µ and η. For simplicity, we
assume that µ0=p1 and η0=p2. If the random medium is also known to be statistically
isotropic, so that the effective tensors σ∗ and ρ

∗ are diagonal [56], the first moments µ1

and η1 are also known to be given by [28]

µ1=
p1p2
d

, η1=
p1p2(d−1)

d
, (2.65)

which leads to bounds for the case where J=1.

Consider the case where J =0 in (2.64) and the volume fraction p1=1−p2 is fixed
with µ0=p1 and η0=p2, so that F (s;µJ)=p1/(s−λ) and E(s;ηJ )=p2/(s− λ̃). By the
above discussion, the values of F (s;µ) and E(s;η) lie inside the circles C0(λ) and C̃0(λ̃),
respectively, given by

C0(λ)=
µ0

s−λ
, −∞≤λ≤∞, C̃0(λ̃)=

η0

s− λ̃
, −∞≤ λ̃≤∞. (2.66)

In the σ∗-plane, the intersection of these two regions is bounded by two circular arcs
corresponding to 0≤λ≤p2 and 0≤ λ̃≤p1 in (2.66), and the values of σ∗ lie inside
this region [28]. These bounds are optimal [54, 8], and are obtained by a composite
of uniformly aligned spheroids of material 1 in all sizes coated with confocal shells of
material 2, and vice versa. The arcs are traced out as the aspect ratio varies. When
the value of the component conductivities σ1 and σ2 are real and positive, the bound-
ing region collapses to the interval 1/(p1/σ1+p2/σ2)≤σ∗≤p1σ1+p2σ2, which are the
Wiener bounds. The lower and upper bounds are obtained by parallel slabs of the two
materials aligned perpendicular and parallel to the field ~E0, respectively [65].

Now consider the case where J=1 in (2.64). Here, the volume fraction p1=1−p2
is fixed so that µ0=p1 and η0=p2, and the random medium is statistically isotropic so
that the first moments µ1 and η1 are given by that in Equation (2.65). A convenient
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way of including this information is to use the transformations [8]

F1(s)=
1

p1
− 1

sF (s)
, E1(s)=

1

p2
− 1

sE(s)
. (2.67)

Due to the symmetries between F1(s) and E1(s) in (2.67), we will first focus on the
function F1(s) and introduce the function E1(s) when appropriate. The function F1(s)
is an upper half plane function analytic off [0,1] and therefore has an integral represen-
tation [8, 28] analogous to that in Equation (2.12), involving a measure µ1, say, which
is supported in the interval [0,1]. Since only the mass µ0=p1 and the first moment
µ1=p1p2/d of the measure µ are known, the transformation (2.67) determines only the
mass µ0

1=p2/(p1d) of the measure µ1 [8, 28]. This reveals the utility of the transfor-
mation F1(s) in Equation (2.67), it reduces the J=1 case for F (s) to the J =0 case for
F1(s).

By our previous analysis, the values of F1(s) lie inside a circle p2/(p1d(s−λ)),
−∞≤λ≤∞. Similarly, the values of E1(s) lie inside a circle p1(d−1)/(p2d(s− λ̃)),
−∞≤ λ̃≤∞. Since F and E are fractional linear in F1 and E1, respectively, these
circles are transformed to the circles C1(λ) in the F -plane and C̃1(λ̃) in the E-plane
given by [28]

C1(λ)=
p1(s−λ)

s(s−λ−p2/d)
, C̃1(λ̃)=

p2(s− λ̃)

s(s− λ̃−p1(d−1)/d)
, −∞≤λ,λ̃≤∞. (2.68)

In the σ∗-plane the intersection of these two circular regions is bounded by two circular
arcs [28] corresponding to 0≤λ≤ (d−1)/d and 0≤ λ̃≤ 1/d in (2.68).

The vertices of the region, C1(0)=p1/(s−p2/d) and C̃(0)=p2/(s−p1(d−1)/d), are
attained by the Hashin–Shtrikman geometries (spheres of all sizes of material 1 in the
volume fraction p1 coated with spherical shells of material 2 in the volume fraction p2
filling all of Rd, and vice versa), and lie on the arcs of the first order bounds [28]. While
there are at least five points on the arc C1(λ) in (2.68) that are attainable by compos-
ite microstructures [54], the arc C̃1(λ̃) in (2.68) violates [28] the interchange inequality
m(h)m(1/h)≥ 1 [49, 66], which becomes an equality in two dimensions [56]. Conse-
quently, the isotropic bounds in (2.68) are not optimal, but have been improved [53, 8]
by incorporating the interchange inequality. When σ1 and σ2 are real and positive with
σ1≤σ2, the region collapses to the interval

σ1+p2

/(

1

σ2−σ1
+

p1
dσ1

)

≤σ∗≤σ2+p1

/(

1

σ1−σ2
+

p2
dσ2

)

, (2.69)

which are the Hashin–Shtrikman bounds.

The higher moments µn, for n≥ 2, depend on the (n+1)-point correlation functions
of the medium [33] and have not be calculated in general. Although, the interchange
inequality forces relations among them [55]. If the moments µ0, . . . ,µJ are known, then
the transformation F1 in (2.67) can be iterated to produce an upper half plane function
FJ with an integral representation, involving a positive measure µJ which is supported
on the interval [0,1]. As in the case where J=1, the first J moments of the measure µ
determine only the mass µ0

J of the measure µJ [28], and the function FJ (s) can easily be
extremized by the above procedure, and similarly for a function EJ (s) associated with
the moments η0, . . . ,ηJ . The resulting bounds form a nested sequence of lens-shaped
regions [28].
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3. Numerical results

In sections 2.2.2–2.2.4 we extended the ACM for representing transport in compos-
ites to the case of two-phase random media with finite lattice composite microstructure.
This led to discrete, Stieltjes integral representations for the effective transport coeffi-
cients of such media, involving spectral measures associated with the random operators
Mi=χiΓχi and Ki=χiΥχi, i=1,2. More specifically, we demonstrated in Section 2.2.2
that, in the finite lattice setting, these random operators are represented by random ma-
trices. In Section 2.2.3, we provided a novel formulation of the ACM, which holds for
both the matrix setting and the abstract linear operator setting discussed in sections 2.1
and 2.2.1. In Section 2.2.4 we utilized this novel formulation of the ACM to prove The-
orem 2.1, which was stated in Section 2.2.2. The proof of this theorem establishes the
existence of integral representations for the effective transport coefficients in the matrix
setting, and demonstrates that the underlying spectral measures are given explicitly in
terms of the eigenvalues and eigenvectors of the random matrices.

In this section, we utilize the mathematical framework described above to com-
pute spectral measures and effective transport coefficients associated with the family of
random bond lattices introduced in Section 2.2.2. In particular, we developed in Sec-
tion 2.2.4 a numerically efficient projection method, summarized by equations (2.57)–
(2.59), to facilitate such computations. Here, we employ this projection method to
directly compute spectral measures and effective transport coefficients associated with
this family of composites, which has various isotropic and anisotropic finite lattice com-
posite microstructures.

In order to explore the relationship between the values of the effective transport
coefficients and the associated bounds discussed in Section 2.3, we will focus on the
diagonal components of the effective tensors and the underlying spectral measures, e.g.,
σ∗
kk =σ2mkk(h) and µkk for k=1, . . .,d. In this section, the values of the component con-

ductivities σ1 and σ2 are taken to be that of the brine and pure ice phase, respectively, for
a sample of sea ice measured at a frequency of 4.75GHz [4], with σ1=51.0741+ ı45.1602
and σ2=3.07+ ı0.0019, so that s≈−0.034+ ı0.032. We stress that both the values of
the effective complex conductivity σ∗

kk and resistivity ρ∗kk, as well as the associated
bounds, depend on the value of the contrast parameter s=1/(1−σ1/σ2).

We now discuss our numerical method for computing spectral measures and effective
transport coefficients in the matrix setting. Consider a two-phase random medium with
finite lattice composite microstructure, as described by the matrix χ1(ω) defined in
Equation (2.35), for ω∈Ω. From Equation (2.36), we see that the spectral measure µkk,
k=1, . . .,d, for example, is an ensemble average of spectral measures µkk(ω) associated
with the matrices M1(ω)=χ1(ω)Γχ1(ω), for ω∈Ω. In particular, for fixed ω∈Ω, the
measure µkk(ω) is a weighted sum of δ-measures centered at the eigenvalues λi(ω) of
M1(ω), i=1, . . .,N , with weights [χ1(ω)Qi(ω)êk] · êk involving the eigenvectors ~ui(ω) of
M1(ω) via Qi=~ui~u

T
i .

However, Equation (2.51) implies that the measure weights [χ1(ω)Qi(ω)êk] · êk are
identically zero for i=1, . . .,N0(ω). This was used in Equation (2.59) to show that
the measure µkk(ω) depends only on the eigenvalues λ1

i (ω), i=1, . . .,N1(ω), and eigen-
vectors ~u1

i (ω) of the principle sub-matrix Γ1(ω) of Π(ω)M1(ω)Π
T (ω), introduced in

Equation (2.48), and that the measure weights can be expressed more explicitly as
Q1

i (ω)ê
π1

k · êπ1

k with Q1
i =~u1

i [~u
1
i ]

T . Consequently, for fixed s∈C\[0,1], the value of the
effective complex conductivity σ∗

kk =σ2(1−Fkk(s)) of the medium can be obtained by
computing λ1

i (ω) and ~u1
i (ω) for all i=1, . . .,N1(ω) and each ω∈Ω. Since the compu-

tational cost of finding all the eigenvalues and eigenvectors of a N×N real-symmetric
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matrix is O(N3) [23], this “projection method” makes the numerical computation of
µkk and σ∗

kk much more efficient, especially for dilute systems where the size N1(ω) of
the matrix Γ1(ω) satisfies N1(ω)≪N for all ω∈Ω.

For a random two-component bond lattice on Zd
L with dimension d and size L,

the cardinality |Ω| of the sample space Ω of geometric configurations is given by |Ω|=
2N , where N =dLd. For large N , it becomes numerically expensive to compute the
eigenvalues and eigenvectors of the matrix Γ1(ω) for every ω∈Ω. In our numerical
computations of the spectral measure µkk, for example, we instead used a reduced
sample space Ω0⊂Ω of randomly generated configurations of Ω. For each ω∈Ω0, all of
the eigenvalues and eigenvectors of the matrix Γ1(ω) were computed using the MATLAB
function eig(). We used lattice sizes L=60 for d=2 and L=10 or L=15 for d=3 and
typically averaged over |Ω0|∼ 104 – 105 geometric configurations.

In order to visually determine the behavior of the function µkk(λ)= 〈Q(λ)êk, êk〉1
underlying the spectral measure µkk for a given random lattice, we plot a histogram
representation of µkk(λ) called the spectral function, which we will also denote by µkk(λ).
We now describe how we computed this graphical representation of the measure µkk.
First, the spectral interval [0,1] was divided into R sub-intervals Ir , r=1, . . .,R, of
equal length 1/R. Second, for fixed r, we identified all of the eigenvalues that satisfy
λ1
i (ω)∈ Ir, for i=1, . . .,N1(ω) and ω∈Ω0. The assigned value of µkk(λ) at the midpoint

λ of the interval Ir is the sum of the spectral weights Q1
i (ω)ê

π1

k · êπ1

k associated with all
such λ1

i (ω)∈ Ir, normalized by |Ω0|. In our computations of the spectral functions, we
typically used R∼ 102. As the system size increases, the eigenvalues become increasingly
dense in the spectral interval [0,1]. For a large enough fixed system or for a random
system averaged over many statistical realizations, the spectral functions µkk(λ), k=
1, . . .,d, begin to resemble smooth curves, as shown in Figure 3.1.

In Figure 3.1(a), statistical realizations of the anisotropic 2D bond lattice are dis-
played for L=60 and a volume (number) fraction p1=0.5 of type-one bonds, with
various values of pk1 , k=1,2, the volume fraction of type-one bonds in the positive kth

direction. The type-one bonds are colored black, and the largest connected cluster
of type-one bonds has been re-colored grey. The type-two bonds are not visible. In
Figure 3.1(b) and (c), we display the behavior of the spectral functions µ11(λ) and
µ22(λ), respectively, as pk1 varies. In Figure 3.1(d), the computed values of the effec-
tive complex conductivities σ∗

11 and σ∗
22 are displayed along with the first order bounds

of Equation (2.66) with s=−0.034+ ı0.032. These bounds depend only on the mass
µ0
kk =dpk1 of the measure µkk and the value of the contrast parameter s=1/(1−σ1/σ2).

Consistent with the symmetries of the model, these spectral functions and effective
complex conductivities satisfy µ11(λ)=µ22(λ) and σ∗

11=σ∗
22 for p11=p21 (to numerical

accuracy and statistical truncation).

We now consider the locally isotropic and statistically isotropic composite classes
introduced in Section 2.2.2. In Figure 3.2, we display the behavior of the spectral
functions and the effective complex conductivity and resistivity as a function of p1 for
locally isotropic random media with L=60. Statistical realizations of the composite
microstructure are displayed in Figure 3.2(a) with the same bond color scheme as that
for Figure 3.1(a). The associated spectral functions µ11(λ) displayed in Figure 3.2(b)
exhibit a rich resonance structure for small values of p1. These so called “geometric”
resonances have been attributed [46] to the recurrence of local geometric structures
called “fractal animals.” Consistent with isotropy, the behavior of the spectral function
µ22(λ) is very similar to that of µ11(λ) shown in Figure 3.2(b). The spectral functions
µkk(λ), k=1,2, were computed in [58] for the case of statistically isotropic random
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Anisotropic Random Media

Fig. 3.1. Spectral measures and effective complex conductivities for anisotropic random media.
Statistical realizations of the 2D square bond lattice for p1=0.5 and various values of pk1 , k=1,2, are
displayed in (a). The type-one bonds are colored black, while the largest connected cluster of type-one
bonds is colored grey. The corresponding spectral functions µ11(λ) and µ22(λ) are displayed in (b) and
(c), respectively. The values of the effective complex conductivities σ∗

11 and σ∗
22 are displayed in (d)

for p11=p21 along with the first-order bounds for s=−0.034+ ı0.032. The computed spectral functions
have been rescaled so that the area under the graph is the measure mass µ0

kk
=dpk1 .

media. They look very similar to µ11(λ) in Figure 3.2(b). In Section 2.2.2 we noted that,
in two dimensions, the projection matrices Γ and Υ are related by Υ=RTΓR, where
R is 90◦ rotation matrix. As a consequence, the spectral functions κkk(λ), k=1,2,
for 2D locally and statistically isotropic random media look very similar to µ11(λ)
displayed in Figure 3.2(b). In Figure 3.2(c) and (d), the values of the effective complex
conductivities σ∗

kk and resistivities ρ∗kk, k=1,2, are displayed, respectively, along with
the isotropic bounds from Equation (2.68) for s=−0.034+ ı0.032. Consistent with
isotropy, we have that σ∗

11=σ∗
22 and ρ∗11=ρ∗22 (to numerical accuracy and statistical

truncation) and σ∗
kk =1/ρ∗kk to a relative error |σ∗

kk−1/ρ∗kk|/|σ∗
kk|. 10−2.

In the infinite lattice setting, the statistically and locally isotropic composite mi-
crostructures are statistically self-dual [56] for d=2 and p1=0.5. Note that the class
of anisotropic random media for the special case of pk1 =p1/d, for all k=1, . . .,d, is also
statistically isotropic and self-dual for d=2 and p1=0.5. For such systems, the spec-
tral measures and effective transport coefficients may be explicitly calculated [56], e.g.,
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Fig. 3.2. Spectral measures and effective complex conductivities and resistivities for locally
isotropic random media. Realizations of the two-dimensional lattice model are displayed in (a). The
type-one bonds are colored black, while the largest connected cluster of type-one bonds is colored grey.
The corresponding spectral functions µ11(λ) are displayed in (b). The values of the effective complex
conductivity σ∗

kk
and resistivity ρ∗

kk
, k=1,2, are displayed in (c) and (d), respectively, along with

the corresponding isotropic bounds for s=−0.034+ ı0.032. The computed spectral functions have been
rescaled so that the area under the graph is the measure mass µ0

11 =p1.

dµkk(λ)= (
√

(1−λ)/λ )(dλ/π) and σ∗
kk =

√
σ1σ2 , k=1, . . .,d. In particular, the spectral

measure µkk is absolutely continuous with respect to the Lebesgue measure [27], with
density µkk(λ)= (

√

(1−λ)/λ )/π.

These theoretical predictions, holding for infinite systems, are displayed in Fig-
ure 3.3 along with our computations of spectral functions and effective transport co-
efficients for a finite system size L=60. Statistical realizations of the finite lattice
microstructures are displayed in Figure 3.3(a), with the same bond color scheme as
that for Figure 3.1(a). It is remarkable that even for the finite system size L=60, the
computed spectral functions displayed in Figure 3.3(b) agree quite well with the the-
oretical duality prediction, which holds for infinite lattices. The anomalous difference
between the theory and the numerical computation, seen in Figure 3.3(b) for locally
isotropic random media, becomes less prominent as L increases and is virtually absent
for L=100. In Figure 3.3(c), the computed values of the effective transport coefficients
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Fig. 3.3. Statistically self-dual random media. Realizations of various 2D lattice models are dis-
played in (a). The type-one bonds are colored black, while the largest connected cluster of type-one
bonds is colored grey. The corresponding spectral function µ11(λ) or κ11(λ) is displayed in (b). The
values of the effective complex conductivity σ∗

11 or resistivity ρ∗11, for s=−0.034+ ı0.032, are displayed
in (c). Also displayed in (b) is the theoretical prediction for infinite, self-dual composite microstruc-
tures. The theoretical prediction for the value of the effective complex conductivity or resistivity, as
well as the first-order and isotropic bounds, are also displayed in (c). The computed spectral functions
have been rescaled so that the area under the graph is the measure mass µ0

11 =p1.

are displayed along with the duality prediction and the first-order and isotropic bounds
from equations (2.66) and (2.68), respectively, with s=−0.034+ ı0.032. The computed
values of the effective transport coefficients are in excellent agreement with that of the
duality prediction, which holds for infinite systems. The deviation in the computed
values of the effective parameters, relative to the duality prediction, is typically . 10−2

for L=60 and decreases with increasing L.

The integral representation displayed in Equation (2.36) is also valid for the effective
transport coefficients of two-phase random media with three-dimensional, finite lattice
composite microstructure. We now discuss our computations of spectral measures and
effective transport coefficients for such random media. Typical of numerical simulations
associated with three-dimensional systems, there are fundamental numerical challenges
that arise when extending our spectral measure computations to 3D composite mi-
crostructures. These challenges are consequences of the size N =dLd of the matrices
M1=χ1Γχ1 and K1=χ1Υχ1, which rapidly increases with system size L when d=3.

One challenge is the numerical cost of computing all of the eigenvalues and eigenvec-
tors of a N×N real-symmetric matrix, which is O(N3) [23]. However, for the statisti-
cally self-dual composite microstructures discussed above, the deviation in the computed
values of the effective parameters for L=15, relative to the theoretical duality predic-
tion for the infinite lattice, is typically . 10−1. This indicates that the computations of
the effective transport coefficients are reasonably accurate even for small system sizes
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L. Moreover, for random media with geometric configurations that are statistically in-
dependent of each other, the numerical computations of the associated eigenvalues and
eigenvectors can be performed in parallel.

Another challenge associated with a large matrix size N , is the numerical accuracy
of the computations. We computed the matrices Γ=∇(∆−1)∇T and Υ=C(CTC)−1CT

using the MATLAB mldivide function A\B, i.e., Γ=∇(∆\∇T ) and Υ=C[(CTC)\CT ].
Since ∇ and C are sparse matrices with integer elements, the matrices Γ and Υ were
efficiently computed using MATLAB’s sparse architecture, which also reduces roundoff
error in the computations. The numerical accuracy of these “matrix inversions” depends
on the matrix condition number K(A), for A=∆, CTC. The matrix A is said to be
well-conditioned when K(A) is small and ill-conditioned when K(A) is large. One must
always expect to “lose log10K(A) digits” of accuracy in computing the solution, except
under very special circumstances [74]. The numerical accuracy of the eigenvalue problem
for the matricesM1=χ1Γχ1 andK1=χ1Υχ1 is determined by the associated eigenvalue
condition numbers, which are the reciprocals of the cosines of the angles between the
left and right eigenvectors. Large eigenvalue condition numbers of a symmetric matrix
A imply that it is near a matrix with multiple eigenvalues, while eigenvalue condition
numbers ≈ 1 imply that the eigenvalue problem is well-conditioned.

We now discuss the condition numbers of the matrices ∆ and CTC for the sys-
tem sizes considered in our computations. Recall for d=2 that CTC=∆. In this 2D
case, K(∆)∼ 103 for L=60 and L=100. In the 3D case CTC 6=∆, and K(∆)∼ 101

for L=10 and ∼ 102 for L=15, while K(CTC)∼ 106 for L=10 and ∼ 107 for L=15.
These condition numbers were estimated using the MATLAB function condest(). The
eigenvalue condition numbers for the matrices M1=χ1Γχ1 and K1=χ1Υχ1 were com-
puted using the MATLAB function condeig(). They are all ≈ 1 for the system sizes
considered, indicating that the associated eigenvalue problems are well-conditioned. In
summary, within the double precision architecture of MATLAB with a machine epsilon
ǫ∼ 10−16, for the system sizes L considered, the spectral measure computations associ-
ated with the matrices M1 and K1 are well-conditioned for d=2. The spectral measure
computations associated with the matrix M1 are also well-conditioned for d=3, while
those of the matrix K1 are relatively ill-conditioned for d=3. The problem of finding
an appropriate preconditioner for the matrix CTC in the 3D case is a topic of current
work.

Displayed in Figure 3.4 are computations of spectral functions and effective com-
plex conductivities for three-dimensional locally isotropic random media with L=15.
Like its 2D counterpart, the spectral function µ11(λ) displayed in Figure 3.4(a) has a
rich resonant structure for small values of p1. Consistent with isotropy, the behavior
of the spectral functions µkk(λ) for k=2,3 are very similar to that of µ11(λ) shown
in Figure 3.4(a). The spectral functions µkk(λ), k=1,2,3, were computed in [58] for
the case of statistically isotropic random media. They look very similar to µ11(λ)
in Figure 3.4(a). In Figure 3.4(b), the values of the effective complex conductivities
σ∗
kk, k=1,2,3, are displayed along with the isotropic bounds from Equation (2.68) for

s=−0.034+ ı0.032. Consistent with isotropy, σ∗
jj =σ∗

kk for all j,k=1,2,3 (to numerical
accuracy and statistical truncation).

Displayed in Figure 3.5 are computations of the spectral function κ11(λ) associated
with the effective complex resistivity ρ∗11 for 3D locally isotropic random media with
various values of p1. In order to increase the numerical stability of the computation, we
reduced the system size from L=15 to L=10. The limited numerical accuracy in the
computation of Υ=C(CTC)−1CT , which is then propagated to the eigenvalue problem



N.B. MURPHY, E. CHERKAEV, C. HOHENEGGER, AND K.M. GOLDEN 853

 

   

 

 

 

  

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

a)

1.2

1.6

0.8

0.4

0
3.6 4 4.4 4.8 5 7 9 11

0

2

4

6

8

10 14 18 22
0

4

8

12

16

20

20 24 28 32
5

15

25

35

36

b)

 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0

Three Dimensional Locally Isotropic Random Media

0 0.2 0.4 0.6 0.8 1

0.1

0.2

 

Fig. 3.4. Spectral measures and effective conductivities for 3D locally isotropic random media.
The spectral function µ11(λ) is displayed in (a) for various volume fractions p1 of type-one bonds.
Computed values of the effective complex conductivity σ∗

kk
, k=1, . . .,d, are displayed in (b) along with

the isotropic bounds for s=−0.034+ ı0.032. The spectral functions have been rescaled so that the area
under the graph is the measure mass µ0

11 =p1.

for K1=χ1Υχ1, seems to have a smoothing effect, and there are no prominent reso-
nances in the spectral functions for small values of p1. A smoothing effect is typical
for regularization of ill-posed inverse problems for the reconstruction of spectral mea-
sures [13]. Consistent with isotropy, κ11(λ)≈κ33(λ) and ρ∗11≈ρ∗33. Although, due to
the limited accuracy of the computations, the behavior of κ22(λ) and the value of ρ∗22
is significantly different from that of the other two components.

We now discuss the gap behavior of the spectral measures [58, 46] and the govern-
ing role that it plays in critical transitions exhibited by the integral representations for
the effective transport coefficients [58, 30]. In the infinite lattice setting, the isotropic
composite microstructures discussed in this section are examples of lattice percolation
models [70, 73], which are parameterized by the volume fraction p1=1−p2 of the con-
stituents. In these lattice percolation models, the bonds are open with probability p2,
say, and closed with probability p1. Connected sets of open bonds are called open
clusters. The average cluster size grows as p2 increases, and there is a critical proba-
bility pc , 0<pc< 1, called the percolation threshold, where an infinite cluster of open
bonds first appears. For the two-dimensional lattice percolation model, pc=0.5, and in
three-dimensions pc≈ 0.2488 [70, 73].

Now consider transport through the associated RRN, where the bonds are assigned
electrical conductivities σ1 with probability p1 and σ2 with probability p2. The ef-
fective conductivity σ∗(p1,h), for example, exhibits two types of critical behavior as
h=σ1/σ2→0. First, when σ1=0 and 0< |σ2|<∞, σ∗(p1,0)=0 for p1> 1−pc while
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Fig. 3.5. Spectral measures for 3D locally isotropic random media. The spectral function κ11(λ)
is displayed for various volume fractions p1 of type-one bonds. They have been rescaled so that the
area under the graph is the measure mass κ0

11 =p1.
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Fig. 3.6. Behavior of effective complex conductivities and measure endpoint masses. The values
of the effective complex conductivity σ∗

kk
, for k=1, . . .,d and s=−0.034+ ı0.032, and the mass of the

spectral measure µkk at λ=0 are displayed as a function of volume fraction p1 for 2D (a) and 3D (b)
locally isotropic random resistor network.

|σ∗|> 0 for p1< 1−pc . Second, when |σ2|→∞ and 0< |σ1|<∞, |σ∗(p1,0)|→∞ as
p1→1−p+c . Since s=1/(1−h) and t=1−s, we see from Equation (2.12) that the as-
sociated critical behavior of the integral representations for mkk(p1,h)=σ∗(p1,h)/σ2

and wkk(p2,z)=σ∗(p2,z)/σ1 depends, in turn, on the behavior of the spectral measures
µkk(p1) and αkk(p2) at the spectral endpoints λ=0,1.

Consider the behavior of the spectral measure µ11 at the spectral endpoints λ=0,1
for the 2D lattice percolation model. In figures 3.2(b) and 3.3(b) we see that, as p1
increases from zero and the system becomes increasingly connected, gaps in the spectral
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Fig. 3.7. Spectral measure symmetries. Transformations of the computed spectral functions for
2D (a) and 3D (b) random resistor networks, for various values of the volume fraction p1. The spectral
functions have been rescaled so that the area under the graph is the measure mass.

function µ11(λ) at the spectral endpoints λ=0,1 shrink and then vanish symmetrically
at a value of p1=pc=0.5. The graphs of these spectral functions indicate that the
vanishing of the spectral gaps leads to a buildup in the mass of the measure at λ=0,
while the mass of the measure is approximately zero for λ=1, i.e., µ11(1)≈ 0. Moreover,
as p1 increases beyond the percolation threshold pc, the mass of the measure at λ=1
remains approximately zero, while the buildup of the measure mass at λ=0 persists
and grows.

Now consider the behavior of the spectral measures µ11 and κ11 at the spectral
endpoints λ=0,1 for the 3D lattice percolation model. In Figure 3.4(a), we see as p1
increases from zero and approaches the percolation threshold pc≈ 0.2488, a spectral
gap about λ=0 shrinks and then vanishes, leading to a buildup in the mass of the
measure µ11 at λ=0 for p1=pc. As p1 increases beyond pc, the mass of µ11 at λ=0
continues to grow, while a spectral gap at λ=1 shrinks and then vanishes for p1=
1−pc≈ 0.7512, with µ11(1)≈ 0. The spectral function κ11(λ) displayed in Figure 3.5
has an analogous transitional behavior. In particular, as p1 increases from zero and
approaches the percolation threshold pc≈ 0.2488, a spectral gap about λ=1 shrinks and
then vanishes, with µ11(1)≈ 0. As p1 increases beyond pc and approaches 1−pc≈ 0.7512,
a spectral gap about λ=0 shrinks and vanishes, leading to a buildup in the mass of
the measure κ11 at λ=0. Since t=1−s, it is consistent that the roles of the spectral
endpoints for κ11 have switched from that of µ11.

For finite lattice systems, the existence of gaps in the spectrum of µ11 about λ=0,1
for p1≪1, as well as their collapse as p1→1, is a direct consequence [58] of the projective
nature of the matrices χ1 and Γ. However, it has been argued for infinite lattice
percolation models that the spectrum of µ11 extends all the way to the spectral endpoints
λ=0,1, with exponentially decaying Lifshitz tails for all 0<p1≪1. The detailed nature
of the Lifshitz tails was numerically verified in [46] for the finite, 2D lattice percolation
model for p1=0.05, 0.1, 0.15, and 0.2, demonstrating that this behavior of µ11 is present
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even in the finite lattice setting. The presence of these Lifshitz tails in µ11 explains the
presence of measure masses near λ=0 for p1<pc in figures 3.2 and 3.4, shown as vertical
lines in the spectral function µ11(λ) near λ=0.

Displayed in Figure 3.6 is the behavior of the effective complex conductivity σ∗
kk

and the mass of the measure µkk concentrated at λ=0, for k=1, . . .,d, as a function of
volume fraction p1 for the 2D (a) and 3D (b) locally isotropic lattice percolation models
discussed in figures 3.2–3.4. It can be seen in Figure 3.6 that a very small fraction of the
measure mass is concentrated at λ=0 for p1<pc, where pc=0.5 for 2D and pc≈ 0.2488
for 3D. However, as p1 surpasses pc, a significant amount of the measure mass becomes
concentrated at the spectral endpoint λ=0. This δ-function behavior in the measure
leads to large changes in the value of effective complex conductivity σ∗

kk as the volume
fraction p1 surpasses pc. The computed mass of µkk concentrated at λ=1 is . 10−30

for all values of p1 considered, both in the 2D and 3D cases.

The gap behavior of the spectral measures discussed above is consistent with Equa-
tion (2.14), which holds for general stationary random media in the infinite setting [58]
and consequently holds for percolation models of such media. This equation charac-
terizes the percolation transition with the formation of delta components in the spec-
tral measures at the spectral endpoints λ=0,1, precisely at p1=pc and p1=1−pc.
More specifically, the weights mkk(0) and wkk(0), k=1, . . .,d, of the delta compo-
nents at λ=1 and λ=0 in (2.14) have the following behavior. When σ1=0 (h=0),
the function mkk(0)=mkk(p1,0) increases from zero as p1 surpasses 1−pc. Similarly,
when σ2=0 (z=0), the function wkk(0)=wkk(p2,0) increases from zero as p1 surpasses
pc. This demonstrates that global connectedness of the system is encoded in the ab-
sence/presence of these delta components in the measure. For insulator/conductor or
conductor/superconductor systems, this behavior in the spectral endpoints of the mea-
sures leads to critical behavior in the effective conductivity [58, 30].

Equation (2.14), which holds for infinite systems, also provides a relationship be-
tween the measures µkk(p1) and αkk(p2), and the measures κkk(p1) and ηkk(p2). In
Figure 3.7 we demonstrate that this relationship between the spectral measures persists
in the finite lattice setting. Displayed in Figure 3.7(a) are graphs of transformations
of the spectral function κ22(λ) for the 2D lattice percolation model. In particular, the
graph of the function (1−λ)κ22(1−λ) is displayed for volume fractions p1=0.1, 0.3,
and 0.5, along with λκ22(λ) for volume fractions 1−p1=0.9, 0.7, and 0.5. Similarly,
in Figure 3.7(b) the graphs of (1−λ)µ33(1−λ) and λµ33(λ) are displayed for the 3D
lattice percolation model with various values of p1 and 1−p1, respectively. The graphs
of the transformed spectral functions are virtually identical except for a “δ-function” at
λ=0, in excellent agreement with (2.14). We conclude this section by noting that, de-
spite the lack of numerical accuracy in our computations of the spectral function κkk(λ)
for 3D finite lattice composite microstructures, the functions (1−λ)κkk(p1,1−λ) and
λκkk(p2,λ) are also virtually identical, other than a singularity at λ=0.

4. Conclusion

In sections 2.1 and 2.2.1, we reviewed and extended the ACM for representing
transport in two-phase random media, for the infinite continuum and lattice settings,
respectively. This method provides the Stieltjes integral representations displayed in
Equation (2.12) for the effective transport coefficients of such composite media, which
involve spectral measures associated with the self-adjoint random operators Mi=χiΓχi

and Ki=χiΥχi. Here, χi is the characteristic function for material phase i=1,2, and
the operators Γ= ~∇(∆−1)~∇· and Υ=−~∇×(∆−1)~∇× act as projectors onto curl-free
and divergence-free fields, respectively.
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In Section 2.2.2, we developed the ACM for representing transport in two-phase
random media with finite lattice composite microstructure, yielding discrete Stieltjes
integral representations for the effective transport coefficients of such media, displayed
in Equation (2.36) of Theorem 2.1, which is a key theoretical contribution of this work.
We accomplished this by developing a unified formulation of the ACM in Section 2.2.3
that is equivalent to the original formulation [33], and holds for both the finite lattice
setting and the infinite, continuum and lattice settings. We also provided a projec-
tion method for numerically efficient, rigorous computation of spectral measures and
effective parameters for composite media with finite lattice composite microstructure.
This projection method is summarized by equations (2.57)–(2.59). In this finite lattice
case, the operators χi, Γ, and Υ are represented by real-symmetric projection matrices,
and the spectral measures of the associated real-symmetric random matrices Mi and
Ki are given explicitly in terms of their eigenvalues and eigenvectors, as displayed in
Equation (2.36).

In Section 2.2.2, following the statement of Theorem 2.1, we introduced three fami-
lies of locally isotropic, statistically isotropic, and anisotropic random media with finite
lattice composite microstructure. In Section 3, we employed the projection method to
compute the spectral measures and effective parameters associated with these families
of random media. To our knowledge, this is the first time that the spectral measures ηkk
and κkk underlying the effective complex resistivity ρ∗kk have been computed for such
composite microstructures. These computations not only demonstrate several impor-
tant properties of the spectral measures and effective parameters, but they also serve
as a consistency check to the theory developed here.

The computed spectral functions and effective complex parameters for anisotropic
random media displayed in Figure 3.1 are consistent with the symmetries of the model.
Consistent with general theory [56], our computations of the effective parameters for
isotropic random media satisfy σ∗

kk =1/ρ∗kk, k=1, . . .,d (to numerical accuracy and sta-
tistical truncation). Moreover, the computed spectral functions and effective parameters
are consistent with isotropy and satisfy µjj(λ)=µkk(λ) and σ∗

jj =σ∗
kk, for example, for

all j,k=1, . . .,d (to numerical accuracy, finite size effects, and statistical truncation).
Figure 3.3 demonstrates that the projection method accurately computes the spectral
measures and effective parameters for statistically self-dual composite microstructures.
Furthermore, Figure 3.7 shows that the computed spectral measures are in excellent
agreement with Equation (2.14), which holds for general stationary two-phase random
media [58].

The self-consistent mathematical framework developed here helps lay the ground-
work for studies in the effective transport properties of a broad range of important com-
posites, such as electrorheological fluids [57], multiscale sea ice structures, and bone [32].
Remarkably, the ACM has also been adapted to provide Stieltjes integral representa-
tions for effective transport coefficients underlying a wide variety of transport processes,
such as: the effective diffusivity for steady [50, 2] and time-dependent [3] fluid veloc-
ity fields, the effective complex permittivity for uniaxial polycrystalline media [5, 37],
and the effective elastic moduli of two-phase elastic composites [60, 61]. The Golden-
Papanicolaou formulation of the ACM has been pivotal in the development of these
mathematical frameworks, and in the understanding of these important transport pro-
cesses.

Appendix A. The spectral theorem. In equations (2.12) and (2.36) of sec-
tions 2.1 and 2.2.2, we display integral representations for the functions Fjk(s), Gjk(t),
Ejk(s), and Hjk(t), j,k=1, . . .,d, involving spectral measures µjk, αjk, ηjk, and κjk, re-
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spectively, which are associated with the self-adjoint random operators Mi=χiΓχi and
Ki=χiΥχi, i=1,2. In this section, we discuss the spectral theorem as it pertains to
the ACM, which provides the existence of these Stieltjes integral representations. The
abstract, bounded linear self-adjoint operator case [63, 72] associated with the infinite,
continuum and lattice settings is discussed in Section A.1, while the real-symmetric
matrix case [38, 69] associated with the finite lattice setting is discussed in Section A.2.
Since the formulations associated with each of the operatorsMi=χiΓχi andKi=χiΥχi,
i=1,2, are analogous, we will focus on that for the operator M1=χ1Γχ1. Also, in Sec-
tion 2.2.3 we provided a novel formulation of the ACM involving the operatorM1, which
is equivalent to the original formulation [33] involving the operator Γχ1, and holds for
both the finite lattice setting and the infinite. Due to this unification, we will focus on
the formulation of the ACM associated with the operator M1.

A.1. Infinite continuum and lattice settings. In this section, we review
the spectral theorem as it pertains to the ACM for the infinite, continuous and lattice
settings. Consider the Hilbert space H× defined in Equation (2.2). Now, define the
Hilbert space H0=H×∪Cd by

H0=
{

~Y ∈H | ~∇× ~Y =0 weakly
}

, (A.1)

where ~∇× ~Y =0 means that LiYj−LjYi=0 for all i,j=1, . . .,d. In other words, H0 is
the Hilbert space H× with the constant fields C

d included. Equip H0 with the H -
inner-product weighted by the characteristic function χ1, which we denote by 〈·, ·〉1. In
the infinite, continuum and lattice settings, the characteristic function acts pointwise
on the underlying vector space, Rd or Zd, and it is therefore a self-adjoint operator on
H0. Clearly, it is also a linear projection operator satisfying 〈χ1

~ξ,~ζ 〉= 〈χ2
1
~ξ,~ζ 〉 for all

~ξ,~ζ ∈H0, and is therefore bounded on H0 with operator norm ‖χ1‖≤ 1.

On L2(Ω,P ), the linear operator ∆−1 is self-adjoint [69]. For all ~ξ∈H0 we have
~∇·~ξ∈L2(Ω,P ), and for all ζ ∈L2(Ω,P ) we have ‖~∇∆−1ζ‖<∞, where ‖·‖ denotes
the norm induced by the H -inner-product. It follows that the linear operator Γ=
~∇(∆−1)~∇· is bounded on H0. Integration by parts then establishes that Γ is self-adjoint

on H0 [33]. It is also clear that Γ is a projection operator satisfying 〈Γ~ξ,~ζ 〉= 〈Γ2~ξ,~ζ 〉
for all ~ξ,~ζ ∈H0, with operator norm ‖Γ‖≤ 1.

It follows that M1=χ1Γχ1 is a bounded linear self-adjoint operator on the Hilbert
space H0, with operator norm ‖M1‖≤ 1 [63, 72]. The spectrum Σ of the self-adjoint op-
erator M1 is real-valued and the spectral radius of M1 is equal to its operator norm [63],
which implies that Σ⊆ [−1,1]. However, since χ1 and Γ are self-adjoint projection op-

erators on H0, we have 〈χ1Γχ1
~ξ,~ξ 〉= 〈Γχ1

~ξ,Γχ1
~ξ 〉= ‖Γχ1

~ξ‖2≥ 0 for all ~ξ∈H0. This
implies that M1 is also a positive operator, which implies that its spectrum satisfies
Σ⊆ [0,∞) [72]. Consequently, the spectrum Σ of M1 satisfies Σ⊆ [0,1].

Since Σ⊆ [0,1], the spectral theorem for bounded linear self-adjoint operators in
Hilbert space [72] states that there is a one-to-one correspondence between the operator
M1 and a family of self-adjoint projection operators {Q(λ)}λ∈[0,1] — the resolution of
the identity — that satisfies limλ→0Q(λ)=0 and limλ→1Q(λ)= I, where 0 and I are

the null and identity operators on H0. Furthermore, for all ~ξ,~ζ ∈H0, the function
of λ defined by µξζ(λ)= 〈Q(λ)~ξ,~ζ 〉1 is strictly increasing and of bounded variation,
and therefore has a Stieltjes measure µξζ associated with it [71, 72, 27]. The spectral
theorem also states [72], for all complex valued functions f,g∈L2(µξζ), there exists
linear operators denoted by f(M1) and g(M1) which are defined in terms of the bilinear
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functional 〈f(M1)~ξ, g(M1)~ζ 〉1= 〈f(M1)χ1
~ξ ·g(M1)~ζ 〉. In particular, this functional has

the following integral representation involving the Stieltjes measure µξζ :

〈f(M1)~ξ, g(M1)~ζ 〉1=
∫ 1

0

f(λ) ḡ(λ)dµξζ(λ), µξζ(λ)= 〈Q(λ)~ξ,~ζ 〉1, (A.2)

where the integration is over the spectrum Σ of M1 [63, 72] and we have taken the dot-

product ~ξ ·~ζ on Cd to be complex conjugated in the second argument with ḡ denoting the
complex conjugate. Setting f(λ)= (s−λ)−1 for s∈C\[0,1], g(λ)≡ 1, ~ξ=~ej, and ~ζ=~ek
in Equation (A.2), yields the integral formula for Fjk(s) displayed in Equation (2.44),
which is equivalent to that displayed in (2.12). It is now clear why the Hilbert space
H× was extended to H0 in our formulation of the spectral theorem for the ACM: the
appearance of the constant fields ~ej , j=1, . . .,d, in Equation (2.44).

A.2. Finite lattice setting. In this section, we review the spectral theorem as
it pertains to the ACM for the finite lattice setting discussed in Section 2.2.2. In this
case, the operator M1=χ1Γχ1 is represented by a real-symmetric random matrix and
the spectral theorem for such matrices provides a discrete version of the integral repre-
sentation displayed in Equation (A.2). This formulation leads to the discrete integral
representation of the function Fjk(s) displayed in equations (2.36) and (2.44).

Recall that we defined in Section 2.2.2 a bijective mapping Θ :Zd
L→NL from the

finite d-dimensional bond lattice Zd
L of size L onto the one-dimensional set NL of size

N =dLd. Moreover, we showed that under the mapping Θ, the random operator M1=
χ1Γχ1 can be represented by a random matrix of size N×N [32, 58]. More specifically,
Γ is a non-random, real-symmetric projection matrix satisfying Γ2=Γ. Consequently,
‖Γ‖≤ 1, where ‖·‖ denotes the matrix norm induced by the dot-product on CN [23].
In this finite lattice setting, the characteristic function χ1 is represented by a random,
diagonal projection matrix satisfying χ2

1=χ1, with zeros and ones along its diagonal.
Consequently, the matrix χ1 is real-symmetric and satisfies ‖χ1‖≤ 1.

It follows that M1 is a real-symmetric composition of projection matrices with
‖M1‖≤ 1 [23]. It is also a positive definite matrix, since for every ~ξ∈CN we have that

χ1Γχ1
~ξ ·~ξ=(Γχ1

~ξ ) ·(Γχ1
~ξ )≥ 0. This, in turn, implies that the spectrum Σ of M1 is

comprised of real eigenvalues λi, i=1, . . .,N , and that Σ⊆ [0,∞) [44]. Furthermore, the
largest eigenvalue of the matrix M1 is equal to ‖M1‖ [23]. It follows that Σ⊆ [0,1].

It is well known [44, 48] that the eigenvectors ~ui, i=1, . . .,N , of the real-symmetric

matrix M1 form an orthonormal basis for RN , i.e., ~uT
ℓ ~um= δℓm and for every ~ξ∈RN we

have ~ξ=
∑N

i=1(~u
T
i
~ξ )~ui=

(

∑N
i=1~ui~u

T
i

)

~ξ . Consequently,

N
∑

i=1

Qi= I, Qi=~ui~u
T
i , QℓQm=Qℓδℓm, (A.3)

where I is the identity matrix on RN . Here, we have defined Qi, i=1, . . .,N , to be the
mutually orthogonal projection matrices onto the eigenspaces spanned by the ~ui.

Since M1~ui=λi~ui, the identity Qi=~ui~u
T
i implies that we also have M1Qi=λiQi.

This and Equation (A.3) then imply that the matrix M1 has the spectral decompo-

sition M1=
∑N

i=1λiQi. By the mutual orthogonality of the projection matrices Qi

and by induction, we have that Mn
1 =

∑N
i=1λ

n
i Qi for all n∈N. This, in turn, implies

that f(M1)=
∑N

i=1f(λi)Qi for any polynomial f :R 7→C. In between equations (2.52)
and (2.53) we argued that χ1Qi=Qiχ1=χ1Qiχ1, as χ1Qi=0 for i=1, . . .,N0 and
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χ1Qi=Qi otherwise. It now follows from Equation (A.3) that, for all ~ξ,~ζ ∈CN and

complex valued polynomials f(λ) and g(λ), the bilinear functional 〈f(M1)~ξ, g(M1)~ζ 〉1=
〈f(M1)χ1

~ξ · g(M1)~ζ 〉 has the following integral representation

〈f(M1)~ξ, g(M1)~ζ 〉1=
∫ 1

0

f(λ)ḡ(λ)dµξζ(λ), dµξζ(λ)=

N
∑

i=1

〈δλi
(dλ)Qi

~ξ ·~ζ 〉1. (A.4)

The proof of Theorem 2.1 given in Section 2.2.4 demonstrates that Equation (A.4)
also holds for the functions f(λ)= (s−λ)−1 and g(λ)≡ 1 when s∈C\[0,1]. In this ma-
trix setting, the projection valued operator Q(λ) associated with the strictly increasing

function µξζ(λ)= 〈Q(λ)~ξ ·~ζ 〉1 discussed in Section A.1 can be written explicitly as

Q(λ)=
∑

i:λi<λ

θ(λ−λi)Qi. (A.5)

Here, θ(λ) is the Heaviside function which takes the value θ(λ)=0 for λ< 0 and θ(λ)=1
for λ> 0.
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