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0 There are 2 jumbles of “OF"” (“OF" and
IIFOH);

[0 There are 6 jumbles of “OFT" (“OFT",
IIFTO” : “I:OT” : “O—I_I:ll : IITOFH : and “TI:O” );

0 There are 24 jumbles of “SOFT" (!)

In general, there are N! = N(N —1)---1 jum-
bles of N objects. This is read as “N
factorial”.
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Nl ~ /2re NNN+3.



Stirling’'s formula was found by Abraham de
Moivre and published in “Miscellenea Analyt-
ica” 1730. It was later refined, but published
in the same year, by J. Stirling in “Methodus
Differentialis” along with other little gems of
thought. For instance, therein, Stirling com-
putes the area under the

22 6_332/2 dr = /2,

- we will come back to this computation of
James Stirling.



N! = [§Pe N dt.

To see this, let uw = tV and dv = e tdt, and
integrate by parts:
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So, we can iterate this in N:
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M(z) = [§Pe Tt L dt, x> 1.

r@d) = Jee /2 da.
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So, for f of the form shown in the previous
figure, and for large N,

/OO eNF @) gy ~ R eNF @) g, (1)
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Pick ¢ small and use Taylor's expansion near

Q.

F@) = f(x0) + 51" (@0} (x — 70)?,

and recall that f(zg) < 0 (Max. at zg). Plug
this in Eq. (1), to obtain
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To re-iterate
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Recall that f’(xg) < 0, and change variables
(y = /=N f"(z0)(z — z0)):

dy X
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Since N! = [§° e~/ dt from the first slide,

NI = /Ooe_t+N|ntdt.
0]

Change variables (s = Nt) to get
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where f(s) = In(s) —s. Check that f is of the
desired form, g = 1, f(zg) = —1, f(xg) =

—1, and now we derive the Striling’s formula
from Laplace’'s method easily:
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which equals v2re VNV T3,
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