Random Bits and Pieces

An Introduction to Symbolic Dynamics

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar
Undergraduate Colloquium University of Utah
November 15, 2006

Introduction

This is a talk about sequences of zeros and ones:

Introduction

This is a talk about sequences of zeros and ones:

- Random Number Generators;

Introduction

This is a talk about sequences of zeros and ones:

- Random Number Generators;
- Random search on a binary tree [philogenetic];

Introduction

This is a talk about sequences of zeros and ones:

- Random Number Generators;
- Random search on a binary tree [philogenetic];
- Binary encoding of numbers.

Introduction

This is a talk about sequences of zeros and ones:

- Random Number Generators;
- Random search on a binary tree [philogenetic];
- Binary encoding of numbers.

Introduction

This is a talk about sequences of zeros and ones:

- Random Number Generators;
- Random search on a binary tree [philogenetic];
- Binary encoding of numbers.

We work by examples, and in random order.

Binary Encoding of Numbers

- Let x be a number between zero and one.

Binary Encoding of Numbers

- Let x be a number between zero and one.
- We can write

$$
\begin{aligned}
x & =\frac{x_{1}}{2}+\frac{x_{2}}{4}+\frac{x_{3}}{8}+\cdots \\
& =\sum_{j=1}^{\infty} \frac{x_{j}}{2^{j}}
\end{aligned}
$$

where x_{1}, x_{2}, \ldots are either zero or one.

Binary Encoding of Numbers

- Let x be a number between zero and one.
- We can write

$$
\begin{aligned}
x & =\frac{x_{1}}{2}+\frac{x_{2}}{4}+\frac{x_{3}}{8}+\cdots \\
& =\sum_{j=1}^{\infty} \frac{x_{j}}{2^{j}}
\end{aligned}
$$

where x_{1}, x_{2}, \ldots are either zero or one.

- If there are two ways of doing this [dyadic rationals] then opt for the non-terminating expansion.

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.
- $0=[0,0, \ldots]$

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.
- $0=[0,0, \ldots]$
- $1=[1,1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j}=1$

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.
- $0=[0,0, \ldots]$
- $1=[1,1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j}=1$
- 0.5 can be written in two different ways.

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.
- $0=[0,0, \ldots]$
- $1=[1,1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j}=1$
- 0.5 can be written in two different ways.
- Here is one:

$$
0.5=\frac{1}{2}+\frac{0}{4}+\frac{0}{8}+\cdots
$$

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.
- $0=[0,0, \ldots]$
- $1=[1,1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j}=1$
- 0.5 can be written in two different ways.
- Here is one:

$$
0.5=\frac{1}{2}+\frac{0}{4}+\frac{0}{8}+\cdots
$$

- Here is another:

$$
0.5=\frac{0}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

This works because $\sum_{j=2}^{\infty} 2^{-j}=1 / 2$.

Examples

- We might write $x=\left[x_{1}, x_{2}, \ldots\right]$ instead of $x=\sum_{j=1}^{\infty} 2^{-j} x_{j}$.
- $0=[0,0, \ldots]$
- $1=[1,1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j}=1$
- 0.5 can be written in two different ways.
- Here is one:

$$
0.5=\frac{1}{2}+\frac{0}{4}+\frac{0}{8}+\cdots
$$

- Here is another:

$$
0.5=\frac{0}{2}+\frac{1}{4}+\frac{1}{8}+\cdots
$$

This works because $\sum_{j=2}^{\infty} 2^{-j}=1 / 2$.

- Infinite-option convention yields:

$$
0.5=[0,1,1, \ldots] .
$$

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
- Is $x \leq 0.5$? If yes then $x_{1}=0$; else, $x_{1}=1$

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
- Is $x \leq 0.5$? If yes then $x_{1}=0$; else, $x_{1}=1$
- Is $y_{1}=2\left(x-\frac{1}{2} x_{1}\right) \leq 0.5$? If yes then $x_{2}=0$; else, $x_{2}=1$

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
- Is $x \leq 0.5$? If yes then $x_{1}=0$; else, $x_{1}=1$
- Is $y_{1}=2\left(x-\frac{1}{2} x_{1}\right) \leq 0.5$? If yes then $x_{2}=0$; else, $x_{2}=1$
- Is $y_{2}=2\left(y_{1}-\frac{1}{2} x_{2}\right) \leq 0.5$? If yes then $x_{3}=0$; else, $x_{3}=1$

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
- Is $x \leq 0.5$? If yes then $x_{1}=0$; else, $x_{1}=1$
- Is $y_{1}=2\left(x-\frac{1}{2} x_{1}\right) \leq 0.5$? If yes then $x_{2}=0$; else, $x_{2}=1$
- Is $y_{2}=2\left(y_{1}-\frac{1}{2} x_{2}\right) \leq 0.5$? If yes then $x_{3}=0$; else, $x_{3}=1$
-

An Algorithm for Finding the Digits

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
- Is $x \leq 0.5$? If yes then $x_{1}=0$; else, $x_{1}=1$
- Is $y_{1}=2\left(x-\frac{1}{2} x_{1}\right) \leq 0.5$? If yes then $x_{2}=0$; else, $x_{2}=1$
- Is $y_{2}=2\left(y_{1}-\frac{1}{2} x_{2}\right) \leq 0.5$? If yes then $x_{3}=0$; else, $x_{3}=1$
-
- Why does this work? Hint:

$$
y_{1}=\sum_{j=1}^{\infty} \frac{x_{j+1}}{2^{j}}
$$

Symbolic Dynamics [An Alternative]

- Split [0, 1] into two subintervals $[0,0.5]$ and $(0.5,1]$;

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};
- Split I_{1} into two subintervals each half the length of I_{1};

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};
- Split I_{1} into two subintervals each half the length of I_{1};
- If x falls in the left one $x_{2}=0$; if x falls in the right one $x_{2}=1$;

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};
- Split I_{1} into two subintervals each half the length of I_{1};
- If x falls in the left one $x_{2}=0$; if x falls in the right one $x_{2}=1$;
- Call whichever [dyadic] interval x fell in last I_{2};

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};
- Split I_{1} into two subintervals each half the length of I_{1};
- If x falls in the left one $x_{2}=0$; if x falls in the right one $x_{2}=1$;
- Call whichever [dyadic] interval x fell in last I_{2};
-

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};
- Split I_{1} into two subintervals each half the length of I_{1};
- If x falls in the left one $x_{2}=0$; if x falls in the right one $x_{2}=1$;
- Call whichever [dyadic] interval x fell in last I_{2};
- \vdots
- Try it for $x=0.5$

$$
0.5=[0,1,1, \ldots]
$$

Symbolic Dynamics [An Alternative]

- Split $[0,1]$ into two subintervals $[0,0.5]$ and $(0.5,1]$;
- If x falls in the left interval then $x_{1}=0$; if x falls in the right one then $x_{1}=1$;
- Call whichever [dyadic] interval x fell in last I_{1};
- Split I_{1} into two subintervals each half the length of I_{1};
- If x falls in the left one $x_{2}=0$; if x falls in the right one $x_{2}=1$;
- Call whichever [dyadic] interval x fell in last I_{2};
-
- Try it for $x=0.5$

$$
0.5=[0,1,1, \ldots]
$$

- What if you split into $[0,0.5)$ and $[0.5,1]$ etc.?

Dyadic Intervals

- These are the intervals we obtained by subdividing.

Dyadic Intervals

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of $[0,1]$ that has length 2^{-n} for some integer $n \geq 0$.

Dyadic Intervals

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of $[0,1]$ that has length 2^{-n} for some integer $n \geq 0$.
- A dyadic interval of length $n \geq 1$ can be written as

$$
\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] \quad \text { if } j=0,2, \ldots \text { is even }
$$

Dyadic Intervals

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of $[0,1]$ that has length 2^{-n} for some integer $n \geq 0$.
- A dyadic interval of length $n \geq 1$ can be written as

$$
\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] \quad \text { if } j=0,2, \ldots \text { is even }
$$

Dyadic Intervals

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of $[0,1]$ that has length 2^{-n} for some integer $n \geq 0$.
- A dyadic interval of length $n \geq 1$ can be written as

$$
\begin{aligned}
& {\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] \quad \text { if } j=0,2, \ldots \text { is even },} \\
& \left(\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] \quad \text { if } j=1,3, \ldots \text { is odd }
\end{aligned}
$$

Dyadic Intervals

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of $[0,1]$ that has length 2^{-n} for some integer $n \geq 0$.
- A dyadic interval of length $n \geq 1$ can be written as

$$
\begin{array}{ll}
{\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] \quad \text { if } j=0,2, \ldots \text { is even },} \\
\left(\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] & \text { if } j=1,3, \ldots \text { is odd }
\end{array}
$$

- Let \mathscr{D}_{n} denote all dyadic intervals of length 2^{-n}.

Dyadic Intervals

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of $[0,1]$ that has length 2^{-n} for some integer $n \geq 0$.
- A dyadic interval of length $n \geq 1$ can be written as

$$
\begin{array}{ll}
{\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] \quad \text { if } j=0,2, \ldots \text { is even },} \\
\left(\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right] & \text { if } j=1,3, \ldots \text { is odd }
\end{array}
$$

- Let \mathscr{D}_{n} denote all dyadic intervals of length 2^{-n}.
- $\# \mathscr{D}_{n}=2^{n}$ (check!)

Uniform Sampling

- Let X_{1}, X_{2}, \ldots be independent random variables

Uniform Sampling

- Let X_{1}, X_{2}, \ldots be independent random variables
- $\operatorname{Pr}\left\{X_{j}=0\right\}=\operatorname{Pr}\left\{X_{j}=1\right\}=\frac{1}{2}$ for all $j \geq 1$

Uniform Sampling

- Let X_{1}, X_{2}, \ldots be independent random variables
- $\operatorname{Pr}\left\{X_{j}=0\right\}=\operatorname{Pr}\left\{X_{j}=1\right\}=\frac{1}{2}$ for all $j \geq 1$
- For all sequences a_{1}, \ldots, a_{n} of zeros and ones,

$$
\begin{equation*}
\operatorname{Pr}\left\{X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right\}=\prod_{j=1}^{n} \operatorname{Pr}\left\{X_{j}=a_{j}\right\}=\frac{1}{2^{n}} \tag{1}
\end{equation*}
$$

Uniform Sampling

- Let X_{1}, X_{2}, \ldots be independent random variables
- $\operatorname{Pr}\left\{X_{j}=0\right\}=\operatorname{Pr}\left\{X_{j}=1\right\}=\frac{1}{2}$ for all $j \geq 1$
- For all sequences a_{1}, \ldots, a_{n} of zeros and ones,

$$
\begin{equation*}
\operatorname{Pr}\left\{X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right\}=\prod_{j=1}^{n} \operatorname{Pr}\left\{X_{j}=a_{j}\right\}=\frac{1}{2^{n}} \tag{1}
\end{equation*}
$$

- Let X be a random variable who [random] binary digits are X_{1}, X_{2}, \ldots I.e.,

$$
X=\sum_{j=1}^{\infty} \frac{X_{j}}{2^{j}}
$$

Uniform Sampling

- Let X_{1}, X_{2}, \ldots be independent random variables
- $\operatorname{Pr}\left\{X_{j}=0\right\}=\operatorname{Pr}\left\{X_{j}=1\right\}=\frac{1}{2}$ for all $j \geq 1$
- For all sequences a_{1}, \ldots, a_{n} of zeros and ones,

$$
\begin{equation*}
\operatorname{Pr}\left\{X_{1}=a_{1}, \ldots, X_{n}=a_{n}\right\}=\prod_{j=1}^{n} \operatorname{Pr}\left\{X_{j}=a_{j}\right\}=\frac{1}{2^{n}} \tag{1}
\end{equation*}
$$

- Let X be a random variable who [random] binary digits are X_{1}, X_{2}, \ldots I.e.,

$$
X=\sum_{j=1}^{\infty} \frac{X_{j}}{2^{j}}
$$

- By (1), $\operatorname{Pr}\{X \in I\}=2^{-n}$ for all $I \in \mathscr{D}_{n}$.

Zero-One Construction of Length [Lebesgue Measure]

- We just argued that $\operatorname{Pr}\{X \in I\}=$ length (I) for all dyadic intervals I.

Zero-One Construction of Length [Lebesgue Measure]

- We just argued that $\operatorname{Pr}\{X \in I\}=$ length (I) for all dyadic intervals I.
- General measure theory tells us that for all sets $I \subseteq[0,1]$,

$$
\operatorname{Pr}\{X \in I\}=\text { length }(I)
$$

provided that we can attribute "length" to I.

Zero-One Construction of Length [Lebesgue Measure]

- We just argued that $\operatorname{Pr}\{X \in I\}=$ length (I) for all dyadic intervals I.
- General measure theory tells us that for all sets $I \subseteq[0,1]$,

$$
\operatorname{Pr}\{X \in I\}=\text { length }(I)
$$

provided that we can attribute "length" to I.

- X is "distributed uniformly on $[0,1]$ "

Borel's Strong Law of Large Numbers

- Recall X_{1}, X_{2}, \ldots are independent, and

$$
X_{j}= \begin{cases}1, & \text { with probab. } \frac{1}{2} \\ 0, & \text { with probab. } \frac{1}{2}\end{cases}
$$

Borel's Strong Law of Large Numbers

- Recall X_{1}, X_{2}, \ldots are independent, and

$$
X_{j}= \begin{cases}1, & \text { with probab. } \frac{1}{2} \\ 0, & \text { with probab. } \frac{1}{2}\end{cases}
$$

- (Expectations)

$$
E X_{j}=\left(1 \times \frac{1}{2}\right)+\left(0 \times \frac{1}{2}\right)=\frac{1}{2} \quad \text { for all } j
$$

Borel's Strong Law of Large Numbers

- Recall X_{1}, X_{2}, \ldots are independent, and

$$
X_{j}= \begin{cases}1, & \text { with probab. } \frac{1}{2} \\ 0, & \text { with probab. } \frac{1}{2}\end{cases}
$$

- (Expectations)

$$
E X_{j}=\left(1 \times \frac{1}{2}\right)+\left(0 \times \frac{1}{2}\right)=\frac{1}{2} \quad \text { for all } j
$$

- (Borel's Theorem, 1909) With probability one:

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\lim _{n \rightarrow \infty} \frac{E X_{1}+\cdots+E X_{n}}{n}=\frac{1}{2}
$$

Normal Numbers

- Borel's theorem: With probab. one, $\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\frac{1}{2}$.

Normal Numbers

- Borel's theorem: With probab. one, $\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\frac{1}{2}$. - $\frac{X_{1}+\cdots+X_{n}}{n}$ is also the fraction of 1 's in the first n digits of X

Normal Numbers

- Borel's theorem: With probab. one, $\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\frac{1}{2}$.
- $\frac{X_{1}+\cdots+X_{n}}{n}$ is also the fraction of 1 's in the first n digits of X
- Since $\operatorname{Pr}\{X \in I\}=$ length (I),

Length $\left\{x\right.$: asymp. fraction of ones $\left.=\frac{1}{2}\right\}=1$.

Normal Numbers

- Borel's theorem: With probab. one, $\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\frac{1}{2}$.
- $\frac{X_{1}+\cdots+X_{n}}{n}$ is also the fraction of 1 's in the first n digits of X
- Since $\operatorname{Pr}\{X \in I\}=$ length (I),

Length $\left\{x:\right.$ asymp. fraction of ones $\left.=\frac{1}{2}\right\}=1$.

- A number $x \in[0,1]$ is normal if $\lim _{n \rightarrow \infty} \frac{x_{1}+\cdots+x_{n}}{n}=\frac{1}{2}$.

Normal Numbers

- Borel's theorem: With probab. one, $\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{n}=\frac{1}{2}$.
- $\frac{X_{1}+\cdots+X_{n}}{n}$ is also the fraction of 1 's in the first n digits of X
- Since $\operatorname{Pr}\{X \in I\}=$ length (I),

Length $\left\{x\right.$: asymp. fraction of ones $\left.=\frac{1}{2}\right\}=1$.

- A number $x \in[0,1]$ is normal if $\lim _{n \rightarrow \infty} \frac{x_{1}+\cdots+x_{n}}{n}=\frac{1}{2}$.
- Borel's theorem: Nonnormal numbers are of length zero.

Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2 for that matter):

$$
x=\sum_{j=1}^{\infty} 10^{-j} x_{j}, \text { where } x_{j} \in\{0, \ldots, 9\}
$$

Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2 for that matter):

- $x=\sum_{j=1}^{\infty} 10^{-j} x_{j}$, where $x_{j} \in\{0, \ldots, 9\}$.
- x is normal in base ten if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} I\left\{x_{j}=0\right\}=\cdots=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} I\left\{x_{j}=9\right\}=\frac{1}{10} .
$$

Normal Numbers

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2 for that matter):

- $x=\sum_{j=1}^{\infty} 10^{-j} x_{j}$, where $x_{j} \in\{0, \ldots, 9\}$.
- x is normal in base ten if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} I\left\{x_{j}=0\right\}=\cdots=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} I\left\{x_{j}=9\right\}=\frac{1}{10} .
$$

- Borel's theorem: Almost every number is normal in base ten. In fact, almost every number is normal in all bases!

Amusing Facts

- There are no numbers that are known to be normal in all bases.

Amusing Facts

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) $0.1234567891011121314 \ldots$ is normal in base ten

Amusing Facts

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) $0.1234567891011121314 \ldots$ is normal in base ten
- Champernnown's number is also transcendental (Mahler)

Amusing Facts

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) $0.1234567891011121314 \ldots$ is normal in base ten
- Champernnown's number is also transcendental (Mahler)
- (Copeland and Erdős, 1946) $0.23571113 \ldots$ is normal in base ten [conjectured by Champernowne, 1933]

Amusing Facts

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) $0.1234567891011121314 \ldots$ is normal in base ten
- Champernnown's number is also transcendental (Mahler)
- (Copeland and Erdős, 1946) $0.23571113 \ldots$ is normal in base ten [conjectured by Champernowne, 1933]
- and a few others

Amusing Facts

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) $0.1234567891011121314 \ldots$ is normal in base ten
- Champernnown's number is also transcendental (Mahler)
- (Copeland and Erdős, 1946) $0.23571113 \ldots$ is normal in base ten [conjectured by Champernowne, 1933]
- and a few others
- Is $\pi / 10$ normal? How about $\sqrt{2} / 10$?

Random-Number Generators

- Your computer generates X uniformly between 0 and 1 .

Random-Number Generators

- Your computer generates X uniformly between 0 and 1 .
- Is it the case that X has the correct distribution?

Random-Number Generators

- Your computer generates X uniformly between 0 and 1 .
- Is it the case that X has the correct distribution?
- The binary digits X_{1}, X_{2}, \ldots have lots of structure; so they need to pass various statistical tests (lots known)

Random-Number Generators

- Your computer generates X uniformly between 0 and 1 .
- Is it the case that X has the correct distribution?
- The binary digits X_{1}, X_{2}, \ldots have lots of structure; so they need to pass various statistical tests (lots known)
- All RNG's will fail the true test of randomness: X_{j} 's have to be normal in all bases.

Ternary Expansions

- Let $x=[0,1]$, and write uniquely,

$$
x=\sum_{j=1}^{\infty} \frac{x_{j}}{3^{j}},
$$

where $x_{j} \in\{0,1,2\}$.

Ternary Expansions

- Let $x=[0,1]$, and write uniquely,

$$
x=\sum_{j=1}^{\infty} \frac{x_{j}}{3^{j}}
$$

$$
\text { where } x_{j} \in\{0,1,2\} .
$$

- The ternary Cantor set \mathscr{C} :

$$
\mathscr{C}=\text { closure of }\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}
$$

Ternary Expansions

- Let $x=[0,1]$, and write uniquely,

$$
x=\sum_{j=1}^{\infty} \frac{x_{j}}{3^{j}}
$$

where $x_{j} \in\{0,1,2\}$.

- The ternary Cantor set \mathscr{C} :

$$
\mathscr{C}=\text { closure of }\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}
$$

- $x=1 / 3$ is in the Cantor set; in fact, $x=[0,2,2, \ldots]$

Ternary Expansions

- Let $x=[0,1]$, and write uniquely,

$$
x=\sum_{j=1}^{\infty} \frac{x_{j}}{3^{j}},
$$

where $x_{j} \in\{0,1,2\}$.

- The ternary Cantor set \mathscr{C} :

$$
\mathscr{C}=\text { closure of }\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}
$$

- $x=1 / 3$ is in the Cantor set; in fact, $x=[0,2,2, \ldots]$
- If $\frac{1}{3}<x<\frac{2}{3}$ then $x \notin \mathscr{C}$ etc.

Ternary Expansions

- Let $x=[0,1]$, and write uniquely,

$$
x=\sum_{j=1}^{\infty} \frac{x_{j}}{3^{j}},
$$

where $x_{j} \in\{0,1,2\}$.

- The ternary Cantor set \mathscr{C} :

$$
\mathscr{C}=\text { closure of }\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}
$$

- $x=1 / 3$ is in the Cantor set; in fact, $x=[0,2,2, \ldots]$
- If $\frac{1}{3}<x<\frac{2}{3}$ then $x \notin \mathscr{C}$ etc.
- $\mathscr{C}=$ The middle-thirds Cantor set

Devil's Staircase

- Let X_{1}, X_{2}, \ldots be independent,

$$
\operatorname{Pr}\left\{X_{1}=0\right\}=\operatorname{Pr}\left\{X_{1}=2\right\}=\frac{1}{2}
$$

Devil's Staircase

- Let X_{1}, X_{2}, \ldots be independent,

$$
\operatorname{Pr}\left\{X_{1}=0\right\}=\operatorname{Pr}\left\{X_{1}=2\right\}=\frac{1}{2}
$$

- Let X be "uniformly distributed" on \mathscr{C}; i.e.,

$$
X=\sum_{j=1}^{\infty} \frac{X_{j}}{3^{j}} \quad \Longrightarrow \quad \operatorname{Pr}\{X \in \mathscr{C}\}=1
$$

Devil's Staircase

- Let X_{1}, X_{2}, \ldots be independent,

$$
\operatorname{Pr}\left\{X_{1}=0\right\}=\operatorname{Pr}\left\{X_{1}=2\right\}=\frac{1}{2}
$$

- Let X be "uniformly distributed" on \mathscr{C}; i.e.,

$$
X=\sum_{j=1}^{\infty} \frac{X_{j}}{3^{j}} \quad \Longrightarrow \quad \operatorname{Pr}\{X \in \mathscr{C}\}=1
$$

- Distribution function of X,

$$
F(x):=\operatorname{Pr}\{X \leq x\} \quad \text { "devil's staircase" }
$$

Devil's Staircase

- Let X_{1}, X_{2}, \ldots be independent,

$$
\operatorname{Pr}\left\{X_{1}=0\right\}=\operatorname{Pr}\left\{X_{1}=2\right\}=\frac{1}{2}
$$

- Let X be "uniformly distributed" on \mathscr{C}; i.e.,

$$
X=\sum_{j=1}^{\infty} \frac{X_{j}}{3^{j}} \quad \Longrightarrow \quad \operatorname{Pr}\{X \in \mathscr{C}\}=1
$$

- Distribution function of X,

$$
F(x):=\operatorname{Pr}\{X \leq x\} \quad \text { "devil's staircase" }
$$

- Aka Cantor-Lebesgue function

The Cantor-Lebesgue Function

D. Khoshnevisan (Salt Lake City, Utah)

The Cantor-Lebesgue Function

Theorem (Cantor)

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.
- F is nondecreasing and continuous

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.
- F is nondecreasing and continuous
- $F(0)=0$

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.
- F is nondecreasing and continuous
- $F(0)=0$
- $F(1)=1$

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.
- F is nondecreasing and continuous
- $F(0)=0$
- $F(1)=1$

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.
- F is nondecreasing and continuous
- $F(0)=0$
- $F(1)=1$

Fundamental theorem of calculus(?):

$$
1=F(1)-F(0)=\int_{0}^{1} F^{\prime}(x) d x=0
$$

The Cantor-Lebesgue Function

Theorem (Cantor)

- $C:=\left\{x: F^{\prime}(x)\right.$ exists and is $\left.=0\right\}$ has length one.
- F is nondecreasing and continuous
- $F(0)=0$
- $F(1)=1$

Fundamental theorem of calculus(?):

$$
1=F(1)-F(0)=\int_{0}^{1} F^{\prime}(x) d x=0
$$

Mind those technical conditions of theorems!

Hausdorff Dimension

Let S be a set in \mathbf{R}^{n}. Roughly speaking, its Hausdorff dimension

$$
\operatorname{dim}_{H} S:=\max \left\{s \in[0, n]: E\left(\frac{1}{\|X-Y\|^{s}}\right)<\infty\right\}
$$

where X and Y are:

- independent;

Hausdorff Dimension

Let S be a set in \mathbf{R}^{n}. Roughly speaking, its Hausdorff dimension

$$
\operatorname{dim}_{H} S:=\max \left\{s \in[0, n]: E\left(\frac{1}{\|X-Y\|^{s}}\right)<\infty\right\}
$$

where X and Y are:

- independent;
- both distributed "uniformly" on S

Hausdorff Dimension

Let S be a set in \mathbf{R}^{n}. Roughly speaking, its Hausdorff dimension

$$
\operatorname{dim}_{H} S:=\max \left\{s \in[0, n]: E\left(\frac{1}{\|X-Y\|^{s}}\right)<\infty\right\}
$$

where X and Y are:

- independent;
- both distributed "uniformly" on S

Hausdorff Dimension

Let S be a set in \mathbf{R}^{n}. Roughly speaking, its Hausdorff dimension

$$
\operatorname{dim}_{H} S:=\max \left\{s \in[0, n]: E\left(\frac{1}{\|X-Y\|^{s}}\right)<\infty\right\}
$$

where X and Y are:

- independent;
- both distributed "uniformly" on S
(Frostman, 1935)

Dimension of the Cantor Set

Theorem (Hausdorff, 1919)
 $\operatorname{dim}_{H} \mathscr{C}=\log _{3}(2)=\ln 2 / \ln 3 \simeq 0.7615$

Dimension of the Cantor Set

Theorem (Hausdorff, 1919)
 $\operatorname{dim}_{H} \mathscr{C}=\log _{3}(2)=\ln 2 / \ln 3 \simeq 0.7615$

Dimension of the Cantor Set

Theorem (Hausdorff, 1919)

$\operatorname{dim}_{H} \mathscr{C}=\log _{3}(2)=\ln 2 / \ln 3 \simeq 0.7615$
Strategy: Let X and Y be uniformly distributed on \mathscr{C}, both independent. Then we wish to demonstrate that:

- if $s>\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)=\infty$;

Dimension of the Cantor Set

Theorem (Hausdorff, 1919)

$\operatorname{dim}_{H} \mathscr{C}=\log _{3}(2)=\ln 2 / \ln 3 \simeq 0.7615$
Strategy: Let X and Y be uniformly distributed on \mathscr{C}, both independent. Then we wish to demonstrate that:

- if $s>\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)=\infty$;
- if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$.

Finally, a Proof

- Let us prove that if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$. This proves that $\operatorname{dim}_{H} \mathscr{C} \geq \log _{3}(2)$, and is in fact the harder bound.

Finally, a Proof

- Let us prove that if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$. This proves that $\operatorname{dim}_{H} \mathscr{C} \geq \log _{3}(2)$, and is in fact the harder bound.

Finally, a Proof

- Let us prove that if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$. This proves that $\operatorname{dim}_{H} \mathscr{C} \geq \log _{3}(2)$, and is in fact the harder bound.
- Let $N:=\min \left\{j \geq 1: X_{j} \neq Y_{j}\right\}$; then $\operatorname{Pr}\{N>k\}=2^{-k}$ for all $k \geq 0$.

Finally, a Proof

- Let us prove that if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$. This proves that $\operatorname{dim}_{H} \mathscr{C} \geq \log _{3}(2)$, and is in fact the harder bound.
- Let $N:=\min \left\{j \geq 1: X_{j} \neq Y_{j}\right\}$; then $\operatorname{Pr}\{N>k\}=2^{-k}$ for all $k \geq 0$.
- Therefore, $\operatorname{Pr}\{N=k\}=\operatorname{Pr}\{N>k-1\}-\operatorname{Pr}\{N>k\}=2^{-k}$.

Finally, a Proof

- Let us prove that if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$. This proves that $\operatorname{dim}_{H} \mathscr{C} \geq \log _{3}(2)$, and is in fact the harder bound.
- Let $N:=\min \left\{j \geq 1: X_{j} \neq Y_{j}\right\}$; then $\operatorname{Pr}\{N>k\}=2^{-k}$ for all $k \geq 0$.
- Therefore, $\operatorname{Pr}\{N=k\}=\operatorname{Pr}\{N>k-1\}-\operatorname{Pr}\{N>k\}=2^{-k}$.
- We have

$$
\frac{1}{|X-Y|^{s}} \leq \frac{1}{3^{N_{s}}}
$$

Finally, a Proof

- Let us prove that if $s<\log _{3}(2)$ then $E\left(|X-Y|^{-s}\right)<\infty$. This proves that $\operatorname{dim}_{H} \mathscr{C} \geq \log _{3}(2)$, and is in fact the harder bound.
- Let $N:=\min \left\{j \geq 1: X_{j} \neq Y_{j}\right\}$; then $\operatorname{Pr}\{N>k\}=2^{-k}$ for all $k \geq 0$.
- Therefore, $\operatorname{Pr}\{N=k\}=\operatorname{Pr}\{N>k-1\}-\operatorname{Pr}\{N>k\}=2^{-k}$.
- We have

$$
\frac{1}{|X-Y|^{s}} \leq \frac{1}{3^{N s}}
$$

- If $s<\log _{3}(2)$ then

$$
E\left(\frac{1}{|X-Y|^{s}}\right) \leq E\left(\frac{1}{3^{N s}}\right)=\sum_{k=1}^{\infty} \frac{1}{3^{k s}} \times 2^{-k}<\infty
$$

