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S U M M A R Y
Following the creation described in Part I of a deformable edge finite-element simulator for
3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm
named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers
parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for
the Gauss–Newton model update. By exploiting the data-space approach, the computational
cost of the model update becomes much less in both time and computer memory than the cost of
the forward simulation. In order to regularize using the second norm of the gradient, we factor
the matrix related to the regularization term and apply its inverse to the Jacobian, which is done
using the MKL PARDISO library. For dense matrix multiplication and factorization related
to the model update, we use the PLASMA library which shows very good scalability across
processor cores. A synthetic test inversion using a simple hill model shows that including
topography can be important; in this case depression of the electric field by the hill can cause
false conductors at depth or mask the presence of resistive structure. With a simple model of two
buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more
accurate locations for the tomographic images compared to weightings which were a function
of parameter Jacobians. We implement joint inversion for static distortion matrices tested using
the Dublin secret model 2, for which we are able to reduce nRMS to ∼1.1 while avoiding
oscillatory convergence. Finally we test the code on field data by inverting full impedance
and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain.
Among several prominent structures, the north–south trending, eruption-controlling shear
zone is clearly imaged in the inversion.

Key words: Numerical solutions; Inverse theory; Electrical properties; Magnetotellurics;
Volcanic arc processes; Explosive volcanism.

1 I N T RO D U C T I O N

In Part I (Kordy et al. 2015), we have shown that moderately large
3-D magnetotelluric (MT) models including topography can be
simulated accurately in practical run-times using a direct solver on
a single-box, server-class multicore workstation with large RAM.
The deformable mesh approach allows us to avoid expending many
rows of cells to define just the topography as is done typically with
finite differences, and which even then may not escape local electric
field distortion (e.g. Liu et al. 2009; Stark et al. 2013). The MKL
PARDISO library is effective on this platform, showing an overall

scalability of 15 on 24 cores. For a mesh with 176 cells in x-direction,
176 cells in y-direction and 70 cells in z-direction (176x 176y 70z),
2000 source vectors (corresponding to 400 MT sites) could be
solved in 2.5 times the time required for factorization, with total
time for both under 2.5 hr. Meshes comparable to that could simulate
site arrays of similar size to the Earthscope MT Transportable Array
of the U.S. Pacific Northwest using this parallelized direct solver
(Meqbel et al. 2014).

Here in Part II, we also use direct solvers exclusively to create
a 3-D regularized inversion algorithm for MT data including to-
pography, which we name HexMT. Due to its good convergence
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properties, we pursue a Gauss–Newton formulation for the non-
linear, iterative parameter update, as have others (deGroot-Hedlin
& Constable 1990; Key & Constable 2011; Grayver et al. 2013;
Oldenburg et al. 2013). The number of parameters usually is
significantly greater than the number of data for tomographic-style,
regularized inversion. As noted by Siripunvaraporn et al. (2005a),
inverse formulations using fewer parameters than data may suffer
from a dependence of solution upon parametrization. One may also
expect some lack of fit to data to occur if parameters are not defined
optimally. On the other hand, tomographic inversions for MT data
sets of a few hundred sites may require a number of parameters
of order one million (e.g. Meqbel et al. 2014). Direct factorization
of the reduced Hessian matrix in the traditional model-space defi-
nition (e.g. deGroot-Hedlin & Constable 1990; Sasaki 2001; Usui
2015), even using parallelization across multicore (Maris & Wan-
namaker 2010), is not practical for that scale of parametrization.
As a result, researchers have tended to retain iterative solvers for
the model update whether cast as Gauss–Newton or otherwise (e.g.
Commer & Newman 2008; Zhdanov et al. 2011; Grayver et al.
2013; Schwarzbach & Haber 2013).

An alternative is to investigate the data-space formulation for
solving the Gauss–Newton model update (Parker 1994; Siripun-
varaporn & Egbert 2000; Siripunvaraporn et al. 2005a). This ap-
proach reduces the size of the matrix that needs to be inverted from
Nm × Nm to Nd × Nd (m = model parameters, d = data), while the
solutions in theory are identical. Consider an MT survey of 400 sites
with 20 frequencies (four per decade say) and 12 data per frequency
(four complex impedance and two complex tipper elements). The
total data set size would be 96 000. As we show, this turns out to
be a very manageable size of matrix to invert using direct solvers,
particularly as parallelized across multicore symmetric multipro-
cessor (SMP) computers. Matrices twice this size in fact are not
impractical, allowing data sets of more sites, greater bandwidth, or
finer frequency sampling, with a fairly arbitrary number of model
parameters.

This paper sets out with a brief overview of both model- and
data-space approaches to solving the Gauss–Newton model update.
Attention is paid to the mechanics of solving stably the normal sys-
tem equation for a model gradient regularization functional. Run-
time and scalability of the model update solver is investigated for
multicore using different sized trial models. At this point it appears
that model update solution time will remain significantly smaller
than forward simulation run-time across all models with moder-
ately fine parameter discretization. The inversion code is tested on
several models. These include a simple conductive brick below a
hill to show the strength of effect that topography can have on in-
version models assuming a flat surface. Subsequently we examine a
multiprism test model used as a community standard (Miensopust
et al. 2013) and experiment with various regularization weighting
schemes. Finally, we invert an extensive MT data set acquired over
the volcano Mount St Helens (Hill et al. 2009) to show performance
for a model where parameter number approaches one million.

2 F O RWA R D P RO B L E M

The forward problem is described in detail by Kordy et al. (2015),
touched on briefly here to define terms. We consider the MT prob-
lem in a domain � that includes the air and earth’s subsurface. The
Earth’s surface is allowed to have topography. In order to calcu-
late the MT response due to an arbitrary 3-D conductivity structure
σ = σ (x, y, z) we consider a hexahedral edge finite-element dis-

cretization of the equation for the secondary electric field E:∫
�

1

μ
∇×E · ∇ × M + iω

∫
�

σ̂ E · M =
∫

�

−iω(σ̂ − σ̂ p)E p · M

(1)

for E, M ∈ H0(∇×,�), where ω is angular frequency, ε > 0 is
dielectric permittivity, μ is magnetic permeability, σ̂ = σ + iωε

and σ̂ p = σp + iωε. Ep is the primary electric field, which is that
of an arbitrarily 1-D earth of conductivity structure σ p. We assume
that σ ≈ σ p close to the domain boundaries. The solution space is
defined below:

H0(∇×,�) =
{

M :� → C
3 :

∫
�

(|M |2 + |∇ × M |2) < ∞,

n × M |∂� = 0

}
. (2)

The approximate solution to eq. (1) is obtained using edge elements.
Secondary magnetic field H is calculated as

H = −∇ × E

iωμ
. (3)

The total field Et, Ht is a sum of secondary and primary fields:

Et = E + E p, H t = H + H p. (4)

The MT response is obtained by finding Z, K such that⎡
⎢⎣

Et
x

Et
y

H t
z

⎤
⎥⎦ =

⎡
⎢⎣

Zxx Zxy

Z yz Z yy

Kzx Kzy

⎤
⎥⎦

[
H t

x

H t
y

]
(5)

is satisfied no matter what is the polarization of the primary
(Ep, Hp) plane wave.

3 G AU S S - N E W T O N I N V E R S I O N
P RO C E D U R E

For defining inversion terminology, we consider again fig. 1 of Part I
(Kordy et al. 2015) where layers of hexahedral elements are de-
formed vertically to represent topography. This was efficient for the
forward problem, but also will be for inversion. Although elements
below the earth surface could be grouped to form a parameter, for
maximal flexibility we usually consider each element as being a
possible parameter linked through regularization in a tomographic
inversion.

3.1 Description of the method

As is usual, the portion of the model domain � below the air–earth
interface is split into Nm model parameters, which are disjoint re-
gions with constant resistivity. Let m = (m1, . . . , mNm ) be the vector
of parameter log10 resistivity values. We work with log10 resistivity
as this ensures that resistivity remains positive during inversion and
makes the square norms of the reduced Hessian matrix columns
more nearly equal in magnitude (Hohmann & Raiche 1988). There
are Nd data points collected, denoted as d = (d1, . . . , dNd ). As in-
dividual data values, we consider the real and imaginary parts of
all entries in Z, K for all Nrec receivers, namely Nd = 12Nrec and
for all frequencies. Let e1, . . . , eNd be the vector of measurements
errors, for which standard deviations si are known. By F(m) ∈ R

Nd

we denote the response of the current model m, calculated by the
forward code.
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Denote Bd as a diagonal matrix with 1
s2
i

as entries. The inversion

procedure seeks a model m such that the weighted data misfit

‖F(m) − d‖2
Bd

= (F(m) − d)T Bd (F(m) − d)

=
Nd∑
i=1

(
Fi (m) − di

si

)2

(6)

is minimal, together with the constraint that some measure of rough-
ness of the model m is limited. The roughness will be measured by

‖m − m0‖2
Bm

= (m − m0)T Bm(m − m0) (7)

where m0 is a reference model and Bm is a symmetric non-negative
definite matrix, so that ‖.‖Bm is a seminorm. Often Bm is such that
‖m − m0‖Bm = ‖∇(m − m0)‖L2 , where ∇ denotes spatial gradient
(in all three directions) of the log10 resistivity model. In the deformed
mesh geometry we implement, the three directions in general are
not purely perpendicular; one remains vertical while the other two
lie along the variably deformed layer of elements.

Specifically, in the inversion we seek a model m that minimizes
the functional

W (m) = ‖F(m) − d‖2
Bd

+ λ‖m − m0‖2
Bm

(8)

for some suitable value of λ > 0.
The Gauss–Newton is an iterative procedure that seeks a min-

imizer of (8). It starts with an initial guess m1. Given a current
model mn, the Gauss–Newton scheme approximates the response
F(m) around mn by the first-order Taylor expansion:

F(m) ≈ F(mn) + J [m − mn] (9)

where J is a Nd × Nm matrix of derivatives of F

Ji, j = ∂ Fi

∂m j
(m), i = 1, . . . , Nd , j = 1, . . . , Nm (10)

whose computation we have described in Part I. If (9) is used, the
functional (8) becomes quadratic and the minimizer mn+1 satisfies
a linear equation:

[J T Bd J + λBm](mn+1 − m0) = J T Bd d̂ (11)

where d̂ = d − F(mn) + J [mn − m0].
The reduced Hessian matrix enclosed in square brackets in

eq. (11) is dense, symmetric positive definite, and has dimension
Nm × Nm. This is the traditional model-space parameter update for-
mulation. The numerical complexity of solving this equation using
Cholesky decomposition is O(N 3

m). This cubical growth eventually
makes direct solution of the model-space Gauss–Newton scheme
impractical for arbitrarily large model size Nm.

The data-space method (Parker 1994; Siripunvaraporn & Egbert
2000; Siripunvaraporn et al. 2005a) replaces eq. (11) with a linear
equation having only Nd unknowns. For the moment we assume that
Bm is invertible (which implies that Bm is positive definite and ‖.‖Bm

is a norm), the treatment of which we will revisit shortly. When (11)
is left-multiplied by B−1

m , we obtain:

B−1
m [J T Bd J + λBm](mn+1 − m0) = B−1

m J T Bd d̂

B−1
m J T (Bd J )(mn+1 − m0) + λ(mn+1 − m0) = B−1

m J T Bd d̂

mn+1 − m0 = B−1
m J T 1

λ
Bd [d̂ − J (mn+1 − m0)]

This proves that

mn+1 − m0 = B−1
m J T β (12)

for some β ∈ R
Nd . When (12) is plugged into (11) and the equation

is left-multiplied by B−1
m , we obtain an equation equivalent to (11):

B−1
m J T [Bd J B−1

m J T + λI ]β = B−1
m J T Bd d̂. (13)

This equation will be satisfied if β satisfies

[Bd J B−1
m J T + λI ]β = Bd d̂ (14)

which is equivalent to

[J B−1
m J T + λB−1

d ]β = d̂. (15)

The latter equation has a unique solution as J B−1
m J T is symmetric

nonnegative definite and B−1
d is symmetric positive definite. The

data-space Gauss–Newton method finds β, the solution to (15) and
uses (12) to calculate a model update mn+1.

The model update mn+1 in eq. (11) minimizes the inversion func-
tional W using a linearized forward response F. However, the update
may fail to decrease W if it is too far from current model mn for the
approximation in (9) to be accurate. A line search in the direction
mn+1 − mn to minimize W (Nocedal & Wright 2006) can avoid this,
but at the expense of multiple forward problems. One could use
the Levenberg–Marquardt algorithm (Levenberg 1944) to keep the
update mn+1 close to mn by adding a term α‖m − mn‖2 to W. This
may be interpreted as choosing mn+1 that minimizes W for a trust
region (Nocedal & Wright 2006) of models {m: ‖m − mn‖2 ≤ δ}
for some δ > 0 than depends on α. The regularization term in W
has a similar stabilizing effect, yet with a trust region defined as
{m : ‖m − m0‖Bm ≤ δ} for some δ > 0 dependent on λ.

Apart from minimizing W, one also should select a value of λ to
minimize the norm ‖m − m0‖Bm among models having a specific
data misfit of X2 (Parker 1994). A well-known method for this is
Occam’s inversion (Constable et al. 1987; deGroot-Hedlin & Con-
stable 1990). As Occam also involves multiple forward calculations
per iteration, we simply begin with a large value of λ and decrease it
for subsequent iterations during the minimization. More precisely,
λ that is used to obtain model mn+1 is set as:

λ = nRMS(m j ) · κ (16)

From an initial value κ0 > 0, parameter κ will be decreased by a
factor of two if the normalized root mean square (nRMS) at an iter-
ation does not fall by more than a user-specified amount (e.g. 10%).
As a result in our inversions, the parameter λ steadily decreases
and the model acquires increasing amounts of structure. This may
be considered a form of cooling strategy (cf. Haber et al. 2007).
The scaling with respect to nRMS is consistent with experience
of Constable et al. (1987) where the optimal λ decreased as itera-
tions proceeded and misfit improved. Procedures for determining λ

warrant further investigation.

3.2 Computational considerations

In the data-space method, one has to invert Bm and apply it to JT

in order to calculate J B−1
m J T . In Siripunvaraporn & Egbert (2000),

matrix B−1
m was denoted Cm and called the model covariance matrix.

It was not defined explicitly as a result of inverting a norm matrix
Bm, but was treated as a natural matrix to consider for regularization.

The choice of a proper regularization functional ‖.‖Bm is impor-
tant, as minimizing the functional W in (8) is equivalent to mini-
mizing the data misfit

(F(m) − d)T Bd (F(m) − d) (17)
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3-D MT FEM inversion with direct solvers 97

subject to a condition on the model norm

‖m − m0‖Bm ≤ δ (18)

where δ > 0 depends on the choice of λ. The regularization func-
tional we consider is L2 norm of the gradient of the model,

‖m − m0‖Bm = ‖∇(m − m0)‖L2 . (19)

In order to use this functional in data-space method, matrix Bm must
be inverted. However if (19) is used, Bm is non-negative definite and
thus singular. To make it positive definite, we add a small number
ε > 0 to its diagonal before inverting. The functional is negligibly
modified as then

‖v‖Bm =
√√√√‖∇v‖2

L2
+ ε

Nm∑
i=1

v2
i (20)

The nonzero value of ε tends to keep the inversion model slightly
closer to the a priori model, which we do not view as a drawback.
For very small values of ε, this effect is negligible.

To estimate the cost of calculation of B−1
m J T , we exploit the

fact that matrix Bm has a nonzero pattern of a matrix coming from
finite-difference approximation of a scalar Poisson equation over
the inversion cell grid. Even if each inversion cell consists of only
one element, the number of inversion cells will be no more than the
number of vertices in the earth’s subsurface. Thus Bm has less non-
zero entries and less variables than the matrix used for the divergence
correction described in Part I and the number of variables should
be less. Even though the number of linear systems to be solved
is 12 × Nrec, and for the divergence correction it was 5 × Nrec,
here all variables are real valued. Thus if the solution library MKL
PARDISO is used, the time of factorization of Bm and applying
B−1

m to JT is expected to be less than the cost of applying the
divergence correction, which takes a fraction of time of the forward
problem. One concludes that the calculation of B−1

m J T will not add
a significant execution time to the inversion process no matter how
large the grid is, as long as the direct solver is used for forward
modeling.

For matrix multiplications like JTBdJ and the Cholesky factor-
ization needed to solve eqs (11) and (15), we use the PLASMA
library (Buttari et al. 2009; Baboulin et al. 2011). PLASMA is a
linear algebra library for dense matrices, parallelized for shared
memory machines (such as the SMP unit we use). It employs a
matrix tiling approach (cf. Baboulin et al. 2005; Maris & Wan-
namaker 2010; Kordy et al. 2013), which reduces the time of
transporting the matrix entries from RAM to CPU. The scala-
bility of Cholesky factorization and matrix multiplication using
PLASMA is presented in Fig. 1. The speedup using 24 cores is
∼17 and ∼19 for Cholesky factorization and matrix multiplication,
respectively.

To assemble the model-space Gauss–Newton matrix (11), one
has to evaluate JTBdJ, which has numerical complexity O(N 2

m Nd ).
Solving the matrix as noted previously has complexity O(N 3

m).
For the data-space method on the other hand, to assemble the
matrix in eq. (15) one has to evaluate (B−1

m J T ). By analysing the
run-times for models 2–5 of Table 1, we estimate the numerical
complexity to be O(N 1.13

m ), O(N 1.5
m ) and O(Nd N 1.18

m ) for the re-
ordering, factorization and the solution phases, respectively. Most
of the time (over 98%) for the considered test cases is spent in
the solution phase. With the direct solver approach, the time to
calculate (B−1

m J T ) is always a small fraction of the cost of the
forward problem. Further, (B−1

m J T ) is used to evaluate J (B−1
m J T ),

which has numerical complexity O(Nm N 2
d ). Solving the equation

Figure 1. Speedup of PLASMA library for Cholesky factorization (dpotrf)
and matrix multiplication (dgemm).

using Cholesky decomposition has complexity O(N 3
d ). As typically

Nd < Nm, the computational cost associated with data-space method
is less. The difference becomes more pronounced for larger MT sur-
veys.

Example computation times for models listed in Table 1(a) are
presented in Table 1(b). The time to solve the model-space Gauss–
Newton eq. (11) increases rapidly with the model size and quickly
gets impractical, reaching over 27 hr for the largest grid consid-
ered. On the other hand, the time to solve the data-space eq. (15)
remains short, less than one minute for all the grids considered.
In the case of the data-space method, more time consuming than
solving eq. (15) is evaluating J (B−1

m J T ), which takes 1 hr for the
largest mesh considered. Nevertheless, the corresponding evalua-
tion of JTBdJ for model-space Gauss–Newton takes longer, more
than seven times longer for mesh 5. Comparable to the time of
calculation of J (B−1

m J T ) is the time of evaluation of B−1
m J T .

However, as we expected, this time is less than that of apply-
ing the divergence correction (more than two times less), which
in turn is almost 10 times less than the total time spent solving
forward problem. Thus the advantage of the data-space Gauss–
Newton approach over the model-space version for this application
is clear.

Concerning RAM requirements, for model-space GN one needs
to store the matrix J, which is Nd × Nm as well as the matrix in the
eq. (11), which is a symmetric Nm × Nm matrix. In the data-space
version, one needs to store matrix J and the matrix B−1

m J T of the
same size, but depending on implementation those may be saved on
hard disk and parts of them may be read into RAM memory when
needed. Also, one needs to store the matrix of eq. (15), which is a
symmetric Nd × Nd matrix. One can see that as typically Nd < Nm

the memory requirements are smaller for data-space Gauss–Newton
than for its model-space cousin.

In Table 1(c) we present the RAM memory requirements for the
grids considered. The matrix J is Nd × Nm in size, but largely can
be stored on hard disk and parts accessed as needed. For the largest
mesh considered, the model-space GN update requires 413 GB,
whereas the data-space update requires as little as 7.9 GB of RAM
memory depending upon treatment of J.

3.3 Regularization norm weight

Up to this point, we have not specified details of the entries of
matrix Bm, other than that it is a finite-difference representation of
spatial gradients in the model parameter vector m. Several investi-
gators have explored whether entries of Bm should also be weighted
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Table 1. Run-times and memory use for forward modeling, model-space Gauss–Newton iteration and data-space
Gauss–Newton iteration.

according to influence (Jacobian) of their corresponding parameter
(e.g. Zhdanov 2002; Yi et al. 2003). Here we present three differ-
ent regularization functionals, the performance of which will be
compared in numerical tests.

Consider the infinite-dimensional problem and its response F(m)
given a spatially varying log10 resistivity model m = m(r). Also
consider the derivative S(r) of F with respect to m satisfying:

F(m + δm) ≈ F(m) +
∫

�

S(r)δm(r)dr (21)

for a small change in model δm. The quantity ‖S(r)‖2 measures the
sensitivity of the response F to the change of the conductivity at the
point r.

As the regularization functional (m − m0)TBm(m − m0), we will
consider L2 norms of the gradient of m with a weight ν(r) > 0
defined as follows:

‖∇(m − m0)‖2
L2(ν) =

∫
�

|∇(m − m0)|2ν(r)dr (22)

Further, we consider three possible values for ν:

ν(r) = ‖S(r)‖2

ν(r) = 1

ν(r) = 1

‖S(r)‖2
(23)

Norm ‖∇(m − m0)‖L2(1) uses no information about the influence
of the inversion cell on the data. If norm ‖∇(m − m0)‖L2(‖S‖2) is used
for regularization, smoothing is suppressed for parameter regions
with low sensitivity allowing them to show additional structure (cf.
Zhdanov 2002). Norm ‖∇(m − m0)‖L2( 1

‖S‖2
) will smooth the model

in regions with low sensitivity, using the reasoning that if we cannot
detect the properties of a region well, we will make it similar to its
surroundings. This is similar to the approach of Yi et al. (2003),
although they make a rigorous evaluation of the parameter resolution
matrix which is computationally intractible for the larger problems
we consider here.
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3-D MT FEM inversion with direct solvers 99

Figure 2. Central part of the inversion grid together with the receiver locations in three quadrants. Conductive brick is shown below the hill.

If the norms ‖m − m0‖L2(ν) and ‖∇(m − m0)‖L2(ν) are properly
approximated on a discrete level, they will be mesh independent. An
explanation of this claim and the details of the way we approximate
the norms are provided in Appendix A.

4 S Y N T H E T I C I N V E R S I O N E X A M P L E S

In this section, we present results of the inversion of synthetic MT
data to evaluate algorithm performance under controlled conditions.
As a measurement error we will use the value

e(Zi j ) = max
{

3.5% |Zxy−Z yx |
2

}
, i, j = x, y

e(Kzj ) = 0.03, j = x, y
(24)

We use Zxy − Zyx because it is a rotational invariant and shows
relative stability to data noise (see Groom & Bahr 1992). As the
measurement error sj (noted in (6)) for real or imaginary part of Z
and K, we take the above value e. The data used in the inversion are
calculated by the forward problem for the true conductivity model,
with Gaussian noise having zero mean and standard deviation s
added to the real and imaginary parts of Z and K.

To assess goodness of fit of a model response to the data, we use
the nRMS, defined as:

nRMS(m) =
√√√√ 1

Nd

Nd∑
j=1

(
d j − Fj (m)

s j

)2

(25)

where d is the vector of our synthetic data, F is a vector of response
of the model m and s is the measurement error vector.

4.1 Brick under a hill

Our first model is a brick under a hill in 100 �m background. The hill
has dimensions 2000 and 4000 m in x- and y-directions at the bottom
and 500 and 1000 m at the top. The hill is 450 m high. The object
is placed below the hill with the top and the bottom of the object at
650 and 1600 m, respectively, below the top of the hill and its XY

cross-section is a rectangle [−328 m, 328 m] × [−700 m, 700 m].
We consider a conductive (5 �m) and resistive (2000 �m) object
as well as no object at all. We compare the inversion that has the
mesh conforming to the topography as in Fig. 2 to the mesh without
topography (flat surface). Both meshes have the same location of
cells in x- and y-directions and the same x and y coordinates of
receivers. The only difference is the elevation of layers close to the
earth surface.

We generated the data using a different grid than the one used for
inversion. The forward code grid was 95x, 95y, 50z and extended
to 18 km from the grid centre in x- and y-directions, 5.6 km above
the earth’s surface (air layer) and 12.5 km below the surface. The
inversion grid was 41x, 41y and 30z. It extended 14 and 15 km from
the centre of the grid in x- and y-directions, respectively. There were
106 receivers. The location of a receiver is always at the centre of
the face of an element lying on the earth’s surface, thus the location
of the forward code receivers is slightly different than the inversion
receivers. The inversion grid, together with the location of the brick
and receivers in three of the four quadrants is presented in cutaway
view in Fig. 2.

The data consisted of the impedance Z and the tipper K for 13
frequencies between 1 and 1000 Hz distributed evenly in log10

space. We added Gaussian error with standard deviation (24) to the
forward data. The initial value of κ0 started at the same value for
all inversions. The starting and reference (a priori) models were
set to 50 �m uniformly. The regularization functional used was
‖∇m‖L2(1).

Iteration history is presented in Fig. 3. The regularization norm
‖∇m‖L2(1) increases as the inversion proceeds and λ decreases in the
effort to decrease nRMS. One can see that inversion with topography
is able to achieve nRMS close to 1 in less than 3 iterations, whereas
the inversion without topography is struggling to decrease nRMS
below 1.6 even though the model norm is larger than in the case of
inversion with topography.

We have plotted cross-sections of selected models for six inver-
sions in Figs 4 and 5 for comparison. In all cases, the inversion with
topography is able to recover a smoothed version of the original
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Figure 3. Inversion iteration history for model of bricks under a hill. nRMS(mj), λ used to obtain model mj, ‖∇m‖L2(1) as a function of iteration number j are
plotted. The models plotted in Figs 4 and 5 are denoted by bold symbols.

Figure 4. Inversion results for bricks under a hill along XZ cross-section at y = 0 km. Top row shows inversion with topography, bottom row the inversion
without topography.
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Figure 5. Inversion results for bricks under a hill along YZ cross-section at x = 0 km. Top row shows inversion with topography, bottom row the inversion
without topography.

Figure 6. Sketch of two bricks model.

object (or no object in the no brick case). Inversion without topog-
raphy puts a more conductive object below the ground to make-up
for the absence of a hill. This occurs because the electric field is re-
duced by the hill as background electric current only partially flows
upward into that volume (see TM mode results in Wannamaker
et al. 1986). Even for the resistive brick forward data, the inversion
without topography returns a (somewhat) conductive object. The
inversion also creates an oscillatory region above the object (more
apparent on XZ cross-section) that resembles the shape of a hill.
These results emphasize the importance of including the topogra-
phy in the inversion of MT data.

4.2 Simple two brick model

Our next synthetic model consists simply of two buried and sepa-
rated bricks, one conductive (2 �m) and one resistive (1000 �m),
in a 40 �m half-space (Fig. 6). With this model we examine the
effect of inversion regularization weights on model characteristics.

The forward mesh consists of 58x 58y 45z elements. In the XY
plane, the central 33 × 33 elements are square with sides equal to
0.333 km. Further from the centre, the element sizes grow gradually
and extend 130 km from the centre of the grid. In the Z-direction,
there were 34 elements below the surface and 11 elements in the air.
The mesh extends to 100 km above the surface and 140 km below
the surface. There are 10 × 10 receivers evenly distributed in XY
plane, separated by 10 km. The forward response (impedance Z and
tipper K) was generated for 31 frequencies evenly distributed in log
space between 0.01 and 1000 Hz, which gives six frequencies per
decade. We added Gaussian error with standard deviation (24) to
the forward data.

The inversion mesh consists of 41x 41y 41z elements. In the XY
plane, the central 24-by-24 elements are square with sides equal to
0.5 km. Further from the centre, the element sizes grow gradually
and extend 135 km from the centre of the grid. In the Z-direction,
there were 31 elements below the surface and 10 elements in the
air. The mesh extends to 110 km above the surface and 140 km
below the surface. Thus the forward and inversion meshes differ in
discretization but have the same locations for the receivers, which
are at the centre of elements faces in both cases. The inversion mesh
is presented in Fig. 7.

For this model, we conducted inversions using different regu-
larization functionals. We used (A5), (A2) and (A7) that give reg-
ularization functionals resembling ‖∇m‖2

L2(‖S‖2), ‖∇m‖2
L2(1), and

‖∇m‖2
L2(1/‖S‖2), respectively. The value of ‖S‖2 was confined to

change within a factor of 104. More precisely, two values were
found S1 and S2, such that S2

S1
= 104 and the value of ‖S‖2 was trun-

cated if it lies outside the interval [S1, S2]. Additionally, weights ν

have been multiplied by a normalization constant, so that the aver-
age ν over the central part of the domain is the same in all cases.
This allows us to use the same initial value of λ. The nRMS, λ

and the regularization norm as a function of the iteration number
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Figure 7. Cross-sections of the inversion grid for the two bricks model.
Central part of the grid is shown.

are presented in Fig. 8. One can see that the nRMS values as a
function of iteration number are almost the same for the different
regularization schemes, and thus the amount of regularization is
similar for all weightings.

The models calculated by the different inversion schemes at it-
eration 6 are presented in Fig. 9, with weights ν of L2(ν) norms
used for regularization to obtain those models plotted in Fig. 10.
Generally speaking, the weight ν = ‖S‖2 decreases with depth and
the weight ν = 1

‖S‖2
increases with depth. Thus, the effect of us-

ing L2(‖S‖2) is to prolong the depth extent of the formed image

to minimize the value of the regularization norm. For L2

(
1

‖S‖2

)
,

the recovered objects tend to be compressed toward the surface for

comparable reasons. In the case of L2

(
1

‖S‖2

)
, significant resistivity

oscillations are apparent at shallow depths; one of their effects is
to drive the background resistivity toward 25 �m rather than the
true 40 �m because of the cell-scale heterogeneity formed under
the receivers. Nevertheless, the nRMS values are all very close, un-
derscoring the non-uniqueness inherent in this ill-posed inversion
problem. We observed no systematic difference in the fit of the fi-
nal models across the frequency range for the three regularizations.
Results for other models might differ, however. Further challenges
in establishing appropriate regularization may be expected for more
complex settings.

4.3 DSM2 model

The Dublin MT Modeling and Inversion workshops have provided
model results for the EM community to test newly developed

simulation and imaging codes (see Miensopust et al. 2013). Here we
consider inversion of the MT responses of the Dublin secret model
2 (DSM2) presented in Fig. 11. It is a flat-earth model with two
contacting, shallow bricks in a four-layer earth. There are 144 MT
receivers arranged in a uniform grid 12 × 12 with 7 km spacing.

The forward data, supplied by the workshop organizers, consist
of the impedance tensor Z values only (no tipper) for 30 frequencies
between 0.016 and 10 000 s evenly distributed in log10. Random
galvanic distortion was applied to the responses by the organizers
as described in Miensopust et al. (2013). Gaussian noise of 5% of the
maximal impedance value also had been added to the distorted data
set. This supplied error bound was treated as a standard deviation
and was used for both real and imaginary parts of Z. The data from
all sites and frequencies were used in our inversion.

The applied static distortion provides an opportunity for us to
implement and test recent distortion removal procedures (Avdeeva
et al. 2015), summarized in Appendix B. Initially, an inversion
model is sought without distortion correction. This model is used
as an initial guess to estimate a new, more stable model plus the
static distortion matrices of the impedance Z. We invert the data
using the L2(1) regularization functional.

We considered coarse and fine inversion meshes. The coarse mesh
has two columns of parameters between sites in the central portion
of the model whereas the fine mesh has five columns of parameters
between sites. The purpose of the latter mesh is to test whether a
fine discretization allows formation of small-scale shallow structure
which can simulate the impedance galvanic distortion without hav-
ing to solve explicitly for correction factors (cf. e.g. Meqbel et al.
2014).

Specifically, the coarse(fine) mesh consisted of 45x 45y 41z(78x
78y 50z) elements. In the XY plane, the central 23-by-23(58-by-58)
elements are squares with sides = 3.5 km (1.4 km). Further from the
centre, the element sizes grow gradually and extend 600 km from
the centre of the grid. In the Z-direction, there were 31(38) elements
below the surface and 10(12) elements in the air. The mesh extends
to 300 km above the surface and 700 km below the surface. The
central part of the coarse mesh is presented in Fig. 12.

The inverted models are presented in Fig. 13. Inverting only for
log10 resistivity on the coarse mesh with no distortion correction
yields a model with nRMS of 4.2, with little further improvement
by relaxing the regularization factor (see Fig. 14). Subsequently, in-
verting also for the distortion matrices obtains a model with nRMS
of 1.1. The latter model achieves generally smoother resistivity
structure with values closer to the true values, especially in the
deeper structure, than does the former model. For the coarse model,

Figure 8. Two bricks model iteration history. nRMS(mj), λ used to obtain model mj as well as ‖m j − m0‖Bm as a function of iteration number j are plotted.
The model number 6, plotted on Fig. 9 is denoted by a bold symbol.
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Figure 9. Models calculated by inversions of synthetic responses of two bricks using regularization functionals ‖∇m‖2
L2(‖S‖2), ‖∇m‖2

L2(1) and ‖∇m‖2

L2

(
1

‖S‖2

).

In each case, the model obtained at iteration 6 is plotted.

Figure 10. Weight ν of L2(ν) norm used to obtain model number 6 for regularization schemes used for two bricks model. For L2(1) regularization, the weight
is constant so is not plotted.

there is some scatter in the norm of distortion matrices versus itera-
tion. This presumably is a result of small regularization (τ = 0.01).
Further investigation is warranted as to when and to what degree of
regularization, distortion should be estimated through the iteration
history.

When the fine mesh inversion for log10 resistivity only is consid-
ered, the resulting model has nRMS of 2.2, significantly less than the

similar model obtained on a coarse mesh. The fine mesh inversion
is able to represent some of the distortion by small-scale variability
of log10 resistivity in the vicinity of the receivers, at shallow depths.
Nevertheless, the fine mesh inversion for log10 resistivity including
the distortion estimation provides a smoother model with a smaller
nRMS of 1.1 (see Fig. 14). Here we see smoother behaviour in the
estimated distortion versus iteration. From this result we suggest
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Figure 11. Sketch of DSM2 model.

Figure 12. Cross-sections of the central part of the coarse inversion grid for
DSM2 model.

that distortion matrices should be considered in tensor impedance
inversion even for fine discretizations. However, we also advocate
that fine discretization be used to the extent practical to ensure that
non-galvanic variations at the highest frequencies are accommo-
dated by the smallest scale mesh structure.

5 F I E L D I N V E R S I O N E X A M P L E S

5.1 Mount St Helens

Finally, we examine the MT field data set collected by Hill et al.
(2009) from the north-central Cascade volcanic environment in
Washington State, USA, to demonstrate the ability of our solu-
tion to handle moderately large models with topography. There are
82 soundings primarily clustered over the recently active Mount St
Helens volcano, but with 14 of the sites extending in a nearly E-W
profile past the north side of Mount Adams (Fig. 15). This gives us
the opportunity also to compare 3-D inversion of profile data (e.g.
Siripunvaraporn et al. 2005b) with 2-D inversion results. We invert
the complex tensor impedance Z and tipper K for 20 frequencies
log-uniformly distributed from 100 through 0.0018 Hz.

The mesh consists of 111x 167y 62z elements in total (see
Fig. 16). This requires storage of 500 GB which fills the capacity of
our particular workstation. Over the large central section including
the two volcanoes, horizontal dimensions of the elements were in
the 500 × 600 to 500 ×1000 m range typically. Around this region
the element sizes grew gradually, covering a total area of 375 km ×
425 km. In the z-direction, there are 50 elements below the ground
and 12 elements in the air. The elements at the earth’s surface have a
thickness of 80 m (at mesh edge) and grow gradually to reach an ele-
vation of 250 km above the surface and a depth of 220 km below the
ground. Topography for the area was obtained from ASTER GDEM

data (downloaded from http://gdex.cr.usgs.gov/gdex/), a product of
METI and NASA. We did not attempt to include the Pacific Ocean
nearly 200 km to the west, as that distance is significantly larger
than the depth range of interest here (<100 km). A rim of one ele-
ment around the side edges and bottom of the mesh was excluded
from the inversion and fixed to be a 1-D (flat) initial model. Thus,
there are 109 × 165 × 49 = 881 265 inversion parameters in the
Mount St Helens model. However, in data-space formulation, the
rank of the model update matrix is only 19 680. This may seem like
a large model to handle 82 MT sites, but that is a result of particular
site distribution. In principle, many more MT sites could be placed
in this model mesh with additional computational cost only being
more Jacobian source reductions and a larger (though still modest)
data-space model update matrix.

The inversion was run without distortion matrix estimation for
11 iterations, with iteration history shown in Fig. 17. Data er-
ror floors as given in eq. (23) were adopted. The starting model
was a 100 �m half-space, the same as considered by Hill et al.
(2009), and the starting nRMS was ∼11.5. Run-time on the 24-core
workstation was ∼13 hr per iteration, which was by far dominated
by the forward and Jacobian calculations over the 20 frequencies.
Model 11 has nRMS of 1.2, which is considered a good fit so that
distortion correction should yield little improvement and was not
carried out.

Model cross-section and plan views are presented in Figs 18
and 19, and can be compared to the original results of Hill et al.
(2009). The cross-section overall bears a close resemblance to the
2-D inversion of Hill et al, which emphasized the nominal TM mode
(relative to profile orientation) of data. Steep low resistivity is seen
in the middle crust directly under Mount St Helens, presumably re-
lated to recent eruptive processes, of which more will be discussed
shortly. This gives way at depths >20 km to broad, quasi-horizontal
low resistivity between the two volcanoes, which we attribute to
lower crustal magmatic underplating and high-temperature fluid
release. Shallow, very low resistivity overlies the deep crustal con-
ductor approaching Mount Adams which may reflect in part the
presence of graphitic metasediments associated with a suture be-
tween the Siletz terrane and former North American margin (the
southern Washington Cascades conductor or SWCC of Stanley et al.
1996), although this interpretation is non-unique and not without
controversy (Egbert & Booker 1993; Hill et al. 2009). A large re-
sistive body extending to >15 km depth lies between the Mount
St Helens and Mount Adams and could be correlated with earlier
Western Cascades intrusive rocks (see Wannamaker et al. 2014).

The steep low resistivity directly under Mount St Helens in Fig. 18
is similar to that in the flat-earth 3-D inversion model of Hill et al.
(2009) although the most anomalous portion does not extend to quite
as shallow a depth as that in Hill’s. This may in part be explained
by the conical edifice of the volcano inducing additional depression
of the electric field as discussed with Fig. 4. A second, somewhat
lesser conductor in the 4–9 km depth range appears just west of
the first one, which is more subtly expressed in the model of Hill
et al. These two conductors correspond reasonably well to the two
high-scattering bodies displayed in east–west section by DeSiena
et al. (2014, their fig. 6e). In plan view at 7 km depth (Fig. 19),
we see that this steep conductor is strongly linear in a nearly N-S
direction and is associated with the Mount St Helens shear zone
(MSZ) passing through the volcanic edifice (Weaver et al. 1987;
Lagmay et al. 2000). Clear representation of this structure in our
model we believe may be due to inclusion of the tipper elements in
the inversion, as the tipper shows a subtle reversal on the west flank
of the volcano (Hill et al. 2009, also see our Supplemental Material
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Figure 13. Comparison of inversion models obtained for DSM2 model. The second and the third rows contain the result of inversions on a coarse mesh.
The fourth and the fifth rows show results of inversions on a fine mesh. The third and the fifth rows, denoted by ‘statics’, show results of inversions for log10

resistivity and the static distortion matrices. The top row shows the true model.

Figure 14. Iteration history for DSM2 model, for coarse and fine meshes. Initial inversion without static distortion is shown in black. Subsequent inversion
with distortion matrix estimation is plotted in red. Bold symbols denote models shown in Fig. 13.

section). The second, subsidiary conductor flanks the shear zone
nearby to the west.

The large resistor east of Mount St Helens confines the large
conductor further east to be in the Mount Adams area, providing

better resolution than prior 3-D images based just on regional tipper
data (Egbert & Booker 1993). The NNW-SSE limits of the resistor
cannot be considered as well-resolved, however, without site cov-
erage. At lower crustal depths (27 km in Fig. 19), resistivity under
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Figure 15. Mount St Helens inversion model. Contour plot of topography
of the central part of the domain is presented. Coordinate (0, 0) corresponds
to the location of Mount St Helens peak, marked by a red cross. Blue
cross denotes Mount Adams. Blue line denotes profile A–B used in Fig. 18.
MT receiver locations are marked by black and red dots. Red dots denote
receivers used in the 2-D inversion of Hill et al. (2009). Mount St Helens
shear zone (MSZ) after Lagmay et al. (2000).

Mount St Helens decreases from west to east as in Hill et al. (2009)
and the low is somewhat elongate toward the south–southeast. On
the other hand, low deep crustal resistivity under Mount Adams
expands to the north. It is tempting to assign this geometry to an
offset in lower crustal magmatic underplating associated with the
E-W offset in the Cascade volcanic chain at this latitude. However,
such conjecture should await better resistivity structural constraints
from further 3-D MT coverage both north and south of the current
data set.

Finally, in Fig. 20, we show a 3 �m isosurface within the Mount
St Helens model viewed from the east with conductive material

Figure 16. Central part of the mesh for the Mount St Helens inversion
model. Blue and red crosses denote Mount Adams and Mount St Helens
peaks, respectively.

around Mount Adams excluded. It represents the conductive upper
reaches of the MSZ. The top of the main surface is only slightly
undulatory along its north–south extent. A few steep, narrow con-
ductors projecting upward mainly to the north of the mount itself
could represent local fluidized damage zones but do not obviously
correspond to a central volcanic conduit (e.g. Musumeci et al. 2002).

6 C O N C LU S I O N S

As other researchers are finding as well, direct solutions to vari-
ous aspects of the diffusive EM inversion problem are becoming

Figure 17. Values of nRMS, λ and model norm as a function of iteration number for the Mount St Helens inversion.

Figure 18. Cross-section of Mount St Helens inversion at iteration 11 along profile A–B marked on Fig. 15. Black ticks at the top denote the locations of
receivers plotted in red on Fig. 15 that were used in the 2-D inversion of Hill et al. (2009).
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Figure 19. Plan views of Mount St Helens inversion model 11. Receivers’ locations marked by black dots, Mount St Helens peak by red cross and Mount
Adams peak by blue cross.

Figure 20. 3-D view from the East onto the 3 �m isosurface below Mount
St Helens. A region (−25 km, 25 km) × (−24 km, 19 km) around St Helens
only is shown, so the conductors below Mount Adams are not seen. Only
structures deeper than 2 km are shown. Red circle denotes Mount St Helens
peak, black circles denote locations of the receivers around the mountain.

increasingly practical. Here we have shown that direct solvers can
effectively handle the Gauss–Newton update for inverse problems
approaching one million parameters with parallelization on mul-
ticore SMP workstations and large RAM if the model update is
formulated in data space. In this case, the limiting computational
cost both in run-time and memory is the forward problem (including
Jacobians), which can be computed effectively using MKL PAR-
DISO. Finite-element models of order 176 × 176 × 70 elements
fill half the memory of a workstation with 0.5 TB RAM but such
meshes can, for example, fit large MT data sets of 400 sites with six
columns of parameters between sites in both x- and y-directions with
padding of nearly 30 expanding element columns around the mesh
edges. We have not experienced system conditioning problems due
to high element aspect ratios with our direct solutions.

Single-box SMP workstation capabilities continue to progress,
with platforms holding up to 4 TB RAM available at the time of
this writing. The overall scalability of MKL PARDISO is good on
multicore shared memory systems and may be expected to do well
on machines with more cores. Another option could be to con-
struct a distributed cluster whose nodes were large-RAM multicore
machines such as we employed herein each devoted to a differ-
ent response frequency, although at considerably greater hardware
investment. Finally, we find that the deformable hexahedral mesh
framework lends a predictability to mesh design and performance

of libraries such as MKL PARDISO that should offset concerns
that the geometries of simulation with such a mesh may not be
as arbitrary as is possible with assemblies of tetrahedra. More re-
search is warranted, however, into optimal inversion regularization
functionals and methods for guaranteeing rapid convergence.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure 1. Real and imaginary induction vectors for the measured
data and the prediction by the model obtained in the Mount St
Helens inversion for five frequencies between 1 Hz and 0.01 Hz.
Parkinson convention is used.
Figure 2. nRMS for each component of the MT response and for
each receiver for the final model of Mount St Helens inversion.
Table 1. Table of nRMS as a function of frequency for the starting
model and the final model for Mount St Helens inversion.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggv411/-/DC1).

Please note: Oxford University Press is not responsible for the con-
tent or functionality of any supporting materials supplied by the
authors. Any queries (other than missing material) should be di-
rected to the corresponding author for the paper.

A P P E N D I X A : A P P ROX I M AT I O N O F
R E G U L A R I Z AT I O N N O R M S

Here, we present how we approximate norms ‖∇(m −
m0)‖L2(1),‖∇(m − m0)‖L2(‖S‖2),‖∇(m − m0)‖

L2

(
1

‖S‖2

). For simplic-

ity we will write m instead of m − m0.
Assume that the discrete m is a representation of an infinite-

dimensional model, that is, a function m(r) defined for every loca-
tion r in the subsurface part of �. If the discrete norms ‖m‖L2(ν)

and ‖∇m‖L2(ν) are defined as the norms of the infinite-dimensional
model, they have the property that they are mesh independent.
If one considers two different meshes with two different discrete
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representations of the same infinite-dimensional model m(r), the
two norms on different meshes will be equal, as they are equal to
the norm of the infinite-dimensional model.

In the case of the norm ‖m‖L2(ν) one can think of the
infinite-dimensional model m(r) being piecewise constant, that is,
m(r) = m j whenever r is inside an inversion cell Vj. In such a
case, if a mesh is refined and the value of the model at an inver-
sion cell is passed on to the subcells that the cell is split to, then
the infinite-dimensional model remains the same. In the case of
the norm ‖∇(m)‖L2(ν) one cannot think of the infinite-dimensional
model being piecewise constant as the gradient of such a model
does not exist (the gradient is not a square integrable vector field).
The infinite-dimensional model should be continuous. In 1-D one
could think of a model that is piecewise linear between the centres
of inversion cells.

First we will consider norms ‖m‖L2(1), ‖m‖L2(‖S‖2), ‖m‖
L2

(
1

‖S‖2

).

To approximate them, we will take norm of the form:

‖m‖2
Bm

= mT Bmm (A1)

with appropriate matrix Bm, where m = (m)Nm
j=1 is a vector of log10

resistivities of inversion cells.
If one takes Bm to be a diagonal matrix with entries wj equal to

volumes of inversion cells:

w j = #Vj =
∫

Vj

dr (A2)

then one obtains a model norm ‖m‖Bm that is equal to the L2(1)
norm of the piecewise constant model m(r):

‖m‖2
Bm

=
Nm∑
j=1

m2
j Bm( j, j) =

Nm∑
j=1

m2
j #Vj

=
Nm∑
j=1

∫
Vj

m(r)2dr =
∫

�

m(r)2dr

= ‖m‖2
L2(1) (A3)

Consider the derivative S of infinite-dimensional problem defined
at (21). Assuming that the discretization of the domain is fine enough
so that the finite-dimensional approximation of the problem is close
to the infinite-dimensional problem, using F for finite-dimensional
response, one could write that the jth column of Jacobian matrix J
is:

J. j = ∂ F

∂m j
=

∫
Vj

S(r)dr (A4)

where Vj is a j-th inversion cell. If we assume that the inversion
cell Vj is small enough that S(r) ≈ Sj = const for r ∈ Vj , then a
sensitivity of inversion cell Vj is obtained:

w j =
√√√√ Nd∑

i=1

J 2
i j =

√
J T
. j J. j = ‖J. j‖2 =

∣∣∣∣∣
∣∣∣∣∣
∫

Vj

S(r)dr

∣∣∣∣∣
∣∣∣∣∣
2

≈ ‖#Vj Sj‖2 = #Vj‖Sj‖2 =
∫

Vj

‖Sj‖2dr

≈
∫

Vj

‖S(r)‖2dr (A5)

If we define Bm to be a diagonal matrix with wj as entries, then

‖m‖2
Bm

=
Nm∑
j=1

m2
jw j ≈

Nm∑
j=1

m2
j

∫
Vj

‖S(r)‖2dr

=
∫

�

‖m(r)‖2
2‖S(r)‖2dr

= ‖m‖2
L2(‖S‖2). (A6)

The regularization norm is approximately equal to the weighted
L2 norm with ‖S‖2 as a weight. Note also that to calculate
wj = ‖J.j‖2 one does not need to know the cell volume, only Jaco-
bian matrix J is used. This regularization was considered in Zhdanov
(2002) (see eq. 3.89).

The third weight we consider is defined as

w j = (#Vj )2√
J T
. j J. j

≈ (#Vj )2

#Vj‖Sj‖2
= #Vj

1

‖Sj‖2
(A7)

The corresponding norm of the model is approximately

‖m‖2
Bm

=
Nm∑
j=1

m2
jw j ≈

Nm∑
j=1

m2
j #Vj

1

‖Sj‖2

≈
Nm∑
j=1

m2
j

∫
Vj

1

‖S(r)‖2
dr

=
∫

�

‖m(r)‖2
2

1

‖S(r)‖2
dr

= ‖m‖2

L2

(
1

‖S‖2

) (A8)

The norm is approximately equal to the weighted L2 norm with
1

‖S‖2
as a weight. This norm will suppress model change in regions

with low sensitivity, using the reasoning that if we cannot detect the
properties of a region well, we will make it similar to its surround-
ings. This is similar to the approach of Yi et al. (2003).

To get an approximation of a norm of the model gradient, rather
than of the model, so a norm that resembles ‖∇m‖L2(ν) rather than
‖m‖L2(ν) in essence one should think of an infinite-dimensional
continuous model m(r) that is represented by the discrete model m
and calculate the L2(ν) norm of its gradient. For simplicity though,
we do not pursue this approach and we use a simple finite-difference
approximation calculated as if the topography was not present and
the element layers were horizontal. Assume that each inversion cell
consists of one finite element. Air layers as well as one layer of
elements close to the boundary ∂� are not used in the inversion.
One layer close to the boundary has a fixed conductivity equal to the
conductivity of the 1-D layered Earth primary model. This is done
to prevent us from having a non-zero source term Jimp very close to
the boundary. As a result the inversion cells can be addressed using
three indices ix = 1, . . . , nx, iy = 1, . . . , ny, iz = 1, . . . , nz , where the
total number of inversion cells is Nm = nxnynz . Matrix Bm is such
that

‖m‖2
Bm

=
nx∑

ix =2

ny∑
iy=1

nz∑
iz=1

w̃x
ix ,iy ,iz

(
mix ,iy ,iz − mix −1,iy ,iz

xix ,iy ,iz − xix −1,iy ,iz

)2

+
nx∑

ix =1

ny∑
iy=2

nz∑
iz=1

w̃
y
ix ,iy ,iz

(
mix ,iy ,iz − mix ,iy−1,iz

yix ,iy ,iz − yix ,iy−1,iz

)2

+
nx∑

ix =1

ny∑
iy=1

nz∑
iz=2

w̃z
ix ,iy ,iz

(
mix ,iy ,iz − mix ,iy ,iz−1

zix ,iy ,iz − zix ,iy ,iz−1

)2
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where

w̃x
ix ,iy ,iz

= wix −1,iy ,iz + wix ,iy ,iz

2

w̃
y
ix ,iy ,iz

= wix ,iy−1,iz + wix ,iy ,iz

2

w̃z
ix ,iy ,iz

= wix ,iy ,iz−1 j + wix ,iy ,iz

2
(A9)

and

[
xix ,iy ,iz , yix ,iy ,iz , zix ,iy ,iz

]
is the location of the centre of mass of the inversion cell denoted by
ix, iy, iz .

Using the procedure described above with w given by (A5),
(A2) or (A7) one gets norms of model m resembling ‖∇m‖L2(‖S‖2),
‖∇m‖L2(1) and ‖∇m‖

L2

(
1

‖S‖2

), respectively. Those norms are used

for regularization and the inversion results are compared.

A P P E N D I X B : I N V E R S I O N F O R S TAT I C
D I S T O RT I O N M AT R I C E S

We present the inversion for the impedance static distortion ma-
trices similar to the approach of Avdeeva et al. (2015). Shallow
conductivity structure causes a static distortion of the impedance
such that

Z obs
k (ω) = Ck Zk(ω) (B1)

where Zk is the impedance without the shallow conductivity struc-
ture and Z obs

k is the impedance with the shallow conductivity struc-
ture. Matrix Ck ∈ R

2×2 is real valued and not dependent on fre-
quency, yet different for each receiver k = 1, . . . , Nrec (see Avdeeva
et al. 2015).

In the inversion procedure, apart from calculating the unknown
model m = (m j )

Nm
j=1 of log10 resistivities, we invert also for real

valued matrices C = (Ck)Nrec
k=1 , one for each receiver location.

The forward problem response F(m), defined by (5), is modified
by applying (B1) to obtain F(m, C). The regularized functional to be

minimized changes from (8) by adding squares of Frobenius norms
‖.‖F of the difference between distortion matrices Ck and identity
matrix I, yielding:

W̃ (m, C) = (F(m, C) − d)T Bd (F(m, C) − d)

+ λ(m − m0)T Bm(m − m0) + τ

Nrec∑
k=1

‖Ck − I‖2
F (B2)

Note that if we define Ñm = Nm + 4Nrec,

m̃ = (m̃k)Ñm
k=1 = (m1, . . . , mNm ,

C1,xx , C1,yx , C1,yx , C1,yy, . . . ,

CNrec,xx , CNrec,yx , CNrec,yx , CNrec,yy)

m̃0 = (m̃k,0)Ñm
k=1 = (m1,0, . . . , mNm ,0,

1, 0, 0, 1, . . . ,

1, 0, 0, 1)

B̃m =
[

Bm 0

0 τ

λ
I

]

Then (B2) may be written in the form similar to (8):

W̃ (m̃) = (F(m̃) − d)T Bd (F(m̃) − d) + λ(m̃ − m̃0)T B̃m(m̃ − m̃0)

Jacobian J̃ of the forward response F(m̃) may be easily obtained
from J using chain rule. As a result one can apply Gauss–Newton
and data-space Gauss–Newton procedure similarly to the case of
inversion for m only.

Similarly to Avdeeva et al. (2015), we use τ = 0.01. Note
that this value of τ is very small, giving almost no regulariza-
tion for distortion matrices term in (B2). Yet it is enough to obtain
good models, if only the starting model is not far from the true
model. It is our experience so far that using the starting model that
was obtained in the inversion without the distortion matrix yields
good results. On the other hand, if one starts from a half-space
that is far from the true model, the iteration may not converge
to a plausible model. In this case, we have seen the matrices C
converge to 0.
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