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Large-scale structure of galaxies
S. F. Shandarin and Ya B. Zeldovich, Rev. Modern Phys. (1989)
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A simple model for intermittency[u̇t(x) = (1/2)u′′t (x) + λut(x)ηt,u0(x) = 1]
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

I dut = λut dbt , where bt = η([0 , t]) denotes 1-D Brownian motion

I The solution is the exponential martingale, ut := eλbt−(λ2t/2)
I ut → 0 as λ →∞
I E(u2

t ) = exp{λ2t
}
→∞ (fast!) as λ →∞
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A SHE simulation [u̇t(x) = (1/2)u′′t (x) + λut(x)ηt(x),
u0(x) = sin(πx), 0 6 x 6 1; ut(0) = ut(1) = 0.]
λ = 0 (left; ut (x) = sin(πx) exp(−π2t/2)) and λ = 0.1 (right)
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A simulation [u̇t(x) = (1/2)u′′t (x) + λut(x)ηt(x),
u0(x) = sin(πx), 0 6 x 6 1; ut(0) = ut(1) = 0.]
λ = 2 (left) and λ = 6 (right)
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A family of SPDEs

I ∂tut (x) = L ut (x) + λσ (ut (x))ξt (x);

I x ∈ G := an LCA group
I ξ := space-time white noise [control measure mR+ ×mG ]
I L := L2(G)-generator of a Lévy process on G;
I u0 ∈ L2(G) non random
I λ > 0 a parameter [the “level of the noise”]
I A priori fact. In many cases, ∃q > 0 such thatE(‖ut‖2L2(G)) ≈ exp{cλq} as λ ↑ ∞ [“nonlinear noise excitation”].
I Language borrowed from NMR spectr. (Blümich, 1987); roughidea probably older still
I Question. Why?
I Answer has only to do with the topology of G .
I Example of what is to come. “The noise excitation index q , whenit ∃, is a topological invariant.”
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Example 1
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x)

I G := the trivial group on one element

I The only Lévy process on G is the constant process
I L f = 0 for all f : G → R
I Our SPDE is an arbitrary Itô diffusion in R with no drift:

dut = λσ (ut ) dBt

I Can add drift to the SPDE in order to get all Itô processes, butwe will not
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Example 2
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x)

I G := Z2, the cyclic group on 2 elements [{0 , 1}, addition mod 1]

I Lévy processes on G switch their state at rate κ > 0
I Our SPDE yields the 2-D Itô diffusion t 7Ï (ut (0) ,ut (1)):[

dut (0) = κ
[
ut (1)− ut (0)]dt + λσ (ut (0))dBt (0),

dut (1) = κ
[
ut (0)− ut (1)]dt + λσ (ut (1))dBt (1).

I 2 Itô diffusions with attractive OU-type molecular forcing[molecular diffusion for a 1-Dim 2-body system with elasticbonds]
I Can be easily extended to G = Zn
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Example 3 (Classical)
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x)

I G = R and L = κ∂2
xx—the stochastic heat equation on R

I G = [0 , 1] and L = κ∂2
xx with periodic ∂ condition—thestochastic heat equation on the circle

I G = Zd and L = κ∆Zd—the semi-dicrete stochastic heat equation
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Example 4 (A SHE with a quadratic scatterer)

I G = R×>0 [R>0 with group multiplication = ×]

I X is a Lévy process on R×>0 iff Xt = exp(Yt ) for a Lévy process Yon R
I E.g., Xt = exp{Bt + δt}, where B = Br. motion on R
I Our SPDE becomes [Itô formula]:

u̇t (x) = 12x2u′′t (x) + (δ + 12) xu′t (x) + λσ (ut (x))ξt (x).
I Aside. δ = −1/2 is somewhat special [exp. mart.]:

I Drift-free SPDE
I EXt = identity of R×>0
I QV: ∑06j6b2ntc(X(j+1)/2n X−1

j/2n )2 → t as n→∞ a.s.
I X is “Gaussian”
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I Our SPDE becomes [Itô formula]:

u̇t (x) = 12x2u′′t (x) + (δ + 12) xu′t (x) + λσ (ut (x))ξt (x).
I Aside. δ = −1/2 is somewhat special [exp. mart.]:

I Drift-free SPDE
I EXt = identity of R×>0

I QV: ∑06j6b2ntc(X(j+1)/2n X−1
j/2n )2 → t as n→∞ a.s.

I X is “Gaussian”
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Dalang’s Condition
∂tut (x) = L ut (x) + λξt (x)
Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE σ ≡ 1. Then our SPDE has a function
solution if and only if∫

G∗

( 11 + ReΨ(χ)
)

mG∗ (dχ) <∞, (D)
where G∗ := the dual group to G

I mG∗ := Haar measure on G∗, normalized to make Fouriertransform an isometry on L2(G)
I E(χ ,Xt ) = exp(−tΨ(χ)) for all χ ∈ G∗ and t > 0
I (D) iff XtY−1

t has local times, where Y is an indept copy of X[essentially due to Hawkes 1986]; see also Foondun–K–Nualart(2011) and Eisenbaum–Foondun–K (2011)
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Remarks
Condition (D):

∫
G∗ (1 + ReΨ(χ))−1 mG∗ (dχ) <∞

I We will need the linear solution to have a function solution inorder to be able to apply variation of parameters to thenon-linear equation;

I Therefore, (D) is assumed from now on
I This is the only requirement for our Lévy process
I Condition (D) always holds when G is discrete:

I Proof 1. G∗ is compact [Pontryagin–van Kampen duality]
I Proof 2. XtY−1

t always has local times when G is discrete[elementary computations]
I This is a first example of how the structure of G alone can matter:When G is discrete the linear SPDE always has a function solution
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Existence and Uniqueness
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x)
Theorem (K–Kim)

Suppose that σ is Lipschitz continuous, and either σ (0) = 0 or G is
compact. If, in addition, u0 ∈ L2(G) is non random, then our SPDE
has a solution that satisfies the following energy inequality for some
c ∈ (0 ,∞):

Et (λ)2 := E(‖ut‖2L2(G)) 6 c exp(ct) for all t > 0.
∃ uniqueness among solutions that have an energy inequality.

I When σ (0) = 0, this is essentially due to Dalang and Mueller(2003)
I We are interested in the behavior of Et (λ) for λ � 1
I From now on either G is compact or σ (0) = 0
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Linear noise excitation
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Proposition (K–Kim)

I If G is compact and σ is bounded, then Et (λ) = O(λ) ∀t > 0
I If in addition ess infz∈G |u0(z)| > 0 and infz∈R |σ (z)| > 0, then in

fact Et (λ) � λ ∀t > 0
I For simplicity let us consider only the case that infz∈R |σ (z)/z| > 0
I It is known (Foondun–Kh, 2010) that our SPDE is typically“intermittent”
I Wish to understand the noise excitation of such SPDEs
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Non-linear noise excitation
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

Under the preceding conditions:

I Suppose that G is discrete. Then,

A exp{Aλ2} 6 Et (λ) 6 B exp{Bλ2} for all λ > 1
I Suppose G is connected and: (1) either it is non compact; or (2)

it is compact and metrizable with cardinality > 2 [hence =∞].
Then,

Et (λ) > C exp{Cλ4} for all λ > 1
I For every θ > 4, ∃ a model for which log Et (λ) � λθ

I Ñ consequences for numerical analysis of shocks
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Outline of proof
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
I Start with a priori abstract bounds on Et (λ) in terms of

Υ(β) := ∫
G∗

( 1
β + ReΨ(χ)

)
mG∗ (dχ) for β � 1

This is the max of the β-resolvent density of XtY−1
t

I An upper bound à la Foondun-Kh (2010):
Et (λ) 6 const · exp{ t2Υ−1(const

λ2
)}

I A lower bound:
Et (λ) > c−1e−ct ·

√√√√1 + ∞∑
j=1
(
λ2
c · Υ(j/t))j
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Outline of proof: The discrete case
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))

I Since G is discrete, G∗ is compact [Pontryagin–van Kampenduality], and hence
Υ(β) = ∫

G∗

( 1
β + ReΨ(χ)

)
mG∗ (dχ) � 1

β for β > 1.

I Use this formula in the abstract bounds
I The connected case is more interesting because we do not haveformulas for the behavior of Υ

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 17 / 20



Outline of proof: The discrete case
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))

I Since G is discrete, G∗ is compact [Pontryagin–van Kampenduality], and hence
Υ(β) = ∫

G∗

( 1
β + ReΨ(χ)

)
mG∗ (dχ) � 1

β for β > 1.
I Use this formula in the abstract bounds

I The connected case is more interesting because we do not haveformulas for the behavior of Υ

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 17 / 20



Outline of proof: The discrete case
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))

I Since G is discrete, G∗ is compact [Pontryagin–van Kampenduality], and hence
Υ(β) = ∫

G∗

( 1
β + ReΨ(χ)

)
mG∗ (dχ) � 1

β for β > 1.
I Use this formula in the abstract bounds
I The connected case is more interesting because we do not haveformulas for the behavior of Υ
D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 17 / 20



Reduction principle 1: Group invariance
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

I If h : G → Γ is a topological isometry, then vt (x) := ut (h−1(x))
solves [in law] the SPDE

∂tvt (x) = Lhvt (x) + λ√
µ(h)σ (vt (x)) ζt (x), where:

I µ(h) ∈ (0 ,∞)
I ζ is space-time white noise on R+ × Γ
I Lh := the L2(Γ)-generator of the Lévy process h(Xt )
I If Γ = G and h ∈ Aut(G), then µ is the modulus of h

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 18 / 20



Reduction principle 1: Group invariance
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

I If h : G → Γ is a topological isometry, then vt (x) := ut (h−1(x))
solves [in law] the SPDE

∂tvt (x) = Lhvt (x) + λ√
µ(h)σ (vt (x)) ζt (x), where:

I µ(h) ∈ (0 ,∞)
I ζ is space-time white noise on R+ × Γ
I Lh := the L2(Γ)-generator of the Lévy process h(Xt )
I If Γ = G and h ∈ Aut(G), then µ is the modulus of h

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 18 / 20



Reduction principle 1: Group invariance
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

I If h : G → Γ is a topological isometry, then vt (x) := ut (h−1(x))
solves [in law] the SPDE

∂tvt (x) = Lhvt (x) + λ√
µ(h)σ (vt (x)) ζt (x), where:

I µ(h) ∈ (0 ,∞)

I ζ is space-time white noise on R+ × Γ
I Lh := the L2(Γ)-generator of the Lévy process h(Xt )
I If Γ = G and h ∈ Aut(G), then µ is the modulus of h

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 18 / 20



Reduction principle 1: Group invariance
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

I If h : G → Γ is a topological isometry, then vt (x) := ut (h−1(x))
solves [in law] the SPDE

∂tvt (x) = Lhvt (x) + λ√
µ(h)σ (vt (x)) ζt (x), where:

I µ(h) ∈ (0 ,∞)
I ζ is space-time white noise on R+ × Γ

I Lh := the L2(Γ)-generator of the Lévy process h(Xt )
I If Γ = G and h ∈ Aut(G), then µ is the modulus of h

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 18 / 20



Reduction principle 1: Group invariance
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

I If h : G → Γ is a topological isometry, then vt (x) := ut (h−1(x))
solves [in law] the SPDE

∂tvt (x) = Lhvt (x) + λ√
µ(h)σ (vt (x)) ζt (x), where:

I µ(h) ∈ (0 ,∞)
I ζ is space-time white noise on R+ × Γ
I Lh := the L2(Γ)-generator of the Lévy process h(Xt )

I If Γ = G and h ∈ Aut(G), then µ is the modulus of h

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 18 / 20



Reduction principle 1: Group invariance
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

I If h : G → Γ is a topological isometry, then vt (x) := ut (h−1(x))
solves [in law] the SPDE

∂tvt (x) = Lhvt (x) + λ√
µ(h)σ (vt (x)) ζt (x), where:

I µ(h) ∈ (0 ,∞)
I ζ is space-time white noise on R+ × Γ
I Lh := the L2(Γ)-generator of the Lévy process h(Xt )
I If Γ = G and h ∈ Aut(G), then µ is the modulus of h

D. Khoshnevisan (U. Utah) Nonlinear Noise Excitation October 9-11, 2014 18 / 20



Reduction principle 2: Projections reduce energy
∂tut (x) = L ut (x) + λσ (ut (x))ξt (x), Et (λ) :=√E(‖ut‖2

L2(G))
Theorem (K–Kim)

If G = Γ×K and K is a compact abelian group, then

Eut (λ) > Evt (λ), (1)
where vt solves the same SPDE, but on Γ with L replaced by the
generator of the projection of X onto Γ. Furthermore, v exists [as a
finite-energy solution] when u does

I Now apply our reduction principles in structure theory of LCAgroups; compare everything to Br. motion L f = f ′′ on R
I For α-stable processes on R, log Et (λ) � λ4/(α−1), for all α ∈ (1 , 2]
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Back to [0 , 1] with Dirichlet 0-boundary
conditions

Two asides:
Theorem (Foondun–Joseph, 2014)

If u solves ∂tu = u′′ + σ (u)ξ on [0 , 1] with ut (0) = ut (1) = 0 and nice
I.C., then log Et (λ) � λ4 for all λ > 1.

. . . as compared with

Theorem (K–Kim)

If u solves ∂2
t u = u′′ + σ (u)ξ on R with nice B.C. and I.C., thenlog Et (λ) � λ for all λ > 1.
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