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Analytical Approach to
Recovering Bone Porosity From
Effective Complex Shear Modulus
This work deals with the study of the analytical relations between porosity of cancellous
bone and its mechanical properties. The Stieltjes representation of the effective shear
complex modulus of cancellous bone is exploited to recover porosity. The microstructural
information is contained in the spectral measure in this analytical representation. The
spectral function can be recovered from the effective measurements over a range of
frequencies. The problem of reconstruction of the spectral measure is very ill-posed.
Regularized algorithm is derived to ensure stability of the results. The proposed method
does not use any specific assumptions about the microgeometry of bone. The approach
does not rely on correlation analysis, it uses analytical relationships. For validation
purposes, complex shear modulus over a range of frequencies was calculated by the finite
element method using micro-computed tomography (micro-CT) images of human cancel-
lous bone. The calculated values were used in numerical algorithm to recover bone
porosity. At the microlevel, bone was modeled as a heterogeneous medium composed of
trabeculae tissue and bone marrow treated as transversely isotropic elastic and isotropic
viscoelastic materials, respectively. Recovered porosity values are in excellent agreement
with true porosity found from the corresponding micro-CT images.
�DOI: 10.1115/1.4000082�

Keywords: cancellous bone, viscoelastic composite, porosity, inverse problem, bone
marrow, spectral representation
Introduction
Mechanical behavior of a composite material depends on pa-

ameters of its microstructure such as number and volume frac-
ions of its constituents and their relative arrangement at the mi-
rolevel. Different approaches have been developed to calculate
ffective material properties from microstructural information
1,2�. Bone is a hierarchical composite whose mechanical proper-
ies are scale-dependent. Its effective mechanical properties and,
herefore, the ability of bone to withstand fracture depend on its
tructural organization. Micro-macro strategies are becoming
ore important for the mechanical characterization of bone �3,4�.
he influence of porous structure on the elastic properties was
nalyzed in Ref. �5� and used to estimate partial porosities from
verall elastic moduli for a particular type of morphology of cor-
ical bone.

Bergman �6� introduced an analytical Stieltjes representation
or the effective complex permittivity of a two component mix-
ure. This representation was exploited to bound effective permit-
ivity of composites given information �volume fraction� about its
onstituents �6–8�. Later, this approach was used to derive bounds
or the effective elastic properties of a composite material �9,10�.
his technique was recently applied in biomechanics to calculate
ounds for the effective shear modulus of cancellous bone filled
ith bone marrow subjected to torsion within the framework of

inear viscoelastic isotropic materials �11�.
The Stieltjes representation analytically relates effective prop-

rties to microstructural information through the spectrum of a
inear operator that naturally arises in the problem �6,8�. Using
his representation, bounds for effective properties of composite
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material can be derived from information about its constituents
�properties, volume fractions, and type of symmetry�. These tech-
niques are very successful when the constituents of the compos-
ites have a low contrast ratio. For high contrast constituents,
bounds are very broad, which restrict their use. This fact has pre-
vented the use of this technique in biomechanics where constitu-
ents usually have very different mechanical properties such as in
cancellous bone considered as a composite of trabecular tissue
and bone marrow. The Stieltjes representation can also be used to
recover microstructural information of clinical relevance from ef-
fective properties. In this line of research, a method called inverse
homogenization was developed to estimate parameters of the mi-
crostructure of the composite medium using measurements of the
effective complex permittivity �12�. The method is based on the
reconstruction of the spectral measure in the Stieltjes analytic rep-
resentation �13,12�. The spectral measure contains all information
about the microgeometry. It was shown that the spectral measure
can be uniquely recovered from the measurements of the effective
property over a range of frequencies �12�. However, the recon-
struction requires regularization because the problem is ill-posed.
After recovery of the spectral function, geometric parameters can
be calculated. In particular, the zero moment of the spectral func-
tion equals to the volume fraction of one of the components;
higher order moments contain further microstructural information
�6,8,14�. This method was successfully applied to estimation of
brine volume in sea ice from measurements of effective permit-
tivity in Ref. �15�, where comparison with laboratory measure-
ments of the brine volume of sea ice demonstrated an excellent
agreement. The advantage of the method is that no a priori infor-
mation about the microstructure is needed.

Within the framework of linear viscoelasticity, the inverse ho-
mogenization method was used to successfully recover the poros-
ity of cancellous and compact bone from measurements of its
complex shear modulus. Bone microstructures were idealized as
third rank laminates or as a hexagonal array of cylinders �16–18�.

Idealized micro-architecture was used in these studies for valida-
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ion purposes. The ill-conditioning of the problem might change
rastically with real microgeometry. In the present paper, we used
icro-CT images of real bone microstructures to address this

roblem. The developed method does not use any specific as-
umptions about the microgeometry of the composite and is ap-
licable to any two-phase composite medium. In the absence of
xperimental measurements of the effective shear modulus, we
sed finite element method numerical simulations to calculate
omplex shear modulus of cancellous bone for different frequen-
ies. In any case, experimental validation is very expensive and
ime consuming, and computer simulations performed at the first
tage of validation can save time and money. Besides the data of
he complex shear modulus of cancellous bone, the method re-
uires a priori knowledge of the properties of the constituents
trabeculae tissue and bone marrow�, which in practice could be
nown with some uncertainty. These properties are subject-
pecific and depend also on pathologic conditions. To address this
ssue, normally distributed random functions were added as noise
o simulate uncertainty in the properties of the constituents. A
ifferent normally distributed random function was added to the
ffective complex modulus to simulate possible experimental er-
ors. We used these data as input for the developed method and
econstructed the spectral function by solving inverse problem.
hen the bone porosity was calculated as a zero moment of the
pectral function. Results of numerical simulations show that the
alues of porosity calculated from the effective shear modulus are
n good agreement with the model values even for data with high
evel of uncertainty.

The outline of the paper is as follows: first, in Sec. 2, we very
riefly introduce the Stieltjes representation for the effective com-
lex shear modulus of a heterogeneous material. Next, we develop
he forward model, which is used to determine the effective prop-
rties of cancellous bone from properties of its constituents: tra-
ecular tissue and bone marrow. In Sec. 4, we present the inverse
lgorithm used to recover porosity from given effective properties.
ection 5 contains the results of numerical simulations and dis-
ussion.

Spectral Representation of Effective Material Prop-
rties

A Stieltjes function with special analytical properties represent-
ng the effective complex permittivity �� of a two component
ixture was introduced to derive bounds for the effective complex

ermittivity of a binary composite material �6–8�. The Stieltjes
nalytical representation was also used to extract specific informa-
ion about the microstructure �19,20,15,21,13,12,22�. This repre-
entation of the effective permittivity of the composite depends
xplicitly on the properties of its constituents �1 and �2 through a
omplex variable s defined in terms of the permittivity of the
aterials in the mixture. For a binary composite, the representa-

ion for a function F�s�=1−�� /�2 is �6,14�

F�s� = 1 −
��

�2
=�

0

1
d��t�
s − t

, where s =
1

1 − �1/�2
�1�

ere �� is the effective complex permittivity of the mixture and �i
s the permittivity of the ith material, i=1,2. This representation is
alid for other physical properties such as diffusivity and electri-
al or thermal conductivity. The nth moment �n of the function �
s

�n =�
0

1

tnd��t� �2�

t was proved �6,8� that the zero moment of the measure � gives
he volume fraction of one of the components. Higher order mo-

ents give further microstructural information �14,23�.
In Refs. �9,10�, this Stieltjes representation was generalized for
he case of elastic properties. However, due to the higher order of
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tensors involved in continuum mechanics, the relation between
the variable s in Eq. �1� and the properties of the constituents is
more complicated. An exception is the case of torsion where the
problem can be reduced to the form similar to the problem for
complex permittivity. Under simple assumptions on torsion be-
havior of the composite, Tokarzewski et al. �11� showed that for
linear viscoelastic constituents, the effective complex shear modu-
lus has the Stieltjes representation of F�s� of the form of Eq. �1�
with s retaining its connection with the properties of the constitu-
ents. The proof involves two-scale asymptotic expansions of the
displacement vector and is done under the supposition that the
composite follows Saint-Venant assumptions for torsion. This
Stieltjes representation for complex shear modulus is valid as long
as the constituents in the microstructure are isotropic or/and trans-
versely isotropic, and it is independent of the relative arrangement
of the constituents. In other words, the composite at the mac-
rolevel can have any symmetry or none at all �18�. The method is
valid for two-dimensional �2D� sections of composite and also for
three-dimensional �3D� volumes as long as the Saint-Venant prin-
ciple for torsion holds �11,18�. In this case, the Stieltjes represen-
tation is given exactly by Eq. �1�, we recast it here in terms of
shear moduli

F�s� = 1 −
�eff

�

�2
=�

0

1
d��t�
s − t

, where s =
1

1 − �1/�2
�3�

Here �eff
� is the effective complex shear modulus of the compos-

ite, and �i is the complex shear modulus of material i, i=1,2. In
this case, the zero moment of the function � gives us the volume
fraction of one of the constituents

�0 =�
0

1

d��t� = p1 �4�

Here, p1 is the volume fraction of the constituent with shear
modulus �1. In our case it might be either the volume fraction of
bone marrow or of trabecular tissue depending on how the prob-
lem is formulated.

Summarizing, the spectral representation in Eq. �3� separates
information about the properties of the constituents contained in
variable s from geometric information about the bone morphol-
ogy. This geometric information is enclosed in the spectral func-
tion ��t�. This representation can be generalized to multimaterial
composites and used to bound their effective properties.

3 Effective Complex Shear Modulus of Bone: Forward
Model

In order to recover porosity using the spectral function ��t�,
experimental �in-vivo or in-vitro� values of effective complex
shear �� of cancellous bone and its constituents in a range of
frequencies are required. Five micro-CT scans of a T12 vertebra
of a 79 year old white male donor were used in this work. One of
the micro-CT images is shown in Fig. 1. In the absence of experi-
mental data, the effective complex shear modulus of the bone
samples was numerically calculated using the finite element
method. At the microlevel, we consider cancellous bone as a com-
posite of trabecular tissue and bone marrow. Trabecular tissue is
considered to be transversely isotropic, and bone marrow is mod-
eled as an isotropic fluidlike solid. Under the assumption that
cancellous bone satisfies the Saint-Venant principle for infinitesi-
mal torsion, the governing equation at the microlevel can be re-
duced to �18�

� · ��x� � U�x� = 0 in � �5�

Here U�x� is a potential function such that �U�x� is the shear
strain �, and ��x� is the complex shear modulus of the composite.
Having introduced a characteristic function ��x� that takes a value

of 1 if x is in the bone marrow phase, x��1, and 0 if x is in
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rabecular tissue, x��2, we can represent shear function ��x� as
�x�=��x��1+ �1−��x���2. Here, �1 and �2 are the complex

hear moduli of bone marrow and trabecular tissue, respectively.
otice, that �i is a complex function that depends on frequency.
The boundary conditions for partial differential equation �5� are

iven by a drop of potential U along the X1 axis and periodic no
ux conditions on the upper and lower edges of the domain �
�1��2 �see Fig. 1�.
The reduced governing Eq. �5� has the advantage that the entire
aterial property tensors are not needed, only the shear moduli of

one marrow and trabecular tissue are required to calculate the
istribution of shear strains and stresses in the sample. Proof of
he validity of the reduced governing equation can be found in
efs. �11,18�. Equation �5� was solved by the finite element
ethod implemented in COMSOL MULTIPHYSICS for real bone mi-

rostructures retrieved from the micro-CT scans.
The effective shear modulus of cancellous bone can be calcu-

ated from the distribution of numerically determined stresses and
trains through the following relation:

��� = ����� �6�

ere, � and � are the shear stress and strain, and the sign � · �
epresents the averaging operation such that

��� =
1

V�
�

�dV �7�

ith V being the volume of the computational domain �.
For validation purposes, we compared the finite element imple-
entation with the analytical solution for hexagonal cylindrical

rrays derived in Refs. �11,18�. In this validation study, the cylin-
ers were filled with trabecular tissue and the matrix material
epresented bone marrow. The results are in perfect agreement,
hey are shown in Fig. 2. The effective shear modulus of the
exagonal structure calculated using the finite element method is
hown by black circles, while the semi-analytical solution calcu-
ated using the method of Tokarzewski et al. �11� is given by the
olid line. The excellent agreement of the numerical results ob-
ained with two different methods justifies the use of the finite
lement method in calculations of the shear modulus for the real
one morphology.

3.1 The Shear Properties of Trabecular Tissue and Bone
arrow. Multidirectional properties in compression of human

rabecular tissue were recently determined with subnanometer res-
lution �24�. Results suggest that trabecular or cancellous tissue at
he microlevel can be represented as a transversely isotropic ma-
erial. Poisson ratios and elastic moduli in the longitudinal,

ig. 1 Example of a micro-CT scan of a T12 vertebra used in
he numerical simulations. The subdomain �1 is filled with
one marrow, and �2 is filled with trabecular tissue.
ostero-anterior and latero-medial directions of twenty one speci-

ournal of Biomechanical Engineering
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mens of cancellous bone tissue of seven fresh femoral heads were
reported in Ref. �24�. Using the constitutive theory of linear elas-
ticity we determined the shear modulus from the reported data.
For a transversely isotropic material with x3 taken as the axis of
symmetry, shear modulus �12 of trabecular is given by �12
=E12 / �1+�12� with �12=�12�12. Here, E represents the Young’s
modulus, and � is the Poisson ratio. Therefore, using data from
Ref. �24�, the shear modulus of trabecular tissue is calculated as
�12=�=2.23 GPa. This value was used in numerical simulations
with the finite element model. It is known that bone marrow is a
thixotropic material, but we do not model the thixotropic proper-
ties because we are interested in the steady state response of bone
marrow and not in the transient response between states for dif-
ferent strain rates. The fluid phase behaves as a Newtonian fluid
�25�. In shear, bone marrow presents a non-Newtonian behavior
due to the solid phase. However, this non-Newtonian behavior can
be modeled as piecewise linear, and it can be considered as linear
within a certain range of strain rate �26�. The solid part of bone
marrow is composed of cells whose viscoelastic properties can be
described by a standard linear solid model �27�. Unfortunately,
there are not enough experimental data to fully characterize the
non-Newtonian behavior of bone marrow. The model of bone
marrow we present here is derived from the non-Newtonian shear
rate dependent viscoelastic properties published in Ref. �26�. The
proposed model follows ideas similar to the one used in Ref. �28�
for modeling the non-Newtonian behavior of blood.

We model the shear response of bone marrow using a four-
parameter Maxwell model, which is composed of two parallel
Maxwell elements �see Fig. 3�; it behaves as viscoelastic fluid. Its
viscoelastic relaxation function depending on time t , t�0 consists
of two decaying exponentials characterizing the fading memory

G�t� = �
i=1

2

Gie
−t/	i �8�

Here Gi is the elastic spring constant of the ith Maxwell element,
	i is its relaxation time, and 	i=�i /Gi with �i representing the
viscosity or viscous resistance coefficient of the ith dashpot. The
corresponding complex shear modulus is given by

�1�
� = �
2 	 Gi


2	i
2

1 + 
2	i
2 + j

Gi
	i

1 + 
2	i
2
 �9�
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Fig. 2 Loss modulus of the effective complex shear corre-
sponding to hexagonal structure composed of cylinders filled
with trabecular tissue and matrix representing bone marrow.
Results calculated by finite element method of solution of Eq.
„5… are given by circles „�…, and the solid line „�… represents
the analytical solution derived in Ref. †11‡.
i=1
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here 
 is the frequency in rad/s.
To characterize the non-Newtonian behavior of bone marrow

ue to its solid part, we assume that �i depends on strain rate �̇

�i = �0,iTi��̇�, i = 1,2 �10�

��̇� is a degradation function that characterizes the non-
ewtonian behavior of bone marrow, and �0,i is the viscosity at

he ground state of equilibrium corresponding to the Maxwell el-
ment i. Properties in the ground state of equilibrium can be mea-
ured by the application of very small forces and deformations
hat do not disrupt the internal structure �28�. Sobotková et al. �26�
eported the steady flow viscosity �s��̇� for human bone marrow
solid+fluid parts�. The relation between the steady flow viscos-
ty and the ground state viscosity is given by

�0 = lim
�̇→0

�s��̇� �11�

o model the steady state flow viscosity of bone marrow, we
pproximated data reported in Ref. �26� using nonlinear regres-
ion. Our model for steady flow viscosity is the following:

�s��̇� = �
i=1

2

Pi��̇� where Pi��̇� = ai +
bi

�1 + e	i��̇−�i,0˙ ��c
, i = 1,2

�12�

ith ai, bi, and �i,0˙ being constants and �̇ being the strain rate. The
esults of the nonlinear regression analysis are given in Fig. 4. The

Fig. 3 Standard four-parameter Maxwell model
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ig. 4 Steady flow viscosity: filled circles � show values de-
ived from flow curve of human marrow „40 years old man… at
7°C †26‡; continuous solid line shows approximation obtained
y nonlinear regression using Eq. „12…. Correlation factor r2
0.99. Parameters for our model are listed in Table 1.
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values for the parameters are presented in Table 1. From Eqs. �11�
and �12�, we obtain the ground state viscosity as

�0 = �
i=1

2

�0,i = �
i=1

2

ai +
bi

�1 + e−	i�i,0˙ �c
�13�

In the absence of experimental data that would determine the deg-
radation functions Ti��̇� in Eq. �10�, we assume Ti��̇�= Pi��̇� as an
approximation. This has the advantage that the complex shear
modulus of bone marrow is very insensitive to changes of strain
rate between 10−5 s−1 and 10 s−1. This is the range where bone
marrow behaves as a Newtonian fluid �Fig. 4�, and this insensi-
tivity allows to approximate the strain rate dependent �i of our
model �Fig. 3� given in Eq. �10� using a fixed strain rate �̇ no
greater than 20 s−1 �linear regime�. In our simulations we set it to
10 s−1. In this way, for a sufficiently small range of frequencies in
harmonic motion, we can ensure that the maximum shear rate will
be less than 20 s−1 and therefore within the linear response of
bone marrow. Experimentally this can be achieved by reducing
the amplitude of the harmonic motion as the frequency increases.

We assume that the elastic coefficients of the model are not
strain rate dependent. The elastic constants are approximated us-
ing properties of fat tissue in breast. The instantaneous shear
modulus Gg of adipose tissue from breast was reported to be
around 0.5–25 kPa �29�. For the discussed Maxwell model, the
instantaneous modulus is given by

Gg = G1 + G2 �14�

To regard this condition, we assigned values for Gi in the model
such that their sum is equal to 25 kPa.

Having all the parameters for the model of bone marrow, we
calculate the shear complex modulus using Eq. �9�. Figure 5
shows the real and imaginary parts �storage and loss moduli, re-
spectively� of the complex shear modulus of bone marrow. Figure
6 shows the effective complex shear modulus of cancellous bone
calculated for one of the specimens.

The calculated values of the effective properties are quite low,

Table 1 Model parameters for the steady state flow viscosity
of bone marrow. Correlation factor r2=0.99.

i
ai

�Pa s�
bi

�Pa s�
	i
�s�

�̇i
�s−1� c

1 0.1687 0.1238 1.42511 18.1480 0.0184
2 0 0.1826 7.485029 17.6750 0.0184
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Fig. 5 Complex shear modulus for bone marrow: filled dots �

show storage modulus, and squares � indicate loss modulus
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ut this could be explained by specifics of the two-dimensional
roblem and the neglected connectivity of trabecular tissue. As it
as mentioned previously, due to our assumptions, the problem at

he microstructural level is reduced to solution of a partial differ-
ntial equation for a potential function. In the computational do-
ain, the trabecular tissue is completely surrounded by bone mar-

ow, and therefore the boundary conditions are directly applied to
one marrow. Due to the high viscosity of bone marrow, most of
he energy is dissipated before being transmitted to the trabecular
issue. However, our computational model is sufficient to address
he problem of effect of geometry in the spectral representation of
ffective complex shear modulus in terms of ill-conditioning of
he inverse problem.

Recovering Porosity: The Regularized Inverse Prob-
em

This section discusses the problem of recovering porosity and
he spectral function ��t� from measurements of the function F�s�
iven in Eq. �3�. It is shown in �12� that the spectral function � in
his integral representation can be uniquely reconstructed if the
ffective property of the composite is known along some arc in
he complex plane s. Such data can be obtained from measure-

ents in an interval of frequency provided that at least one of the
onstituents is frequency dependent �12�. This method was used
uccessfully to recover porosity of bone from effective shear
odulus for idealized bone microstructure �16,18�.
Function ��t� can be reconstructed either from the real or

maginary part of function F�s� using Eq. �3�. Using s=x+ iy and
eparating real and imaginary parts of function F�s�, we obtain

Re�F�s�� =�
0

1 �x − t�d��t�
�x − t�2 + y2 , Im�F�s�� = −�

0

1
yd��t�

�x − t�2 + y2

�15�

o find function ��t�, one needs to solve one of these integral
quations. However, the reconstruction problem is ill-posed. This
eans that small variations in the data or computational noise can

ead to arbitrary large variations in the solution. The high contrast
etween the properties of trabecular and bone marrow tissues tre-
endously increases ill-posedness of the problem, making the

alues of the complex variable s corresponding to measurements
t different frequencies to be very close to each other on the
omplex plane. In this case, previously developed regularization

10
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10
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10
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10
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10
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ig. 6 Effective complex shear modulus of cancellous bone
bone marrow+trabecular tissue… determined computationally
sing the finite element method. Values at only four frequen-
ies were computed and used in further calculations. Filled
ots � show storage modulus, and squares � indicate loss
odulus.
echniques do not work very efficiently. To deal with this problem,
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a change in variable t=ez is introduced. In terms of this new
variable z, integrals above can be rewritten as follows. The inte-
gral equation for the real part of the function F�s� is transformed
to

Re�F�s�� =�
−�

0 �x − ez���ez�
�x − ez�2 + y2ezdz �16�

and for the imaginary part:

Im�F�s�� = −�
−�

0
y��ez�

�x − ez�2 + y2ezdz �17�

Here, we have written d��t� as d��t�=��t�dt.
Assume that the values of effective complex modulus �� are

known at several frequencies, 
1 ,
2 , . . . ,
m. These data provide
discrete values of the function F�s� :F�s1� , . . . ,F�sm�. We dis-
cretize the integrals in Eqs. �16� and �17�, let K be such discreti-
zation of integral corresponding to either real part or imaginary
part of F�s� in Eqs. �16� and �17�. Let vector f be the correspond-
ing either real or imaginary part of F�sk�, k=1, . . . ,m, and vector
g contain the discretized values of function ��ez�. Solution of
integral equations given by Eq. �16� or Eq. �17� can be formulated
as a least-squares minimization problem. To ensure a stable solu-
tion of the ill-posed problem we introduce a stabilization func-
tional and formulate a regularized least-squares minimization
problem

min
g�Rn

��Kg − f�2
2 + 
�g�2

2
 �18�

Here � · �2 represents the Euclidean norm, and 
 is a regularization
parameter. Solution of minimization problem �18� is provided by
the Euler equation �30�

g
 = �KTK + 
I�−1KTf �19�

where KT is the transpose of K and can be expressed in terms of
the singular value decomposition �SVD� of the matrix K. Singular
value decomposition of K is given as

Km�n = Um�m�m�nVn�n
T

where the matrix � has nonzero entries si on the diagonal; these
values si are the singular values of K. The left singular vectors ui
are the column vectors of matrix U, and the right singular vectors
vi are the column vectors of matrix V. Using the pseudoinverse K+

of K, K+=V�+UT, where �+ is the transpose of � in which si is
replaced by si

−1, the solution g
 can be expressed in the form

g
 = �
i=1

m
si�ui

Tf�
si

2 + 

vi �20�

The regularization parameter 
 determines the weight of each
singular value of K in the reconstruction of the vector g. Param-
eter 
 must be chosen appropriately so that the solution is close to
the true solution. The L-curve method �30� was used to choose the
proper regularization parameter 
. This method consists in plot-
ting the log of the squared norm of the regularized solution,
log��g�2

2� against the log of the squared norm of the regularized
residual log��Kg− f�2

2� for a range of values of the regularization
parameter. This curve typically has an L shape, and the proper
value of the parameter 
 corresponds to the corner of this curve.
To find the corner point and the corresponding value of 
, we use
method of Hansen and O’Leary �31� who recommended picking
the point of maximum curvature. Once the approximation g to the
function � is reconstructed, the porosity can be recovered using
Eq. �4� rewritten in terms of ��z�

p1 =�0

��z�ezdz �21�

−�
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Results and Discussion
The minimization technique described above allows us to re-

over the spectral function � and therefore the porosity of cancel-
ous bone given the effective properties of bone and of its con-
tituents, trabecular tissue and bone marrow, in a range of
requencies. The forward model presented in Sec. 3 was used to
umerically simulate effective shear modulus �� of cancellous
one for each of the five specimens at five different frequencies in
range of frequencies from 102 Hz to 3�104 Hz. The shear
odulus of bone marrow was taken as �1, and �2 was assigned as

he complex modulus of trabecular tissue. These data were used in
he developed algorithm to calculate estimates for the bone poros-
ty. Results of reconstruction of porosity from real part of F�s� for
ll five specimens are shown in Table 2, where Ptrue corresponds
o the true porosity of the specimens, and Pcalc stands for the
ecovered value. No noise was added to the input data in this case,
nly computational noise was present.

In some cases, the L-curve algorithm that we used to determine
he appropriate value of the regularization parameter 
 suggests
everal possible values, more specifically, the corresponding cur-
ature curve, as the curvature graph shown in Fig. 7, has several
ocal maxima. Most of them give values of porosity outside the
nit interval, and hence they were automatically disregarded.
ithin the feasible range of porosities, only one maximum hap-

ens for most cases. In few cases, there were two or even three
axima whose corresponding porosities were taken as the lower

nd upper bounds for the true porosity. This is reflected in the
esults shown in Table 2, as well as in other calculated values
hown further.

The next series of numerical simulations was done to test the
obustness of the developed minimization technique. Effective
roperties �macroscale� can be determined experimentally in-vitro
nd estimated in-vivo within some error. Properties of bone mar-
ow and trabecular tissue �microscale� cannot be measured in-

able 2 Porosity recovered from real part of F„s…. No noise is
dded.

Ptrue Pcalc

0.9260 0.9422
0.9257 0.9177–0.9258–0.9333
0.9338 0.9539
0.9244 0.9527
0.8987 0.8984–0.9086

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

α

κ

•

•

Recovered Porosity = 0.9086

Recovered Porosity = 0.8984

ig. 7 Curvature � versus regularization parameter �. Two lo-
al maxima are shown together with the corresponding recov-

red porosities. True porosity=0.8987.
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vivo, and even though they can be tabulated from in-vitro experi-
ments, these tabulated values can differ from the true values
because they depend on physiological conditions and are subject-
dependent. To simulate this situation, different normally distrib-
uted random functions were added as “noise” to the material prop-
erties of bone marrow and trabecular tissue. Noise was also added
to the effective complex shear modulus �� determined using the
finite element method for the five samples to imitate possible ex-
perimental errors.

For three different specimens, Tables 3–5 show the recon-

Table 3 Calculated estimates Pcalc of bone porosity for speci-
men with true porosity 0.9260. Characteristics of noise added
to the material properties are reflected in noise� columns as
„mean±standard deviation….

Ptrue Pcalc noise�1
noise�2

noise��

0.9260 0.9545 3.31�2.33 3.72�2.91 1.96�1.33
0.9260 0.9629 8.24�6.14 7.99�7.23 18.94�16.57
0.9260 0.9612 13.27�9.32 11.89�9.31 2.61�1.47
0.9260 0.9437 10.35�6.86 11.31�9.08 9.34�5.63
0.9260 0.9612 20.60�15.34 15.99�14.47 6.35�5.52
0.9260 0.9588 30.07�22.48 27.18�22.43 5.70�6.62
0.9260 0.9122 27.81�24.68 37.16�23.99 27.15�20.69
0.9260 0.9470 41.39�22.45 31.49�18.88 8.53�4.97
0.9260 0.9328 41.39�28.02 45.07�37.30 5.04�5.88
0.9260 0.9566 43.19�31.33 27.36�17.79 18.19�12.17
0.9260 0.9405 51.60�42.60 42.16�31.14 37.91�26.95
0.9260 0.9450 48.80�29.85 52.22�36.51 50.56�22.13

Table 4 Calculated estimates Pcalc of bone porosity for speci-
men with true porosity of 0.9257. Characteristics of noise
added to the material properties are reflected in noise� col-
umns as „mean±standard deviation….

Ptrue Pcalc noise�1
noise�2

noise��

0.9257 0.9196–0.9354 2.62�2.40 2.14�1.38 2.50�1.55
0.9257 0.9402 9.27�5.58 9.77�6.94 7.85�4.69
0.9257 0.9463 29.03�18.68 17.78�15.56 11.17�7.14
0.9257 0.9348–0.9598 22.34�21.87 20.59�25.24 12.12�11.11
0.9257 0.9649 60.97�29.90 15.96�14.84 29.45�27.97
0.9257 0.9508 10.35�8.29 22.55�14.10 28.72�15.63
0.9257 0.9303 31.17�26.44 35.45�35.59 21.94�25.58
0.9257 0.9257 48.13�21.62 28.12�18.24 54.11�27.28
0.9257 0.9325 40.23�35.84 42.02�45.79 32.62�18.79
0.9257 0.9304 60.40�43.68 79.05�40.21 14.86�8.99

Table 5 Calculated estimates Pcalc of bone porosity for speci-
men with true porosity 0.8987. Characteristics of noise added
to the material properties are reflected in noise� columns as
„mean±standard deviation….

Ptrue Pcalc noise�1
noise�2

noise��

0.8987 0.8849 7.31�6.52 7.64�8.32 9.32�5.37
0.8987 0.8978–0.9246 11.72�4.85 15.41�7.95 13.25�7.38
0.8987 0.9113 18.57�18.69 14.86�12.66 17.84�7.87
0.8987 0.9337 35.23�25.48 46.11�23.45 14.86�8.99
0.8987 0.8812 42.85�32.92 27.91�22.89 30.97�29.75
0.8987 0.8959 34.65�13.80 47.44�23.96 32.56�30.75
0.8987 0.9385 60.56�18.00 35.26�22.04 36.07�36.81
0.8987 0.9205 41.95�12.84 46.25�31.29 23.66�17.45
0.8987 0.8529 48.19�25.56 44.00�26.29 38.99�34.44
0.8987 0.9298 46.88�58.62 63.35�37.49 27.23�23.97
0.8987 0.9219 55.08�32.15 70.70�47.04 29.56�21.94
Transactions of the ASME
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tructed porosity when uncertainty in material properties of trabe-
ular tissue and bone marrow were introduced as noise and noise
as added to the effective shear modulus. Estimates of bone po-

osity were computed from the real part of F�s� using information
t five different frequencies in the same range of frequency:
02–3�104 Hz. The true porosity is shown in the column with
eading Ptrue, calculated estimates are shown under Pcalc. Charac-
eristics of added noise are reported in columns noise� for �
�1 ,�2 ,�� as mean and standard deviation over the range of

requency for each specimen. Solutions reconstructed using regu-
arization technique depend on the regularization parameter 
.
he reconstruction results show that even with high percent of
rror in the values of the properties of the constituents and effec-
ive modulus, the algorithm was able to recover good approxima-
ions of the true bone porosity.

Numerical experiments show that the algorithm is very stable
ven in the presence of large errors in the estimates of the prop-
rties of the constituents and the effective property. This phenom-
non can be explained by the presence of the regularization filter.
ndeed, the space of data is spanned by the eigenvectors ui of the
atrix K. However, the noise is mostly projected onto the last

igenvectors. As the error level increases, the regularization pa-
ameter 
 increases as well, which results in filtering out compo-
ents of the solution projected on the eigenvectors corresponding
o the smaller eigenvalues due to the factor si / �si

2+
� in Eq. �20�.
he noise is filtered out together with these eigenvectors. The
ominant eigenvalues and eigenvectors are practically unaltered
hen noise is added, hence, the information stored in the first

igenvectors is recovered with almost no loss. The information
ontained in the dominant eigenvectors �usually the first and/or
econd one� is enough to recover porosity successfully. This can
e seen in Fig. 8 where after adding high levels of error �noise� to
he measurements on one of the specimens, the first eigenvector is
ot affected as much as the fourth eigenvector. In this case, the
orosity recovered from noisy data is 0.9279 whereas the true
orosity is 0.8987.

Conclusions
The paper presents a method for the calculation of porosity of

ancellous bone given the bone complex shear modulus and prop-
rties of bone marrow and trabecular tissue. The method is based
n the spectral representation of the effective complex shear
odulus of composite and reconstruction of the spectral function

n this representation; this function has information about the mi-
rostructure. We also introduced a forward model for cancellous
one �trabecular tissue and bone marrow�, this was done to nu-

(a)
1 2 3 4 5

−0.49

−0.48

−0.47
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−0.45

−0.44

−0.43

−0.42

−0.41

Fig. 8 Eigenvectors ui for i=1,4. Filled dots �
open circles � show eigenvectors calculated wi
noise�2

=30.82±15.91, and noise��=26.49±14.77.
value. „b… Eigenvector corresponding to the four
erically determine effective complex shear properties of bone

ournal of Biomechanical Engineering
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for different real microgeometries needed to validate the method.
Micro-CT images of cancellous bone were used in computations
of the bone effective properties. Numerical experiments show that
the algorithm is stable even in the presence of large errors in the
estimates of the properties of the constituents and the effective
complex shear modulus. The advantage of this approach is that no
a priori model of cancellous bone microgeometry is required.

Acknowledgment
We would like to thank Dr. Janardhan Yerramshetty for his help

with handling micro-CT images of cancellous bone that we used
in our numerical simulations. This work was supported by NSF
Grant No. DMS-0508901.

References
�1� Kouznetsova, V., Brekelmans, W. A. M., and Baaijens, F. P. T., 2001, “An

Approach to Micro-Macro Modeling of Heterogeneous Materials,” Comput.
Mech., 27�1�, pp. 37–48.

�2� Zaoui, A., 2002, “Continuum Micromechanics: Survey,” J. Eng. Mech.,
128�8�, pp. 808–816.

�3� Hollister, S. J., Fyhrie, D. P., Jepsen, K. J., and Goldstein, S. A., 1991, “Ap-
plication of Homogenization Theory to the Study of Trabecular Bone Mechan-
ics,” J. Biomech., 24�9�, pp. 825–839.

�4� Hollister, S. J., Brennan, J. M., and Kikuchi, N., 1994, “A Homogenization
Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and
Tissue Level Stress,” J. Biomech., 27�4�, pp. 433–444.

�5� Sevostianov, I., and Kachanov, M., 2000, “Impact of the Porous Microstruc-
ture on the Overall Elastic Properties of the Osteonal Cortical Bone,” J. Bio-
mech., 33�7�, pp. 881–888.

�6� Bergman, D. J., 1978, “The Dielectric Constant of a Composite Material—A
Problem in Classical Physics,” Phys. Rep. C, 43�9�, pp. 377–407.

�7� Milton, G. W., 1981, “Bounds on the Complex Permittivity of a Two-
Component Composite Material,” J. Appl. Phys., 52�8�, pp. 5286–5293.

�8� Golden, K., and Papanicolaou, G., 1983, “Bounds for Effective Parameters of
Heterogeneous Media by Analytic Continuation,” Commun. Math. Phys.,
90�4�, pp. 473–491.

�9� Kantor, Y., and Bergman, D. J., 1982, “Elastostatic Resonances—A New Ap-
proach to the Calculation of the Effective Elastic Constants of Composites,” J.
Mech. Phys. Solids, 30�5�, pp. 355–376.

�10� Kantor, Y., and Bergman, D. J., 1984, “Improved Rigorous Bounds on the
Effective Elastic Moduli of a Composite Material,” J. Mech. Phys. Solids,
32�1�, pp. 41–62.

�11� Tokarzewski, S., Telega, J. J., and Galka, A., 2001, “Torsional Rigidities of
Cancellous Bone Filled With Marrow: The Application of Multipoint Pade
Approximants,” Eng. Trans., 49�2–3�, pp. 135–153.

�12� Cherkaev, E., 2001, “Inverse Homogenization for Evaluation of Effective
Properties of a Mixture,” Inverse Probl., 17�4�, pp. 1203–1218.

�13� Day, A. R., and Thorpe, M. F., 1999, “The Spectral Function of Composite:
The Inverse Problem,” J. Phys.: Condens. Matter, 11, pp. 2551–2568.

�14� Bergman, D. J., 1993, “Hierarchies of Stieltjes Functions and Their Applica-
tions to the Calculation of Bounds for the Dielectric Constant of a Two-
Component Composite Medium,” SIAM J. Appl. Math., 53�4�, pp. 915–930.

�15� Cherkaeva, E., and Golden, K. M., 1998, “Inverse Bounds for Microstructural

1 2 3 4 5
−1

0.5

0

0.5

1

b)

ow eigenvectors calculated without noise, and
oise added. Noise levels: noise�1

=27.35±11.32,
… Eigenvector corresponding to the first eigen-
igenvalue.
−

(

sh
th n
„a
Parameters of a Composite Media Derived From Complex Permittivity Mea-

DECEMBER 2009, Vol. 131 / 121003-7

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1

Downlo
surements,” Waves Random Media, 8�4�, pp. 437–450.
�16� Bonifasi-Lista, C., and Cherkaev, E., 2007, “Identification of Bone Microstruc-

ture From Effective Complex Modulus,” Springer Proceedings in Physics,
Vibration Problems ICOVP 2005, E. Ínan and A. Kiriş, eds., Springer, Neth-
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