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Introduction

This is a talk about sequences of zeros and ones:

Random Number Generators;

Random search on a binary tree [philogenetic];

Binary encoding of numbers.

We work by examples, and in random order.
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Binary Encoding of Numbers

Let x be a number between zero and one.

We can write

x =
x1

2
+

x2

4
+

x3

8
+ · · ·

=
∞
∑
j=1

xj

2j
,

where x1, x2, . . . are either zero or one.

If there are two ways of doing this [dyadic rationals] then opt for the
non-terminating expansion.
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Examples

We might write x = [x1 , x2 , . . .] instead of x = ∑∞
j=1 2−jxj .

0 = [0 ,0 , . . .]

1 = [1 ,1 , . . .] because ∑∞
j=1 2−j = 1

0.5 can be written in two different ways.

Here is one:

0.5 =
1

2
+

0

4
+

0

8
+ · · ·

Here is another:

0.5 =
0

2
+

1

4
+

1

8
+ · · ·

This works because ∑∞
j=2 2−j = 1/2.

Infinite-option convention yields:

0.5 = [0 ,1 ,1 , . . .].
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An Algorithm for Finding the Digits

Let x be a fixed number between zero and one

Ask twenty-twenty style:

Is x ≤ 0.5? If yes then x1 = 0; else, x1 = 1

Is y1 = 2(x − 1
2x1) ≤ 0.5? If yes then x2 = 0; else, x2 = 1

Is y2 = 2(y1 − 1
2x2) ≤ 0.5? If yes then x3 = 0; else, x3 = 1

...

Why does this work? Hint:

y1 =
∞
∑
j=1

xj+1

2j
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Symbolic Dynamics [An Alternative]

Split [0 ,1] into two subintervals [0 ,0.5] and (0.5 ,1];

If x falls in the left interval then x1 = 0; if x falls in the right one then
x1 = 1;

Call whichever [dyadic] interval x fell in last I1;

Split I1 into two subintervals each half the length of I1;

If x falls in the left one x2 = 0; if x falls in the right one x2 = 1;

Call whichever [dyadic] interval x fell in last I2;
...

Try it for x = 0.5 0.5 = [0 ,1 ,1 , . . .]

What if you split into [0 ,0.5) and [0.5 ,1] etc.?
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Dyadic Intervals

These are the intervals we obtained by subdividing.

A dyadic interval is a subintervals of [0 ,1] that has length 2−n for
some integer n ≥ 0.

A dyadic interval of length n ≥ 1 can be written as[
j

2n
,
j + 1

2n

]
if j = 0,2, . . . is even,

(
j

2n
,
j + 1

2n

]
if j = 1,3, . . . is odd

Let Dn denote all dyadic intervals of length 2−n.

#Dn = 2n (check!)
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Uniform Sampling

Let X1,X2, . . . be independent random variables

Pr{Xj = 0} = Pr{Xj = 1} = 1
2 for all j ≥ 1

For all sequences a1, . . . , an of zeros and ones,

Pr{X1 = a1 , . . . ,Xn = an} =
n

∏
j=1

Pr{Xj = aj} =
1

2n
. (1)

Let X be a random variable who [random] binary digits are
X1,X2, . . .. I.e.,

X =
∞
∑
j=1

Xj

2j
.

By (1), Pr{X ∈ I} = 2−n for all I ∈ Dn.
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Zero-One Construction of Length [Lebesgue Measure]

We just argued that Pr{X ∈ I} = length(I ) for all dyadic intervals I .

General measure theory tells us that for all sets I ⊆ [0 ,1],

Pr{X ∈ I} = length(I ),

provided that we can attribute “length” to I .

X is “distributed uniformly on [0 ,1]”
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Borel’s Strong Law of Large Numbers

Recall X1,X2, . . . are independent, and

Xj =

{
1, with probab. 1

2

0, with probab. 1
2 .

(Expectations)

EXj =

(
1× 1

2

)
+

(
0× 1

2

)
=

1

2
for all j

(Borel’s Theorem, 1909) With probability one:

lim
n→∞

X1 + · · ·+ Xn

n
= lim

n→∞
EX1 + · · ·+ EXn

n
=

1

2
.
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Normal Numbers

Borel’s theorem: With probab. one, limn→∞
X1+···+Xn

n = 1
2 .

X1+···+Xn
n is also the fraction of 1’s in the first n digits of X

Since Pr{X ∈ I} = length(I ),

Length

{
x : asymp. fraction of ones =

1

2

}
= 1.

A number x ∈ [0 ,1] is normal if limn→∞
x1+···+xn

n = 1
2 .

Borel’s theorem: Nonnormal numbers are of length zero.
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Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2
for that matter):

x = ∑∞
j=1 10−jxj , where xj ∈ {0 , . . . ,9}.

x is normal in base ten if

lim
n→∞

1

n

n

∑
j=1

I{xj = 0} = · · · = lim
n→∞

1

n

n

∑
j=1

I{xj = 9} =
1

10
.

Borel’s theorem: Almost every number is normal in base ten. In fact,
almost every number is normal in all bases!
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Amusing Facts

There are no numbers that are known to be normal in all bases.

(Champernowne, 1933) 0.1234567891011121314 . . . is normal in base
ten

Champernnown’s number is also transcendental (Mahler)

(Copeland and Erdős, 1946) 0.23571113 . . . is normal in base ten
[conjectured by Champernowne, 1933]

and a few others

Is π/10 normal? How about
√

2/10?
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Random-Number Generators

Your computer generates X uniformly between 0 and 1.

Is it the case that X has the correct distribution?

The binary digits X1,X2, . . . have lots of structure; so they need to
pass various statistical tests (lots known)

All RNG’s will fail the true test of randomness: Xj ’s have to be
normal in all bases.
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Ternary Expansions

Let x = [0 ,1], and write uniquely,

x =
∞
∑
j=1

xj

3j
, where xj ∈ {0 ,1 ,2}.

The ternary Cantor set C :

C = closure of {x ∈ [0 ,1] : xj ∈ {0 ,2}}

x = 1/3 is in the Cantor set; in fact, x = [0 ,2 ,2 , . . .]

If 1
3 < x < 2

3 then x 6∈ C etc.

C = The middle-thirds Cantor set
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Devil’s Staircase

Let X1,X2, . . . be independent,

Pr{X1 = 0} = Pr{X1 = 2} =
1

2
.

Let X be “uniformly distributed” on C ; i.e.,

X =
∞
∑
j=1

Xj

3j
=⇒ Pr{X ∈ C } = 1.

Distribution function of X ,

F (x) := Pr{X ≤ x} “devil’s staircase”

Aka Cantor–Lebesgue function
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The Cantor–Lebesgue Function
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The Cantor–Lebesgue Function

Theorem (Cantor)

C := {x : F ′(x) exists and is = 0} has length one.

F is nondecreasing and continuous

F (0) = 0

F (1) = 1

Fundamental theorem of calculus(?):

1 = F (1)− F (0) =
Z 1

0
F ′(x)dx = 0

Mind those technical conditions of theorems!
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Hausdorff Dimension

Let S be a set in Rn. Roughly speaking, its Hausdorff dimension

dim
H

S := max

{
s ∈ [0 ,n] : E

(
1

‖X −Y ‖s

)
<∞

}
,

where X and Y are:

independent;

both distributed “uniformly” on S

(Frostman, 1935)
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Dimension of the Cantor Set

Theorem (Hausdorff, 1919)

dim
H

C = log3(2) = ln2/ ln 3 ' 0.7615

Strategy: Let X and Y be uniformly distributed on C , both independent.
Then we wish to demonstrate that:

if s > log3(2) then E (|X −Y |−s) =∞;

if s < log3(2) then E (|X −Y |−s) <∞.
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Finally, a Proof

Let us prove that if s < log3(2) then E (|X −Y |−s) <∞. This proves
that dim

H
C ≥ log3(2), and is in fact the harder bound.

Let N := min{j ≥ 1 : Xj 6= Yj}; then Pr{N > k} = 2−k for all k ≥ 0.

Therefore, Pr{N = k} = Pr{N > k − 1}− Pr{N > k} = 2−k .

We have
1

|X −Y |s ≤
1

3Ns

If s < log3(2) then

E

(
1

|X −Y |s

)
≤ E

(
1

3Ns

)
=

∞
∑
k=1

1

3ks
× 2−k <∞.
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