Stirling's Formula and Laplace's Method OR

How to Put Your Calculus to Good Use

The Undergraduate Colloquium
 The University of Utah
 December 4, 2001

Davar Khoshnevisan
Department of Mathematics
The University of Utah
davar@math.utah.edu
http://www.math.utah.edu/~davar

* There are 2 jumbles of "OF" ("OF" and "FO");

** There are 6 jumbles of "OFT" ("OFT", "FTO", "FOT", "OTF", "TOF", and "TFO");

* There are 24 jumbles of "SOFT" (!)

In general, there are $N!=N(N-1) \cdots 1$ jumbles of N objects. This is read as " N factorial".
$N!=N \times(N-1) \times \cdots \times 1$ is a sequence that grows large rapidly as N grows, viz.,

```
1! = 1 
5! = 120
20! = 2.432902008 * 10 18
40! = 8.16 * 1047
100! = 9.33 }\times1\mp@subsup{0}{}{157
400! = Error
```

$$
\mathfrak{S}(N)=\sqrt{2 \pi} e^{-N} N^{N+\frac{1}{2}}
$$

$\mathfrak{S}(20)=2.422786847 \times 10^{18}$ $\mathfrak{S}(40)=8.14217264483 \times 10^{47}$ $\mathfrak{S}(100)=9.32 \times 10^{157}$ $\mathfrak{S}(400)=$ Error

Stirling's Formula (De Moivre 1730)

$$
\lim _{N \rightarrow \infty} \frac{N!}{\sqrt{2 \pi} e^{-N} N^{N+\frac{1}{2}}}=1
$$

In simple words, for large N,

Stirling's formula was found by Abraham de Moivre and published in "Miscellenea Analytica" 1730. It was later refined, but published in the same year, by J. Stirling in "Methodus Differentialis" along with other little gems of thought. For instance, therein, Stirling computes the area under the Bell Curve:

... we will come back to this computation of James Stirling.

$N!=\int_{0}^{\infty} e^{-t} t^{N} d t$.

To see this, let $u=t^{N}$ and $d v=e^{-t} d t$, and integrate by parts:

$$
\begin{aligned}
\int_{0}^{\infty} e^{-t} t^{N} d t & =-\left.t^{N} e^{-t}\right|_{0} ^{\infty}+N \int_{0}^{\infty} e^{-t} t^{N-1} d t \\
& =N \int_{0}^{\infty} e^{-t} t^{N-1} d t
\end{aligned}
$$

So, we can iterate this in N :

$$
\begin{aligned}
\int_{0}^{\infty} e^{-t} t^{N} d t & =N(N-1) \int_{0}^{\infty} e^{-t} t^{N-2} d t \\
& =N(N-1)(N-2) \int_{0}^{\infty} e^{-t} t^{N-3} d t \\
& \vdots \\
& =N!\int_{0}^{\infty} e^{-t} d t \\
& =N!.
\end{aligned}
$$

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, \quad x>1
$$

Check, by changing variables, that

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} e^{-x^{2} / 2} d x
$$

Stirling showed that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. Thus, this is equivalent to the area under the bell curve $=\sqrt{2 \pi}$ (check!)

Goal: estimate $\int_{-\infty}^{\infty} e^{N f(x)} d x$ for large N, where f looks like

It can be shown that for such a function, all of the main contribution to the integral comes from the x values near x_{0}, say, $(1-\varepsilon) x_{0} \leq x \leq$ $(1+\varepsilon) x_{0}$. The contribution from the other x values is asymptotically (i.e., as $N \rightarrow \infty$) is negligible. Here, ε is an arbitrary positive constant.

So, for f of the form shown in the previous figure, and for large N,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{N f(x)} d x \simeq \int_{(1-\varepsilon) x_{0}}^{(1+\varepsilon) x_{0}} e^{N f(x)} d x \tag{1}
\end{equation*}
$$

Pick ε small and use Taylor's expansion near x_{0} :

$$
f(x) \simeq f\left(x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

and recall that $f^{\prime \prime}\left(x_{0}\right)<0$ (Max. at x_{0}). Plug this in Eq. (1), to obtain

$$
\int_{-\infty}^{\infty} e^{N f(x)} d x \simeq e^{N f\left(x_{0}\right)} \int_{(1-\varepsilon) x_{0}}^{(1+\varepsilon) x_{0}} e^{\frac{N}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}} d x .
$$

To re-iterate
$\int_{-\infty}^{\infty} e^{N f(x)} d x \simeq e^{N f\left(x_{0}\right)} \int_{(1-\varepsilon) x_{0}}^{(1+\varepsilon) x_{0}} e^{\frac{N}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}} d x$
Recall that $f^{\prime \prime}\left(x_{0}\right)<0$, and change variables

$$
\left(y=\sqrt{-N f^{\prime \prime}\left(x_{0}\right)}\left(x-x_{0}\right)\right):
$$

$\int_{-\infty}^{\infty} e^{N f(x)} d x \simeq e^{N f\left(x_{0}\right)} \int_{-\varepsilon \sqrt{-N f^{\prime \prime}\left(x_{0}\right)}}^{+\varepsilon \sqrt{-N f^{\prime \prime}\left(x_{0}\right)}} e^{-\frac{1}{2} y^{2}} d y \times$
$\times \frac{1}{\sqrt{-N f^{\prime \prime}\left(x_{0}\right)}}$
$\simeq e^{N f\left(x_{0}\right)} \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} d y \times$
$\times \frac{1}{\sqrt{-N f^{\prime \prime}\left(x_{0}\right)}}$
$=\frac{\sqrt{2 \pi} e^{N f\left(x_{0}\right)}}{\sqrt{-N f^{\prime \prime}\left(x_{0}\right)}}$.

Since $N!=\int_{0}^{\infty} e^{-t} t^{N} d t$ from the first slide,

$$
N!=\int_{0}^{\infty} e^{-t+N \ln t} d t .
$$

Change variables ($s=N t$) to get

$$
\begin{aligned}
N! & =N^{N+1} \int_{0}^{\infty} e^{-N(\ln s-s)} d s \\
& =N^{N+1} \int_{0}^{\infty} e^{N f(s)} d s,
\end{aligned}
$$

where $f(s)=\ln (s)-s$. Check that f is of the desired form, $x_{0}=1, f\left(x_{0}\right)=-1, f^{\prime \prime}\left(x_{0}\right)=$ -1 , and now we derive the Striling's formula from Laplace's method easily:

$$
N!\simeq N^{N+1} \frac{\sqrt{2 \pi} e^{N f\left(x_{0}\right)}}{\sqrt{-N f^{\prime \prime}\left(x_{0}\right)}}=N^{N+1} \frac{\sqrt{2 \pi} e^{-N}}{N^{\frac{1}{2}}},
$$

which equals $\sqrt{2 \pi} e^{-N} N^{N+\frac{1}{2}}$.

Check, by using Laplace's method, that

$$
\int_{0}^{\pi} x^{N} \sin (x) d x \simeq \pi^{N+2} N^{-2} .
$$

(Essentially the local de Moivre-Laplace central limit theorem)

Check, by using Laplace's method, that for even numbers N,

where, in both exercises, $f(N) \simeq g(N)$ means that $f(N) / g(N) \rightarrow 1$, as $N \rightarrow \infty$.

