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Jumbles (aka Permutations)

❄ There are 2 jumbles of “OF” (“OF” and

“FO”);

❄ There are 6 jumbles of “OFT” (“OFT”,

“FTO”, “FOT”, “OTF”, “TOF”, and “TFO”);

❄ There are 24 jumbles of “SOFT” (!)
...

In general, there are N ! = N(N − 1) · · ·1 jum-

bles of N distinct objects. This is read as “N

factorial”.
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N ! = N × (N − 1) × · · · × 1 is a sequence that

grows large rapidly as N grows, viz.,

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120
...

20! = 2.432902008 × 1018

40! = 8.16× 1047

100! = 9.33× 10157

400! = Error
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S(N) =
√

2πe−NNN+1
2.

S(20) = 2.422786847 × 1018

S(40) = 8.14217264483 × 1047

S(100) = 9.32× 10157

S(400) = Error
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Stirling’s Formula (De Moivre 1730)

lim
N→∞

N !
√

2πe−NNN+1
2

= 1.

In simple words, for large N ,

N ! ' √2πe−NNN+1
2.
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A Little History

Stirling’s formula was found by Abraham de

Moivre and published in “Miscellenea Analyt-

ica” 1730. It was later refined, but published

in the same year, by J. Stirling in “Methodus

Differentialis” along with other little gems of

thought. For instance, therein, Stirling com-

putes the area under the Bell Curve:

∫∞−∞ e−x2/2 dx =
√

2π,

· · · we will come back to this computation of

James Stirling.
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The Gamma Function Representation

N ! =
∫∞
0 e−ttN dt.

To see this, let u = tN and dv = e−t dt, and
integrate by parts:

∫ ∞
0

e−ttN dt = −tNe−t
∣∣∣∣
∞

0
+ N

∫ ∞
0

e−ttN−1 dt

= N
∫ ∞
0

e−ttN−1 dt.

So, we can iterate this in N :

∫ ∞
0

e−ttN dt = N(N − 1)
∫ ∞
0

e−ttN−2 dt

= N(N − 1)(N − 2)
∫ ∞
0

e−ttN−3 dt

...

= N !
∫ ∞
0

e−t dt

= N !.
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The Gamma Function

Γ(x) =
∫∞
0 e−ttx−1 dt, x > 1.

Check, by changing variables, that

Γ(1
2) =

∫∞
0 e−x2/2 dx.

Stirling showed that Γ(1
2) =

√
π. Thus, this

is equivalent to the area under the bell curve

=
√

2π (check!)
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Laplace’s Method

Goal: estimate
∫∞−∞ eNf(x) dx for large N , where

f looks like

xx0

f(x)

f(x )0

It can be shown that for such a function, all

of the main contribution to the integral comes

from the x values near x0, say, (1− ε)x0 ≤ x ≤
(1 + ε)x0. The contribution from the other

x values is asymptotically (i.e., as N → ∞)

is negligible. Here, ε is an arbitrary positive

constant.
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So, for f of the form shown in the previous

figure, and for large N ,
∫ ∞
−∞

eNf(x) dx '
∫ (1+ε)x0

(1−ε)x0

eNf(x) dx. (1)

Pick ε small and use Taylor’s expansion near

x0:

f(x) ' f(x0) +
1

2
f ′′(x0)(x− x0)

2,

and recall that f ′′(x0) < 0 (Max. at x0). Plug

this in Eq. (1), to obtain

∫ ∞
−∞

eNf(x) dx ' eNf(x0)
∫ (1+ε)x0

(1−ε)x0

e
N
2 f ′′(x0)(x−x0)

2
dx.
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To re-iterate
∫ ∞
−∞

eNf(x) dx ' eNf(x0)
∫ (1+ε)x0

(1−ε)x0

e
N
2 f ′′(x0)(x−x0)

2
dx.

Recall that f ′′(x0) < 0, and change variables

(y =
√
−Nf ′′(x0)(x− x0)):

∫ ∞
−∞

eNf(x) dx ' eNf(x0)
∫ +ε

√
−Nf ′′(x0)

−ε
√
−Nf ′′(x0)

e−
1
2y2

dy×

× 1√
−Nf ′′(x0)

' eNf(x0)
∫ ∞
−∞

e−
1
2y2

dy×

× 1√
−Nf ′′(x0)

=

√
2πeNf(x0)√
−Nf ′′(x0)

.
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Back to Stirling

Since N ! =
∫∞
0 e−ttN dt from the first slide,

N ! =
∫ ∞
0

e−t+N ln t dt.

Change variables (s = Nt) to get

N ! = NN+1
∫ ∞
0

e−N(ln s−s) ds

= NN+1
∫ ∞
0

eNf(s) ds,

where f(s) = ln(s)− s. Check that f is of the

desired form, x0 = 1, f(x0) = −1, f ′′(x0) =

−1, and now we derive the Striling’s formula

from Laplace’s method easily:

N ! ' NN+1

√
2πeNf(x0)√
−Nf ′′(x0)

= NN+1

√
2πe−N

N
1
2

,

which equals
√

2πe−NNN+1
2.

10



Easy Exercise

Check, by using Laplace’s method, that

∫ π
0 xN sin(x) dx ' πN+2N−2.

Harder Exercise

(Essentially the local de Moivre–Laplace

central limit theorem)

Check, by using Laplace’s method, that for

even numbers N ,

N !
(N/2)! ' 2N

√
2

πN ,

where, in both exercises, f(N) ' g(N) means

that f(N)/g(N) → 1, as N →∞.

11


