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Novel mathematical method called spectral measure method (SMM) is developed for characterization of

bone structure and indirect estimation of bone properties. The spectral measure method is based on an
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inverse homogenization technique which allows to derive information about the structure of composite

material from measured effective electric or viscoelastic properties. The mechanical properties and ability

to withstand fracture depend on the structural organization of bone as a hierarchical composite.

Information about the bone structural parameters is contained in the spectral measure in the Stieltjes

integral representation of the effective properties. The method is based on constructing the spectral

measure either by calculating it directly from micro-CT images or using measurements of electric or

viscoelastic properties over a frequency range. In the present paper, we generalize the Stieltjes

representation to the viscoelastic case and show how bone microstructure, in particular, bone volume

or porosity, can be characterized by the spectral function calculated using measurements of complex

permittivity or viscoelastic modulus. For validation purposes, we numerically simulated measured data

using micro-CT images of cancellous bone. Recovered values of bone porosity are in excellent agreement

with true porosity estimated from the micro-CT images. We also discuss another application of this

method, which allows to estimate properties difficult to measure directly. The spectral measure method

based on the derived Stieltjes representation for viscoelastic composites, has a potential for non-invasive

characterization of bone structure using electric or mechanical measurements. The method is applicable

to sea ice, porous rock, and other composite materials.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Bone is a hierarchical composite whose ability to withstand
fracture depends on the bone structural organization. At the micro-
scale, cancellous bone is a heterogeneous composite formed of
trabeculae with bone marrow filling its porous spaces (see Fig. 1).
The macroscale mechanical properties such as bone stiffness and
strength depend on bone microstructure, density, and stiffness of the
bone tissue (Hollister et al., 1991; Crolet et al., 1993; Aoubiza et al.,
1996; Lakes, 2001; Cowin, 2001; Hellmich et al., 2004). To analyze the
dependence of the bone properties on its structure, trabecular
architectures were idealized as open and close cell high porosity
models (Gibson, 1985; Keaveny, 1997; Kabel et al., 1999b). Non-
destructive imaging methods such as X-ray and micro-CT, have been
developed to predict the mechanical properties of the bone from its
structure by correlating measured by X-ray or CT structural para-
meters with results of mechanical tests or numerical simulations
ll rights reserved.
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(Kabel et al., 1999a). Bone morphology was related with ultrasound
propagation, methods aimed at numerical recovery of bone density
and structural parameters from ultrasonic data have been developed
(Chaffai et al., 2002; Padilla and Laugier, 2005; Padilla et al., 2008;
Fang et al., 2007; Buchanan et al., 2003, 2004; Gilbert et al., 2009).

Mechanical properties of bone are linked with bone volume,
fabric tensor, and anisotropy (Cowin, 1985; Hodgskinson and
Currey, 1990; Zysset et al., 1998; Goulet et al., 1994; Van
Rietbergen et al., 1998; Borah et al., 2000). Relationships between
the elasticity tensor, structural density, and the invariants of the
fabric tensor were developed in Cowin (1985), Turner et al. (1990)
and Kabel et al. (1999a). Statistical correlations of structural and
elastic parameters give significant correlation coefficients for
particular bone samples; however, in general, they could be not
applicable to another bone sample (Van Rietbergen et al., 1998; Van
Rietbergen and Huiskies, 2001). Though the trabecular morphology
determines the elastic properties of cancellous bone, not many
analytical models are available to relate the properties and
morphology (Kabel et al., 1999a).

Spectral measure method of characterization of bone structure
is a method that provides relations between structural parameters
and electric and viscoelastic properties. It is based on results of
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Fig. 1. At the microscale, cancellous bone is a heterogeneous composite material

formed of trabeculae and bone marrow. Photograph of trabecular bone is courtesy of

Scott C. Miller.
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forward and inverse homogenization for materials with micro-
structure. This method is not site specific, it relies neither on
correlation analysis nor on assumptions about a particular mor-
phology of bone. Based on analytical relations and characterization
of resonances of the bone structure, spectral measure method
provides a basis for relating microstructural parameters to effective
electric, elastic, and viscoelastic behavior of bone as well as for
modeling and predicting bone structure from electrical, mechan-
ical, and potentially, ultrasound data.

Mechanical behavior of a composite material depends on
properties of the components as well as on the microarchitecture.
Various approaches to calculation of effective properties from
known microstructural information, have been developed using
homogenization theory (Sanchez-Palencia, 1980; Hollister et al.,
1994; Bergman, 1993; Zoui, 2002; Milton, 2002). One of the
methods developed for bounding the effective complex permittiv-
ity of a composite formed by two materials with given complex
permittivity, used the analytic Stieltjes representation of the
effective property (Bergman, 1978, 1980; Milton, 1980; Golden
and Papanicolaou, 1983). The Stieljtes representation analytically
relates the effective properties to microstructural information
through the spectrum of a corresponding linear operator. Specifi-
cally, the moments of the spectral measure in this representation
are linked to the n-point correlation functions of the microstruc-
ture. Another important feature of the Stieltjes representation of
the effective properties is that it factors out the dependence on the
constituents in the composite from the dependence on the micro-
geometry. The information about the microstructure is contained
in the spectral measure in the Stieltjes representation of the
effective properties. This feature of the Stieljtes representation
allows us to recover microstructural parameters from effective
properties using inverse homogenization. The inverse homogeni-
zation is based on the recovery of the spectral measure which
contains information about the microgeometry (Cherkaev, 2001).
Once the spectral measure is known, it can be used to characterize
the bone morphology. The spectral measure can be constructed
directly from the images obtained from regular CT or micro-CT,
or it can be recovered from non-invasive electric or viscoelastic
measurements over a range of frequencies.

The problem of extraction of structural information from
measured transport properties of composite materials was intro-
duced in McPhedran et al. (1982) for estimating volume fractions of
constituents in the composite. In Cherkaev (2001), identification of
structural information from measured effective property was
formulated as an inverse problem for the spectral measure in
the Stieltjes analytic representation. It was shown that the spectral
measure can be uniquely recovered from the measurements of the
effective property over a range of frequencies (Cherkaev, 2001).
Uniqueness of reconstruction of the spectral measure gives the
basis for the theory of inverse homogenization and the spectral
measure method (SMM). The term SMM was coined in Bonifasi-
Lista and Cherkaev (2009), where the method was used to estimate
bone porosity from data of complex conductivity of bone samples
numerically simulated using micro-CT images.

The analytic Stieljtes representation was extended to the
effective elastic properties of a composite material in Kantor and
Bergman (1982, 1984), Bergman (1985), Dell’Antonio et al. (1986),
Bruno and Leo (1993), Milton (2002) and Ou and Cherkaev (2006).
Stieltjes representation for the effective viscoelastic shear modulus
obtained from torsion of a viscoelastic cylinder whose microstruc-
ture does not depend on the axial direction, was derived in
Tokarzewski et al. (2001), Bonifasi-Lista and Cherkaev (2006a, b,
2008), assuming St.Venant principle and using mathematical
equivalency between conductivity problem and elastic torsion of
such cylinder. In Tokarzewski et al. (2001), this representation was
used to bound the effective shear modulus of cancellous bone
filled with bone marrow. Based on this representation, the inverse
homogenization approach was applied in Bonifasi-Lista and
Cherkaev (2006a, b, 2008), and Bonifasi-Lista et al. (2009) to
successfully recover porosity of cancellous and compact bone from
simulated measurements of the viscoelastic shear modulus for the
simplified model of bone viewed as a cylinder, filled with viscoe-
lastic composite of trabecular tissue and bone marrow, realistic
data were simulated using micro-CT images of cancellous bone.
2. Mathematical methods

2.1. Spectral measure method

We consider bone as a two component composite formed by
trabecular tissues and bone marrow and introduce a characteristic
function w of the subdomains occupied by one of the materials. In
bioelectrical applications, low frequency electric fields are used in
practice, the appropriate parameter characterizing properties of
the medium, is complex conductivity s. The complex conductivity
s of the medium is modeled by a function sðxÞ ¼ s1wðxÞþ
s2ð1�wðxÞÞ, where si,i¼ 1,2, is complex conductivity of the i-th
material, bone marrow or trabecular tissue, and the characteristic
function w¼ wðxÞ takes values 1 if x is in the region of first material,
bone marrow, and zero if x is in the region occupied by the second
material. The effective tensor r� is a coefficient of proportionality
between the averaged electric and displacement fields: /JS¼
s�/ES, and the electric field is governed by equation: r �
ðs1wðxÞþs2ð1�wðxÞÞÞE¼ 0: Introducing s¼ 1=ð1�s1=s2Þ, the deri-
vation of the Stieltjes representation uses a spectral decomposition
of an operator Gw¼rð�DÞ�1

ðr�Þw, and results in the integral
representation for a function FðsÞ ¼ 1�s�=s2 as an analytic function
off [0, 1)-interval in the complex s-plane:

FðsÞ ¼

Z 1

0

dZðzÞ
s�z

ð1Þ

Here the function Z is the spectral measure of the self-adjoint
operator Gw, which contains information about the structural
parameters. The spectral function Z can be uniquely reconstructed
if measurements of the effective properties of the composite are
known along some arc in the complex s-plane (Cherkaev, 2001).
Such data can be obtained from effective measurements in an
interval of frequency provided the properties of the constituents
are dependent on frequency. The spectral moments Zn of the
spectral measure Z,

Zn ¼

Z 1

0
zn dZðzÞ, Z0 ¼

Z 1

0
dZðtÞ ¼ p1 ð2Þ
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can be used to characterize the microgeometry of bone. In
particular, the zero moment Z0 of the function Z gives us the
volume fraction p1 of the first component, bone marrow or
trabecular tissue, depending on how the problem is formulated.

A representation similar to (1), is valid for torsion of a viscoelastic
cylinder in which the microstructure does not depend on the axial
direction. If the effective viscoelastic shear modulus of such com-
posite is given by a complex number m�, and mi,i¼ 1,2, are the
complex shear moduli of the constituents, the Stieltjes representa-
tion (1) holds for a function FmðsÞ ¼ 1�m�=m2 with s¼ 1=ð1�m1=m2Þ:

The spectral function Z in the representation (1) relates various
properties of the composite. If the function Z is known from the
electric measurements, the effective viscoelastic modulus of bone
can be easily estimated by calculating the following integral:

m� ¼ m2�m2FmðsÞ ¼ m2�m2

Z 1

0

dZðzÞ
s�z

ð3Þ

with s¼ 1=ð1�m1=m2Þ: An example of such relation or coupling
between complex permittivity and thermal conductivity was
considered in Cherkaev (2003) and Cherkaev and Zhang (2003),
where thermal conductivity of sandstone was estimated using
measurements of its effective permittivity. This spectral coupling
might provide a way to indirectly calculate bone properties which
are difficult to access directly, such as thermal conductivity,
diffusion, or bone permeability.

2.2. Stieltjes analytical representation for viscoelastic properties

Here we generalize the Stieltjes representation for effective
viscoelastic modulus to the case of general loading. In particular,
this representation works for uniaxial loading which is an impor-
tant case in various experimental setups. We assume that (i) the
constituents are isotropic materials with the same elastic bulk
modulus k, (ii) one of the materials (bone marrow) has viscoelastic
shear modulusm1, (iii) the shear modulusm2 of the second material
(trabecular tissues) is elastic. We use here the Einstein summation
convention of summing on repeated indices.

LetO be a domain filled with a heterogeneous material composed
of two phases, viscoelastic material C1 in a subdomain O1 and elastic
phase C2 in the region O2. Consider a boundary value problem for
vector of displacement u in a domain O with boundary @O:

sij,j ¼ 0 in O ð4Þ

sij ¼ Cijklekl in O ð5Þ

ui ¼ e0
ijxj on @O ð6Þ

Here e and s are tensors of strain and stress, respectively, strain e is a
symmetrized gradientrs of displacement, e¼rsu¼ ðruþ ruT Þ=2,
and e0 is a constant strain tensor. The fourth order tensor C is the
stiffness tensor which depends on the properties of the phases and
the characteristic function w¼ wðxÞ of domain O1 occupied by
bone marrow tissue, the function wðxÞ takes values 1 if xAO1 and
zero if xAO2, where O2 is the region occupied by the trabecular
tissue. Using this function w, we represent the tensor C as
CðxÞ ¼ wðxÞC1þð1�wðxÞÞC2. Without loss of generality, we assume
that the domain O has unit volume, jOj ¼ 1, and introduce an
operation of averaging /fS of a function f over the domain O,
/fS¼

R
Of ðxÞ dx. We notice that solution of the problems (4)–(6)

satisfies /eS¼ e0.
The effective viscoelastic tensor C* is introduced as a coefficient

of proportionality between the average strain and stress. Using
Eq. (5), the average stress /sS can be written as

/sijS¼
Z
O
sijðxÞ dV ¼ C�ijkle

0
kl ð7Þ
here,

C�ijkl ¼

Z
O

CijmnðxÞeðklÞ
mnðxÞ dV ð8Þ

and

C�ijkle
0
kl ¼

Z
O

CijmnðxÞeðklÞ
mnðxÞe

0
kl dV ¼

Z
O

CijmnðxÞemnðxÞ dV ð9Þ

Using contraction notation, this can be written as

C� : e0 ¼ C�ijkle
0
kl ¼

Z
O

CijmnðxÞemnðxÞ dV ¼

Z
O

CðxÞ : eðxÞ dV ð10Þ

Isotropic elastic (or viscoelastic) tensor can be represented as

Cijkl ¼ kdijdklþmðdikdjlþdildjk�
2
3dijdklÞ ð11Þ

We introduce isotropic fourth order projection tensorsLh andLs as

fLhgijkl ¼ dijdkl, fLsgijkl ¼ dikdjlþdildjk�
2

3
dijdkl ð12Þ

Here, dij is the Kronecker delta. The tensors Lh and Ls are
hydrostatic and deviatoric projections onto the orthogonal sub-
spaces of the second order tensors comprised of tensors propor-
tional to the identity and trace-free tensors. Using these
projections, the isotropic properties Ci of materials in the domain
Oi can be written as

Ci ¼ kLhþmiLs, i¼ 1,2 ð13Þ

Now we rewrite problem (4) in the following form:

r � ðwðxÞC1þð1�wðxÞÞC2Þ : e¼ 0 ð14Þ

Using (13) we have

r � ðkLhþðm1wðxÞþð1�wðxÞÞm2ÞLsÞ : e¼ 0 ð15Þ

Eq. (15) can be written in terms of a complex parameter s,
s¼ m2=ðm2�m1Þ, as

r �
k
m2

Lhþ 1�
1

s
w

� �
Ls

� �
: e¼ 0 ð16Þ

By writing e as e¼ e0þr
sf, where f is vector perturbation, and

using k2 ¼ k=m2, we obtain

r � ðk2Lhþ1LsÞ : ðe0þr
sfÞ ¼

1

s
r � wLs : ðe0þr

sfÞ ð17Þ

The operator in the left-hand side is elastic operator with constant
coefficients, denoting it as Lðk2,1Þf¼r � ðk2Lhþ1LsÞ : r

sf, we
can rewrite the last problem in the following form:

Lðk2,1Þf¼
1

s
r � wLs : ðe0þr

sfÞ ð18Þ

Let G¼ ð�Lðk2,1ÞÞ�1 be the tensor Green’s operator for the isotropic
elastic problem with constant bulk modulus k2 and constant unit
shear modulus. Applying G to both sides of the previous equation,
then taking gradient and adding e0, we obtain

ðrsfþe0Þ�
1

s
rsGr � wLs : ðe0þrsfÞ ¼ e0 ð19Þ

Introducing operator G as G¼rsGðr�Þ , we express the strain e as a
function of GwLs

e�1

s
GwLs : e¼ e0 ð20Þ

We will take projection on deviatoric subspace

Ls : e�
1

s
Ls : GwLs : e¼Ls : e0 ð21Þ
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Let es be deviatoric projection of the strain e, es ¼Ls : e. Using
idempotence of projection operator, L2

s ¼Ls, we obtain

I�
1

s
Ls : GwLs

� �
: es ¼ e0

s ð22Þ

so that es ¼ sðsI�Ls : GwLsÞ
�1 : e0

s .
We notice here that introduced in this way operatorG¼rsGðr�Þ

with G¼ ð�Lðk2,1ÞÞ�1, is the analogue for elasticity of the operator
G¼rð�DÞ�1

ðr�Þ used in the problem for effective complex
conductivity.

The stiffness tensor in Lðk2,1Þ is real symmetric tensor. We can
check that Ls : GwLs is a self-adjoint operator with respect to inner
product /f ,gS¼/wf ijgijS where f, g are second order symmetric
strain tensors. We use f to denote the complex conjugate of f, and
/:S is the averaging operator.

Then we can use spectral representation and write es as

es ¼

Z 1

0

sðdQðzÞLse0Þ

s�z
ð23Þ

where Q is the projection valued measure of the operator LsGwLs.
Now exploiting this integral representation for es and using
e0

s ¼Ls : e0, we derive spectral representation for function F(s)
which we define as

FðsÞ ¼
e0 : C2 : e0�e0 : C� : e0

e0
s : C2 : e0

s

¼
e0

ijC
2
ijkle

0
kl�e

0
ijC
�
ijkle

0
kl

m2Je0
s J

2
ð24Þ

since e0
s : C2 : e0

s ¼ m2e0
s : e0

s ¼ m2Je0
s J

2.
A direct calculation using (24) gives

FðsÞm2Je0
s J

2
¼ e0 : C2 : e0�e0 :

Z
O

CðxÞ : eðxÞ ¼ ð25Þ

e0 : C2 : e0�e0 : C2 : e0þe0 : m2

Z
O

1

s
wLs : eðxÞ ¼ ð26Þ

e0 :

Z
O

Z 1

0

1

s
wLs

sm2ðdQ ðzÞLs : e0Þ

s�z
¼

Z 1

0

m2/dQ ðzÞe0
s ,e0

s S
s�z

ð27Þ

where we used definition of the inner product in the last step. Let es

be a unit strain tensor:

es ¼
Ls : e0

JLs : e0J
¼

e0
s

Je0
s J

ð28Þ

then we can rewrite the integral representation for FðsÞ as

FðsÞ ¼ ðm2Je0
s J

2
Þ
�1
Z 1

0

m2/dQ ðzÞe0
s ,e0

s S
s�z

ð29Þ

¼ Je0
s J
�2
Z 1

0

/dQ ðzÞes,esSJe0
s J

2

s�z
¼

Z 1

0

/dQðzÞes,esS
s�z

ð30Þ

By introducing the spectral measure dZðzÞ ¼/dQ ðzÞes,esS, we
obtain the representation

FðsÞ ¼
e0 : C2 : e0�e0 : C� : e0

e0
s : C2 : e0

s

¼

Z 1

0

dZðzÞ
s�z

ð31Þ

The derived representation allows us to extend the theory to
mechanical and ultrasonic applications.

2.3. Inverse problem for the spectral measure

Information about bone morphology is contained in the
spectral measure of the Stieltjes representation and in the spectral
moments. Evaluation of first several moments of the spectral
function was discussed in McPhedran et al. (1982), McPhedran
and Milton (1990), Engstrom (2006), and Cherkaev and Ou (2008),
analytic inverse bounds on the volume fraction of one material in
the composite were derived in Cherkaeva and Tripp (1996), Tripp
et al. (1998), and Cherkaeva and Golden (1998), the spectral
function was reconstructed from effective permittivity in particu-
lar applications (Day and Thorpe, 1999; Day et al., 2000; Cherkaev
and Zhang, 2003; Zhang and Cherkaev, 2008). The problem of
reconstruction of the spectral measure is ill-posed, which means
instability of the solution to small errors in the measurements,
therefore a regularized algorithm is needed to recover a stable
numerical solution (Cherkaev, 2001, 2003; Zhang and Cherkaev,
2009).

Computation of the spectral function Z is mathematically
analogous to the analytic continuation and inverse potential
problem. Indeed, the reconstruction of the spectral measure Z
can be reduced to an inverse potential problem by representing the
function F(s) using logarithmic potential of the measure Z
(Cherkaev, 2001)

FðsÞ ¼
@

@s

Z 1

0
lnjs�zj dZðzÞ, @=@s¼ ð@=@x�i@=@yÞ ð32Þ

To construct the solution we formulate the minimization problem:
JAZ�FJ-min where A is the integral operator in (32). Ill-posedness
of the problem manifests itself in the absence of continuous
dependence of the solution on the data: the operator A�1 is
unbounded, this leads to large variations in the solution even for
very small variations in the data, numerical algorithms become
unstable, the problem requires regularization. Regularization
algorithm is based on constrained minimization. It introduces a
stabilization functional which constrains the set of minimizers. As a
result, the solution depends continuously on the input data, the
numerical algorithm is stable. Introducing s¼ xþ iy and separating
real and imaginary parts of function F(s), we obtain

ReðFðsÞÞ ¼

Z 1

0

ðx�zÞ dZðzÞ
ðx�zÞ2þy2

, ImðFðsÞÞ ¼ �

Z 1

0

y dZðzÞ
ðx�zÞ2þy2

ð33Þ

We reformulate the problem as an unconstrained minimization
using a Lagrange multiplier. In case of a quadratic stabilization
functional, the minimization problem takes the following form
equivalent to Tikhonov regularization with regularization para-
meter a : mingARn fJKg�f J2

2þaJgJ2
2g. Here K is discretized integral

operator corresponding to real or imaginary part of F(s) in integral
representation (33). Function f is either real or imaginary part of
F(s) obtained experimentally, and g is the discretization of
dZðzÞ ¼ gðzÞdz. One of the ways to find the minimizer is to solve
the Euler equation, ga ¼ ðK�KþaIÞ�1K�f . An alternative regulariza-
tion algorithm uses nonnegativity constraint for function g. Indeed,
the spectral measure in (1) is a nondecreasing function, hence g is a
nonnegative function. Both these methods give similar results in
the numerical experiments we describe in the next section.
3. Results

For validation of the method, we simulated data using micro-CT
images of trabecular bone. The effective complex permittivity,
effective complex shear modulus, and Young modulus of the 2D
bone samples were calculated using finite element method. One of
the micro-CT images is shown in Fig. 2. The effective shear and
Young moduli were calculated assuming cylinder model with
properties constant along the axial direction. For the electrical
problem, we used available data on conductivity and permittivity
of trabecular and marrow tissues (Gabriel et al., 1996a, b). We
assumed that s1 was the complex conductivity of the bone tissues,
and s2 was the complex conductivity of bone marrow.

In the first series of numerical experiments, simulated con-
ductivity values were used as data for the spectral measure
reconstruction algorithm. Fig. 3 presents spectral function for
bone sample shown in the micro-CT image in Fig. 2. The spectral
function was calculated from real and imaginary parts of F(s)
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Fig. 2. One of the micro-CT images of a T12 vertebra used in the numerical

simulations. The subdomain O1 is filled with bone marrow, O2 is filled with

trabecular tissue. Micro-CT images are courtesy of Yener N. Yeni and his group.
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bone sample shown in the micro-CT image (see Fig. 2). Numerically simulated data

for complex conductivity were used. Different curves correspond to the functions

recovered using different techniques.

Table 1
Calculated estimates of bone volume Vtrue for several bone samples using

electric data.

Vtrue VRT VIT VRN VIN Vav

0.0740 0.0777 0.0753 0.0757 0.0759 0.0762

0.0743 0.0746 0.0713 0.0751 0.0729 0.0734

0.0755 0.0743 0.0763 0.0743 0.0763 0.0753

0.1012 0.1041 0.1009 0.1041 0.1010 0.1025

VRT and VIT columns show results of calculation using Tikhonov regularization, VRN

and VIN stand for results with nonnegativity constraint, R or N in the heading

indicates real or imaginary part of F(s) used in calculation, Vav is the average bone

volume.
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moments can be used to characterize the bone structure.
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Fig. 5. Complex shear modulus of the bone sample shown in the micro-CT image

(see Fig. 2) recovered from the real part of the complex conductivity of this sample.

Crosses show recovered properties, circles/squares mark the true properties

simulated directly from the micro-CT image. Real part is shown by circles, squares

indicate imaginary part.
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using Tikhonov and nonnegativity regularization. We used recov-
ered spectral function to estimate bone volume by calculating
zeroth moment of the function Z.

Results presented in Table 1, show that the bone volume is
recovered very accurately with an error less than 0.1%. Table 1
shows the recovered volume fraction of trabeculae V for four
different specimens of trabecular bone. True porosity of the
samples was determined digitally from micro-CT scans.
The reconstructed spectral function can be characterized by its
spectral moments. Fig. 4 shows moments of the spectral function
presented in Fig. 3. The bone spectral moments are given by the
pluses. For comparison, asterisks show moments of the spectral
function of Maxwell–Garnett composite of the same porosity.
Maxwell–Garnett composite is a composite with well-separated
inclusions, its effective conductivity is given by an analytic formula.
This composite has a very different structure. The corresponding
sequences of the moments shown in Fig. 4 are quite different as
well. Large difference between the sequences of the moments
indicates that the spectral moments can be used to characterize the
bone structure.

The next series of numerical experiments was performed to
verify the spectral coupling by comparing complex shear modulus
calculated using spectral function recovered from electric data, and
viscoelastic shear modulus computed using FEM. To calculate
viscoelastic properties of bone, we considered cancellous bone
as a composite of trabecular tissue and bone marrow. We used the
model of viscoelastic shear modulus for bone marrow developed in
Bonifasi-Lista et al. (2009). Comparison of the shear values
obtained with two different methods is presented in Fig. 5.

To study the integral representation derived in Section 2, we
numerically simulated measurements of Young modulus for the



Table 2
Calculated estimates of bone porosity Ptrue for several bone samples using simulated

measurements of Young modulus.

Ptrue PRT PRN Pav

0.8987 0.8758 0.8900 0.8829

0.9245 0.9066 0.9227 0.9147

0.9257 0.9025 0.9184 0.9104

0.9338 0.9072 0.9233 0.9152

PRT and PRN columns show results of calculation using Tikhonov and nonnegative

regularization, Pav is the calculated average porosity.
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same 2D samples due to uniaxial loading. The Young modulus data
were used to calculate the corresponding function F(s) (31) and to
recover elastic spectral function Z in Eq. (31) by solving inverse
problem for the real part of the integral equation. The zeroth
moment of the function Z gives us the porosity of bone. In Table 2,
we show estimates PRT, PRN, and their average Pav, of bone porosity
Ptrue, calculated from simulated measurements of Young modulus.
The numerically predicted porosity values are in good agreement
with the true values.
4. Discussion

Our viscoelastic representation derived in Section 2 uses an
assumption of equality of the bulk moduli of the components. This
assumption allows us to simplify the problem and make it
amendable to mathematical analysis. We believe that the assump-
tion of equal bulk moduli should not be too restrictive because the
largest difference is in shear moduli of trabeculae and marrow. The
ratio of the bulk modulus of solid bone matrix (14 GPa) and the bulk
modulus of bone water or marrow (2.3 GPa) is around six. In
comparison, the ratio of shear moduli is of order 108 (shear
modulus of bone is 5 GPa, of marrow is around 200 Pa). The
developed representation extends the theory to other applications
such as creep experiments and ultrasonic testing.

In all calculations, we used data without noise, only
computational noise was present. The method requires a priori
knowledge of the properties of trabeculae tissue and marrow,
which in practice could be known with some uncertainty, since
these properties are subject-specific and depend on pathologic
conditions. Extensive study of stability of the algorithm in
Bonifasi-Lista and Cherkaev (2008) and Bonifasi-Lista et al.
(2009), shows that the bone porosity is accurately recovered even
in the presence of high level of uncertainty or errors in the data
and estimates of the properties.

We notice that the electric and elastic spectral functions are
different functions. However, they coincide in the case of torsion of
a cylinder whose microstructure does not depend on the axial
direction. Calculations of viscoelastic properties from electric
spectral function, were performed with assumption that the
microgeometry does not change along the third direction. This
simplified bone model allows us to see new effects in modeling
relations between bone’s heterogeneous structure and effective
electric and viscoelastic properties. Calculated from electric spec-
tral function, the SMM prediction of the complex viscoelastic shear
modulus and the FEM simulated modulus are in excellent agree-
ment. The method of estimation of viscoelastic modulus from
electric data might provide a non-invasive tool to assess fracture
risk in bones. These numerical results demonstrate potential for
use of the SMM for indirect evaluation of bone properties which are
difficult to measure directly.

In the present paper, all calculations were done in 2D. In 3D case,
we can use the same inversion method for the spectral measure,
but to simulate the measurements we need to solve the 3D forward
problem, which is computationally more intensive. In general case
of 3D material, the viscoelastic spectral function is different from
the electric spectral function. We expect that the electric and elastic
spectral functions of bone should be similar because they corre-
spond to the same trabecular structure, however, establishing
relations between them is a future research topic. Another future
direction of research is to relate the recovered spectral function and
its moments to clinically relevant parameters of characterization of
cancellous bone architecture such as trabeculae thickness, spacing,
connectivity, surface density.
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