Random Bits and Pieces An Introduction to Symbolic Dynamics

Davar Khoshnevisan

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

Undergraduate Colloquium University of Utah November 15, 2006

D. Khoshnevisan (Salt Lake City, Utah)

D. Khoshnevisan (Salt Lake City, Utah)

• Random Number Generators;

D. Khoshnevisan (Salt Lake City, Utah)

- Random Number Generators;
- Random search on a binary tree [philogenetic];

D. Khoshnevisan (Salt Lake City, Utah)

- Random Number Generators;
- Random search on a binary tree [philogenetic];
- Binary encoding of numbers.

D. Khoshnevisan (Salt Lake City, Utah)

- Random Number Generators;
- Random search on a binary tree [philogenetic];
- Binary encoding of numbers.

D. Khoshnevisan (Salt Lake City, Utah)

- Random Number Generators;
- Random search on a binary tree [philogenetic];
- Binary encoding of numbers.

We work by examples, and in random order.

• Let x be a number between zero and one.

D. Khoshnevisan (Salt Lake City, Utah)

- Let x be a number between zero and one.
- We can write

$$x = \frac{x_1}{2} + \frac{x_2}{4} + \frac{x_3}{8} + \cdots$$
$$= \sum_{j=1}^{\infty} \frac{x_j}{2^j},$$

where x_1, x_2, \ldots are either zero or one.

- Let x be a number between zero and one.
- We can write

$$x = \frac{\mathbf{x}_1}{2} + \frac{\mathbf{x}_2}{4} + \frac{\mathbf{x}_3}{8} + \cdots$$
$$= \sum_{j=1}^{\infty} \frac{\mathbf{x}_j}{2^j},$$

where x_1, x_2, \ldots are either zero or one.

• If there are two ways of doing this [dyadic rationals] then opt for the non-terminating expansion.

3 / 21

UofU: U-Coll '06

• We might write $x = [x_1, x_2, ...]$ instead of $x = \sum_{i=1}^{\infty} 2^{-i} x_i$.

D. Khoshnevisan (Salt Lake City, Utah)

We might write x = [x₁, x₂,...] instead of x = Σ_{j=1}[∞] 2^{-j}x_j.
0 = [0, 0, ...]

D. Khoshnevisan (Salt Lake City, Utah)

- We might write $x = [x_1, x_2, ...]$ instead of $x = \sum_{j=1}^{\infty} 2^{-j} x_j$.
- $0 = [0, 0, \ldots]$
- $1 = [1, 1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j} = 1$

- We might write $x = [x_1, x_2, ...]$ instead of $x = \sum_{j=1}^{\infty} 2^{-j} x_j$.
- $\circ \ 0 = [0\,,0\,,\ldots]$
- $1 = [1, 1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j} = 1$
- 0.5 can be written in two different ways.

- We might write $x = [x_1, x_2, ...]$ instead of $x = \sum_{j=1}^{\infty} 2^{-j} x_j$.
- $\circ \ 0 = [0\,,0\,,\ldots]$
- $1 = [1, 1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j} = 1$
- 0.5 can be written in two different ways.
 - Here is one:

$$0.5 = \frac{1}{2} + \frac{0}{4} + \frac{0}{8} + \cdots$$

- We might write $x = [x_1, x_2, ...]$ instead of $x = \sum_{j=1}^{\infty} 2^{-j} x_j$.
- $0 = [0, 0, \ldots]$
- $1 = [1, 1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j} = 1$
- 0.5 can be written in two different ways.
 - Here is one:

$$0.5 = \frac{1}{2} + \frac{0}{4} + \frac{0}{8} + \cdots$$

• Here is another:

$$0.5 = \frac{0}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

This works because $\sum_{j=2}^{\infty} 2^{-j} = 1/2.$

- We might write $x = [x_1, x_2, ...]$ instead of $x = \sum_{j=1}^{\infty} 2^{-j} x_j$.
- $0 = [0, 0, \ldots]$
- $1 = [1, 1, \ldots]$ because $\sum_{j=1}^{\infty} 2^{-j} = 1$
- 0.5 can be written in two different ways.
 - Here is one:

$$0.5 = \frac{1}{2} + \frac{0}{4} + \frac{0}{8} + \cdots$$

• Here is another:

$$0.5 = \frac{0}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

This works because Σ_{j=2}[∞] 2^{-j} = 1/2.
Infinite-option convention yields:

$$0.5 = [0, 1, 1, \ldots].$$

• Let x be a fixed number between zero and one

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:

D. Khoshnevisan (Salt Lake City, Utah)

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
 - Is $x \le 0.5$? If yes then $x_1 = 0$; else, $x_1 = 1$

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
 - Is $x \leq 0.5$? If yes then $x_1 = 0$; else, $x_1 = 1$
 - Is $y_1 = 2(x \frac{1}{2}x_1) \le 0.5$? If yes then $x_2 = 0$; else, $x_2 = 1$

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:
 - Is $x \leq 0.5$? If yes then $x_1 = 0$; else, $x_1 = 1$
 - Is $y_1 = 2(x \frac{1}{2}x_1) \le 0.5$? If yes then $x_2 = 0$; else, $x_2 = 1$
 - Is $y_2 = 2(y_1 \frac{1}{2}x_2) \le 0.5$? If yes then $x_3 = 0$; else, $x_3 = 1$

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:

• Is $x \le 0.5$? If yes then $x_1 = 0$; else, $x_1 = 1$

• Is
$$y_1 = 2(x - \frac{1}{2}x_1) \le 0.5$$
? If yes then $x_2 = 0$; else, $x_2 = 1$

• Is
$$y_2 = 2(y_1 - \frac{1}{2}x_2) \le 0.5$$
? If yes then $x_3 = 0$; else, $x_3 = 1$

- Let x be a fixed number between zero and one
- Ask twenty-twenty style:

• Is
$$x \leq 0.5$$
? If yes then $x_1 = 0$; else, $x_1 = 1$

• Is
$$y_1 = 2(x - \frac{1}{2}x_1) \le 0.5$$
? If yes then $x_2 = 0$; else, $x_2 = 1$
• Is $y_2 = 2(y_1 - \frac{1}{2}x_2) \le 0.5$? If yes then $x_3 = 0$; else, $x_3 = 1$
• :

• Why does this work? Hint:

$$y_1 = \sum_{j=1}^{\infty} \frac{x_{j+1}}{2^j}$$

D. Khoshnevisan (Salt Lake City, Utah)

 $\circ~$ Split $[0\,,1]$ into two subintervals $[0\,,0.5]$ and $(0.5\,,1];$

- $\circ~$ Split $[0\,,1]$ into two subintervals $[0\,,0.5]$ and $(0.5\,,1];$
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;

- $\circ~$ Split $[0\,,1]$ into two subintervals $[0\,,0.5]$ and $(0.5\,,1];$
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;

- Split [0,1] into two subintervals [0,0.5] and (0.5,1];
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;
- Split I_1 into two subintervals each half the length of I_1 ;

- Split [0,1] into two subintervals [0,0.5] and (0.5,1];
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;
- Split I_1 into two subintervals each half the length of I_1 ;
- If x falls in the left one $x_2 = 0$; if x falls in the right one $x_2 = 1$;

- Split [0,1] into two subintervals [0,0.5] and (0.5,1];
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;
- Split I_1 into two subintervals each half the length of I_1 ;
- If x falls in the left one $x_2 = 0$; if x falls in the right one $x_2 = 1$;
- Call whichever [dyadic] interval x fell in last I2;

- Split [0,1] into two subintervals [0,0.5] and (0.5,1];
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;
- Split I_1 into two subintervals each half the length of I_1 ;
- If x falls in the left one $x_2 = 0$; if x falls in the right one $x_2 = 1$;
- Call whichever [dyadic] interval x fell in last *I*₂;

•

- Split [0,1] into two subintervals [0,0.5] and (0.5,1];
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;
- Split I_1 into two subintervals each half the length of I_1 ;
- If x falls in the left one $x_2 = 0$; if x falls in the right one $x_2 = 1$;
- Call whichever [dyadic] interval x fell in last I_2 ;

• Try it for
$$x = 0.5$$

$$0.5 = [0\,,1\,,1\,,\ldots]$$

D. Khoshnevisan (Salt Lake City, Utah)

- Split [0,1] into two subintervals [0,0.5] and (0.5,1];
- If x falls in the left interval then $x_1 = 0$; if x falls in the right one then $x_1 = 1$;
- Call whichever [dyadic] interval x fell in last I_1 ;
- Split I_1 into two subintervals each half the length of I_1 ;
- If x falls in the left one $x_2 = 0$; if x falls in the right one $x_2 = 1$;
- Call whichever [dyadic] interval x fell in last I2;
- : • Try it for x = 0.5 0.5 = [0, 1, 1, ...]
- \circ What if you split into $[0\,,0.5)$ and $[0.5\,,1]$ etc.?

D. Khoshnevisan (Salt Lake City, Utah)

• These are the intervals we obtained by subdividing.

D. Khoshnevisan (Salt Lake City, Utah)

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of [0,1] that has length 2⁻ⁿ for some integer n ≥ 0.

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of [0,1] that has length 2⁻ⁿ for some integer n ≥ 0.
- A dyadic interval of length $n \ge 1$ can be written as

$$\left[\frac{j}{2^n}, \frac{j+1}{2^n}\right] \quad \text{if } j = 0, 2, \dots \text{ is even}$$

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of [0,1] that has length 2⁻ⁿ for some integer n ≥ 0.
- A dyadic interval of length $n \ge 1$ can be written as

$$\left[\frac{j}{2^n}, \frac{j+1}{2^n}\right] \quad \text{if } j = 0, 2, \dots \text{ is even}$$

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of [0,1] that has length 2⁻ⁿ for some integer n ≥ 0.
- A dyadic interval of length $n \ge 1$ can be written as

$$\begin{bmatrix} \frac{j}{2^n}, \frac{j+1}{2^n} \end{bmatrix} \quad \text{if } j = 0, 2, \dots \text{ is even} \\ \left(\frac{j}{2^n}, \frac{j+1}{2^n} \right] \quad \text{if } j = 1, 3, \dots \text{ is odd}$$

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 7 / 21

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of [0,1] that has length 2⁻ⁿ for some integer n ≥ 0.
- A dyadic interval of length $n \ge 1$ can be written as

$$\begin{bmatrix} \frac{j}{2^n}, \frac{j+1}{2^n} \end{bmatrix} \quad \text{if } j = 0, 2, \dots \text{ is even}, \\ \left(\frac{j}{2^n}, \frac{j+1}{2^n} \right] \quad \text{if } j = 1, 3, \dots \text{ is odd}$$

• Let \mathcal{D}_n denote all dyadic intervals of length 2^{-n} .

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 7 / 21

- These are the intervals we obtained by subdividing.
- A dyadic interval is a subintervals of [0,1] that has length 2⁻ⁿ for some integer n ≥ 0.
- A dyadic interval of length $n \ge 1$ can be written as

$$\begin{bmatrix} \frac{j}{2^n}, \frac{j+1}{2^n} \end{bmatrix} \quad \text{if } j = 0, 2, \dots \text{ is even}, \\ \left(\frac{j}{2^n}, \frac{j+1}{2^n} \right] \quad \text{if } j = 1, 3, \dots \text{ is odd}$$

Let D_n denote all dyadic intervals of length 2⁻ⁿ.
#D_n = 2ⁿ (check!)

• Let X_1, X_2, \ldots be independent random variables

D. Khoshnevisan (Salt Lake City, Utah)

• Let X_1, X_2, \ldots be independent random variables

•
$$\Pr{X_j = 0} = \Pr{X_j = 1} = \frac{1}{2}$$
 for all $j \ge 1$

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 8 / 21

- Let X_1, X_2, \ldots be independent random variables
- $\Pr{X_j = 0} = \Pr{X_j = 1} = \frac{1}{2}$ for all $j \ge 1$
- For all sequences a_1, \ldots, a_n of zeros and ones,

$$\Pr\{X_1 = a_1, \dots, X_n = a_n\} = \prod_{j=1}^n \Pr\{X_j = a_j\} = \frac{1}{2^n}.$$
 (1)

- Let X₁, X₂,... be independent random variables
- $\Pr{X_j = 0} = \Pr{X_j = 1} = \frac{1}{2}$ for all $j \ge 1$
- For all sequences a_1, \ldots, a_n of zeros and ones,

$$\Pr\{X_1 = a_1, \dots, X_n = a_n\} = \prod_{j=1}^n \Pr\{X_j = a_j\} = \frac{1}{2^n}.$$
 (1)

• Let X be a random variable who [random] binary digits are X_1, X_2, \dots I.e.,

$$X=\sum_{j=1}^{\infty}\frac{X_j}{2^j}.$$

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 8 / 21

- Let X₁, X₂,... be independent random variables
- $\Pr{X_j = 0} = \Pr{X_j = 1} = \frac{1}{2}$ for all $j \ge 1$
- For all sequences a_1, \ldots, a_n of zeros and ones,

$$\Pr\{X_1 = a_1, \dots, X_n = a_n\} = \prod_{j=1}^n \Pr\{X_j = a_j\} = \frac{1}{2^n}.$$
 (1)

• Let X be a random variable who [random] binary digits are X_1, X_2, \dots I.e.,

$$X=\sum_{j=1}^{\infty}\frac{X_j}{2^j}.$$

• By (1), $Pr{X \in I} = 2^{-n}$ for all $I \in \mathscr{D}_n$.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 8 / 21

Zero-One Construction of Length [Lebesgue Measure]

• We just argued that $Pr{X \in I} = length(I)$ for all dyadic intervals I.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 9 / 21

Zero-One Construction of Length [Lebesgue Measure]

- We just argued that $Pr{X \in I} = length(I)$ for all dyadic intervals I.
- General measure theory tells us that for all sets $I \subseteq [0, 1]$,

 $\Pr\{X \in I\} = \operatorname{length}(I),$

provided that we can attribute "length" to I.

- We just argued that $Pr{X \in I} = length(I)$ for all dyadic intervals I.
- General measure theory tells us that for all sets $I \subseteq [0, 1]$,

$$\Pr\{X \in I\} = \operatorname{length}(I),$$

provided that we can attribute "length" to I.

• X is "distributed uniformly on [0, 1]"

D. Khoshnevisan (Salt Lake City, Utah)

Borel's Strong Law of Large Numbers

• Recall X_1, X_2, \ldots are independent, and

$$X_j = egin{cases} 1, & ext{with probab. } rac{1}{2} \ 0, & ext{with probab. } rac{1}{2}. \end{cases}$$

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 10 / 21

Borel's Strong Law of Large Numbers

• Recall X_1, X_2, \ldots are independent, and

$$X_j = egin{cases} 1, & ext{with probab. } rac{1}{2} \ 0, & ext{with probab. } rac{1}{2}. \end{cases}$$

• (Expectations)

$$EX_j = \left(1 imes rac{1}{2}
ight) + \left(0 imes rac{1}{2}
ight) = rac{1}{2}$$
 for all j

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 10 / 21

Borel's Strong Law of Large Numbers

• Recall X_1, X_2, \ldots are independent, and

$$X_j = egin{cases} 1, & ext{with probab. } rac{1}{2} \ 0, & ext{with probab. } rac{1}{2}. \end{cases}$$

• (Expectations)

$$EX_j = \left(1 imes rac{1}{2}
ight) + \left(0 imes rac{1}{2}
ight) = rac{1}{2}$$
 for all j

• (Borel's Theorem, 1909) With probability one:

$$\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=\lim_{n\to\infty}\frac{EX_1+\cdots+EX_n}{n}=\frac{1}{2}$$

UofU: U-Coll '06 10 / 21

• Borel's theorem: With probab. one, $\lim_{n\to\infty} \frac{X_1+\dots+X_n}{n} = \frac{1}{2}$.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 11 / 21

Borel's theorem: With probab. one, lim_{n→∞} X_{1+···+X_n} = 1/2.
 X_{1+···+X_n}/n is also the fraction of 1's in the first *n* digits of *X*

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 11 / 21

- Borel's theorem: With probab. one, $\lim_{n\to\infty} \frac{X_1+\dots+X_n}{n} = \frac{1}{2}$.
- $\frac{X_1 + \dots + X_n}{n}$ is also the fraction of 1's in the first *n* digits of X
- Since $Pr{X \in I} = length(I)$,

Length
$$\left\{ x : \text{ asymp. fraction of ones} = \frac{1}{2} \right\} = 1.$$

Borel's theorem: With probab. one, lim_{n→∞} X_{1+···+X_n} = 1/2.
X_{1+···+X_n}/n is also the fraction of 1's in the first *n* digits of *X*Since Pr{X ∈ I} = length(I),

Length
$$\left\{ x : \text{ asymp. fraction of ones} = \frac{1}{2} \right\} = 1.$$

• A number $x \in [0, 1]$ is *normal* if $\lim_{n \to \infty} \frac{x_1 + \dots + x_n}{n} = \frac{1}{2}$.

11 / 21

UofU: U-Coll '06

D. Khoshnevisan (Salt Lake City, Utah)

- Borel's theorem: With probab. one, $\lim_{n\to\infty} \frac{X_1+\dots+X_n}{n} = \frac{1}{2}$.
- $\frac{X_1 + \dots + X_n}{n}$ is also the fraction of 1's in the first *n* digits of X
- Since $Pr{X \in I} = length(I)$,

Length
$$\left\{ x : \text{ asymp. fraction of ones} = \frac{1}{2} \right\} = 1.$$

- A number $x \in [0, 1]$ is *normal* if $\lim_{n \to \infty} \frac{x_1 + \dots + x_n}{n} = \frac{1}{2}$.
- Borel's theorem: Nonnormal numbers are of length zero.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 11 / 21

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2 for that matter):

•
$$x = \sum_{j=1}^{\infty} 10^{-j} x_j$$
, where $x_j \in \{0, \dots, 9\}$.

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2 for that matter):

•
$$x=\sum_{j=1}^\infty 10^{-j}x_j$$
, where $x_j\in\{0\,,\ldots,9\}$

• x is normal in base ten if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n I\{x_j=0\} = \cdots = \lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n I\{x_j=0\} = \frac{1}{10}$$

Normal numbers make sense also in base-ten arith. (or any other base ≥ 2 for that matter):

•
$$x=\sum_{j=1}^\infty 10^{-j}x_j$$
, where $x_j\in\{0\,,\ldots,9\}$

• x is normal in base ten if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n I\{x_j=0\}=\cdots=\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n I\{x_j=0\}=\frac{1}{10}.$$

• Borel's theorem: Almost every number is normal in base ten. In fact, almost every number is normal in all bases!

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 12 / 21

• There are no numbers that are known to be normal in all bases.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 13 / 21

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) 0.1234567891011121314... is normal in base ten

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 13 / 21

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) 0.1234567891011121314... is normal in base ten
- Champernnown's number is also transcendental (Mahler)

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) 0.1234567891011121314... is normal in base ten
- Champernnown's number is also transcendental (Mahler)
- (Copeland and Erdős, 1946) 0.23571113... is normal in base ten [conjectured by Champernowne, 1933]

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) 0.1234567891011121314... is normal in base ten
- Champernnown's number is also transcendental (Mahler)
- (Copeland and Erdős, 1946) 0.23571113... is normal in base ten [conjectured by Champernowne, 1933]
- and a few others

13 / 21

UofU: U-Coll '06

D. Khoshnevisan (Salt Lake City, Utah)

- There are no numbers that are known to be normal in all bases.
- (Champernowne, 1933) 0.1234567891011121314... is normal in base ten
- Champernnown's number is also transcendental (Mahler)
- (Copeland and Erdős, 1946) 0.23571113... is normal in base ten [conjectured by Champernowne, 1933]
- and a few others
- Is $\pi/10$ normal? How about $\sqrt{2}/10?$

13 / 21

UofU: U-Coll '06

D. Khoshnevisan (Salt Lake City, Utah)

• Your computer generates X uniformly between 0 and 1.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 14 / 21

- Your computer generates X uniformly between 0 and 1.
- Is it the case that X has the correct distribution?

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 14 / 21

- Your computer generates X uniformly between 0 and 1.
- Is it the case that X has the correct distribution?
- The binary digits $X_1, X_2, ...$ have lots of structure; so they need to pass various statistical tests (lots known)

- Your computer generates X uniformly between 0 and 1.
- Is it the case that X has the correct distribution?
- The binary digits $X_1, X_2, ...$ have lots of structure; so they need to pass various statistical tests (lots known)
- All RNG's will fail the true test of randomness: X_j's have to be normal in all bases.

Ternary Expansions

• Let x = [0, 1], and write uniquely,

$$x = \sum_{j=1}^{\infty} \frac{x_j}{3^j},$$

where $x_j \in \{0, 1, 2\}$.

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 15 / 21

Ternary Expansions

• Let x = [0, 1], and write uniquely,

$$x = \sum_{j=1}^{\infty} rac{x_j}{3^j}, \qquad \qquad ext{where } x_j \in \{0, 1, 2\}.$$

• The ternary Cantor set \mathscr{C} :

$$\mathscr{C} = \text{closure of } \{x \in [0, 1] : x_j \in \{0, 2\}\}$$

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 15 / 21

Ternary Expansions

• Let x = [0, 1], and write uniquely,

$$x = \sum_{j=1}^{\infty} \frac{x_j}{3^j},$$
 where $x_j \in \{0, 1, 2\}.$

• The ternary Cantor set \mathscr{C} :

$$\mathscr{C} = \text{closure of } \{x \in [0, 1] : x_j \in \{0, 2\}\}$$

•
$$x = 1/3$$
 is in the Cantor set; in fact, $x = [0, 2, 2, ...]$

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 15 / 21
Ternary Expansions

• Let x = [0, 1], and write uniquely,

$$x = \sum_{j=1}^{\infty} \frac{x_j}{3^j},$$
 where $x_j \in \{0, 1, 2\}.$

• The ternary Cantor set \mathscr{C} :

$$\mathscr{C} = \text{closure of } \{x \in [0,1]: x_j \in \{0,2\}\}$$

•
$$x = 1/3$$
 is in the Cantor set; in fact, $x = [0, 2, 2, ...]$
• If $\frac{1}{3} < x < \frac{2}{3}$ then $x \notin \mathcal{C}$ etc.

D. Khoshnevisan (Salt Lake City, Utah)

Ternary Expansions

• Let x = [0, 1], and write uniquely,

$$x = \sum_{j=1}^{\infty} \frac{x_j}{3^j},$$
 where $x_j \in \{0, 1, 2\}.$

• The ternary Cantor set \mathscr{C} :

$$\mathscr{C} = \text{closure of } \{x \in [0,1]: x_j \in \{0,2\}\}$$

• x = 1/3 is in the Cantor set; in fact, x = [0, 2, 2, ...]

• If
$$\frac{1}{3} < x < \frac{2}{3}$$
 then $x \notin \mathscr{C}$ etc.

• $\mathscr{C} =$ The middle-thirds Cantor set

• Let X_1, X_2, \ldots be independent,

$$\Pr\{X_1 = 0\} = \Pr\{X_1 = 2\} = \frac{1}{2}.$$

D. Khoshnevisan (Salt Lake City, Utah)

• Let X_1, X_2, \ldots be independent,

$$\Pr\{X_1 = 0\} = \Pr\{X_1 = 2\} = \frac{1}{2}.$$

• Let X be "uniformly distributed" on \mathscr{C} ; i.e.,

$$X = \sum_{j=1}^{\infty} \frac{X_j}{3^j} \implies \Pr\{X \in \mathscr{C}\} = 1.$$

D. Khoshnevisan (Salt Lake City, Utah)

• Let X_1, X_2, \ldots be independent,

$$\Pr\{X_1 = 0\} = \Pr\{X_1 = 2\} = \frac{1}{2}.$$

• Let X be "uniformly distributed" on \mathscr{C} ; i.e.,

$$X = \sum_{j=1}^{\infty} \frac{X_j}{3^j} \implies \Pr\{X \in \mathscr{C}\} = 1.$$

• Distribution function of X,

 $F(x) := \Pr{X \le x}$ "devil's staircase"

D. Khoshnevisan (Salt Lake City, Utah)

• Let X_1, X_2, \ldots be independent,

$$\Pr\{X_1 = 0\} = \Pr\{X_1 = 2\} = \frac{1}{2}.$$

• Let X be "uniformly distributed" on \mathscr{C} ; i.e.,

$$X = \sum_{j=1}^{\infty} \frac{X_j}{3^j} \implies \Pr\{X \in \mathscr{C}\} = 1.$$

• Distribution function of X,

 $F(x) := \Pr{X \le x}$ "devil's staircase"

• Aka Cantor-Lebesgue function

The Cantor–Lebesgue Function

D. Khoshnevisan (Salt Lake City, Utah)

The Cantor–Lebesgue Function

Theorem (Cantor)

D. Khoshnevisan (Salt Lake City, Utah)

UofU: U-Coll '06 18 / 21

• $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.

D. Khoshnevisan (Salt Lake City, Utah)

- $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.
- F is nondecreasing and continuous

D. Khoshnevisan (Salt Lake City, Utah)

- $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.
- F is nondecreasing and continuous
- F(0) = 0

- $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.
- F is nondecreasing and continuous
- F(0) = 0
- F(1) = 1

- $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.
- F is nondecreasing and continuous
- F(0) = 0
- F(1) = 1

- $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.
- F is nondecreasing and continuous
- F(0) = 0
- F(1) = 1

Fundamental theorem of calculus(?):

$$1 = F(1) - F(0) = \int_0^1 F'(x) \, dx = 0$$

D. Khoshnevisan (Salt Lake City, Utah)

- $C := \{x : F'(x) \text{ exists and } is = 0\}$ has length one.
- F is nondecreasing and continuous
- F(0) = 0
- F(1) = 1

Fundamental theorem of calculus(?):

$$1 = F(1) - F(0) = \int_0^1 F'(x) \, dx = 0$$

Mind those technical conditions of theorems!

D. Khoshnevisan (Salt Lake City, Utah)

$$\dim_{_{H}} S := \max \left\{ s \in [0, n] : E\left(\frac{1}{\|X - Y\|^{s}}\right) < \infty \right\},$$

where X and Y are:

• independent;

D. Khoshnevisan (Salt Lake City, Utah)

$$\dim_{_{H}} S := \max \left\{ s \in [0, n] : E\left(\frac{1}{\|X - Y\|^{s}}\right) < \infty \right\},$$

where X and Y are:

- independent;
- \circ both distributed "uniformly" on S

19 / 21

UofU: U-Coll '06

$$\dim_{_{H}} S := \max \left\{ s \in [0, n] : E\left(\frac{1}{\|X - Y\|^{s}}\right) < \infty \right\},$$

where X and Y are:

- independent;
- \circ both distributed "uniformly" on S

19 / 21

UofU: U-Coll '06

$$\dim_{_{H}} S := \max \left\{ s \in [0, n] : E\left(\frac{1}{\|X - Y\|^{s}}\right) < \infty \right\},$$

where X and Y are:

- independent;
- \circ both distributed "uniformly" on S

(Frostman, 1935)

19 / 21

UofU: U-Coll '06

 $\dim_{_H}\mathscr{C} = \log_3(2) = \ln 2 / \ln 3 \simeq 0.7615$

D. Khoshnevisan (Salt Lake City, Utah)

 $\dim_{_H}\mathscr{C} = \log_3(2) = \ln 2 / \ln 3 \simeq 0.7615$

D. Khoshnevisan (Salt Lake City, Utah)

 $\dim_{_H}\mathscr{C} = \log_3(2) = \ln 2 / \ln 3 \simeq 0.7615$

Strategy: Let X and Y be uniformly distributed on \mathcal{C} , both independent. Then we wish to demonstrate that:

• if $s > \log_3(2)$ then $E(|X - Y|^{-s}) = \infty$;

D. Khoshnevisan (Salt Lake City, Utah)

 $\dim_{_H}\mathscr{C} = \log_3(2) = \ln 2 / \ln 3 \simeq 0.7615$

Strategy: Let X and Y be uniformly distributed on \mathcal{C} , both independent. Then we wish to demonstrate that:

• if
$$s>\log_3(2)$$
 then $E(|X-Y|^{-s})=\infty;$

• if
$$s < \log_3(2)$$
 then $E(|X - Y|^{-s}) < \infty$.

D. Khoshnevisan (Salt Lake City, Utah)

• Let us prove that if $s < \log_3(2)$ then $E(|X - Y|^{-s}) < \infty$. This proves that $\dim_H \mathscr{C} \ge \log_3(2)$, and is in fact the harder bound.

• Let us prove that if $s < \log_3(2)$ then $E(|X - Y|^{-s}) < \infty$. This proves that $\dim_H \mathscr{C} \ge \log_3(2)$, and is in fact the harder bound.

- Let us prove that if s < log₃(2) then E(|X − Y|^{-s}) < ∞. This proves that dim_H C ≥ log₃(2), and is in fact the harder bound.
- Let $N := \min\{j \ge 1 : X_j \neq Y_j\}$; then $\Pr\{N > k\} = 2^{-k}$ for all $k \ge 0$.

- Let us prove that if s < log₃(2) then E(|X − Y|^{-s}) < ∞. This proves that dim_H C ≥ log₃(2), and is in fact the harder bound.
- Let $N := \min\{j \ge 1 : X_j \ne Y_j\}$; then $\Pr\{N > k\} = 2^{-k}$ for all $k \ge 0$.
- Therefore, $\Pr\{N = k\} = \Pr\{N > k 1\} \Pr\{N > k\} = 2^{-k}$.

- Let us prove that if s < log₃(2) then E(|X − Y|^{-s}) < ∞. This proves that dim_H C ≥ log₃(2), and is in fact the harder bound.
- Let $N := \min\{j \ge 1 : X_j \neq Y_j\}$; then $\Pr\{N > k\} = 2^{-k}$ for all $k \ge 0$.
- Therefore, $\Pr\{N = k\} = \Pr\{N > k 1\} \Pr\{N > k\} = 2^{-k}$.
- We have

$$\frac{1}{|X-Y|^s} \le \frac{1}{3^{Ns}}$$

- Let us prove that if s < log₃(2) then E(|X − Y|^{-s}) < ∞. This proves that dim_H C ≥ log₃(2), and is in fact the harder bound.
- Let $N := \min\{j \ge 1 : X_j \neq Y_j\}$; then $\Pr\{N > k\} = 2^{-k}$ for all $k \ge 0$.
- Therefore, $\Pr\{N = k\} = \Pr\{N > k 1\} \Pr\{N > k\} = 2^{-k}$.
- We have

$$\frac{1}{|X-Y|^s} \le \frac{1}{3^{Ns}}$$

• If $s < \log_3(2)$ then

$$E\left(\frac{1}{|X-Y|^s}\right) \leq E\left(\frac{1}{3^{Ns}}\right) = \sum_{k=1}^{\infty} \frac{1}{3^{ks}} \times 2^{-k} < \infty.$$

D. Khoshnevisan (Salt Lake City, Utah)