Nonlinear Noise Excitation

Davar Khoshnevisan
(joint with Kunwoo Kim)
Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

Large-scale structure of galaxies

S. F. Shandarin and Ya B. Zeldovich, Rev. Modern Phys. (1989)

A simple model for intermittency $\left[\dot{u}_{t}(x)=(1 / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$ (Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion

A simple model for intermittency $\left[\dot{u}_{t}(x)=(1 / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$ (Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion
- The solution is the exponential martingale, $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$

A simple model for intermittency
 $\left[\dot{u}_{t}(x)=(1 / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$
 (Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion
- The solution is the exponential martingale, $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $\lambda \rightarrow \infty$

A simple model for intermittency
 $\left[\dot{u}_{t}(x)=(1 / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$
 (Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion
- The solution is the exponential martingale, $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $\lambda \rightarrow \infty$
- $\mathrm{E}\left(u_{t}^{2}\right)=\exp \left\{\lambda^{2} t\right\} \rightarrow \infty$ (fast!) as $\lambda \rightarrow \infty$

A SHE simulation $\left[\dot{u}_{t}(x)=(1 / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}(x)\right.$,

 $u_{0}(x)=\sin (\pi x), 0 \leqslant x \leqslant 1 ; u_{t}(0)=u_{t}(1)=0$.] $\lambda=0$ (left; $u_{t}(x)=\sin (\pi x) \exp \left(-\pi^{2} t / 2\right)$) and $\lambda=0.1$ (right)

A simulation $\left[\dot{u}_{t}(x)=(1 / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}(x)\right.$, $u_{0}(x)=\sin (\pi x), 0 \leqslant x \leqslant 1 ; u_{t}(0)=u_{t}(1)=0$.] $\lambda=2$ (leff) and $\lambda=6$ (right)

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) ;$

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{R_{+}} \times m_{G}$]

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathbf{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathbf{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathbf{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random
- $\lambda>0$ a parameter [the "level of the noise"]

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathbf{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random
- $\lambda>0$ a parameter [the "level of the noise"]
- A priori fact. In many cases, $\exists q>0$ such that $E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \approx \exp \{c \lambda q\}$ as $\lambda \uparrow \infty$ ["nonlinear noise excitation"].

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathrm{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random
- $\lambda>0$ a parameter [the "level of the noise"]
- A priori fact. In many cases, $\exists q>0$ such that $\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \approx \exp \left\{c \lambda^{q}\right\}$ as $\lambda \uparrow \infty$ ["nonlinear noise excitation"].
- Language borrowed from NMR spectr. (Blümich, 1987); rough idea probably older still

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathrm{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random
- $\lambda>0$ a parameter [the "level of the noise"]
- A priori fact. In many cases, $\exists q>0$ such that $\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \approx \exp \left\{c \lambda^{q}\right\}$ as $\lambda \uparrow \infty$ ["nonlinear noise excitation"].
- Language borrowed from NMR spectr. (Blümich, 1987); rough idea probably older still
- Question. Why?

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathbf{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random
- $\lambda>0$ a parameter [the "level of the noise"]
- A priori fact. In many cases, $\exists q>0$ such that $\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \approx \exp \left\{c \lambda^{q}\right\}$ as $\lambda \uparrow \infty$ ["nonlinear noise excitation"].
- Language borrowed from NMR spectr. (Blümich, 1987); rough idea probably older still
- Question. Why?
- Answer has only to do with the topology of G.

A family of SPDEs

- $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$;
- $x \in G:=$ an LCA group
- $\xi:=$ space-time white noise [control measure $m_{\mathrm{R}_{+}} \times m_{G}$]
- $\mathscr{L}:=L^{2}(G)$-generator of a Lévy process on G;
- $u_{0} \in L^{2}(G)$ non random
- $\lambda>0$ a parameter [the "level of the noise"]
- A priori fact. In many cases, $\exists q>0$ such that $\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \approx \exp \left\{c \lambda^{q}\right\}$ as $\lambda \uparrow \infty$ ["nonlinear noise excitation"].
- Language borrowed from NMR spectr. (Blümich, 1987); rough idea probably older still
- Question. Why?
- Answer has only to do with the topology of G.
- Example of what is to come. "The noise excitation index q, when it \exists, is a topological invariant."

Example 1

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=$ the trivial group on one element

Example 1
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=$ the trivial group on one element
- The only Lévy process on G is the constant process

Example 1
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=$ the trivial group on one element
- The only Lévy process on G is the constant process
- $\mathscr{L} f=0$ for all $f: G \rightarrow \mathbf{R}$

Example 1
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=$ the trivial group on one element
- The only Lévy process on G is the constant process
- $\mathscr{L} f=0$ for all $f: G \rightarrow \mathbf{R}$
- Our SPDE is an arbitrary Itô diffusion in R with no drift:

$$
d u_{t}=\lambda \sigma\left(u_{t}\right) d B_{t}
$$

Example 1
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=$ the trivial group on one element
- The only Lévy process on G is the constant process
- $\mathscr{L} f=0$ for all $f: G \rightarrow \mathbf{R}$
- Our SPDE is an arbitrary Itô diffusion in R with no drift:

$$
d u_{t}=\lambda \sigma\left(u_{t}\right) d B_{t}
$$

- Can add drift to the SPDE in order to get all Itô processes, but we will not

Example 2
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=\mathbf{Z}_{2}$, the cyclic group on 2 elements $[\{0,1\}$, addition mod 1$]$

Example 2
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=\mathbf{Z}_{2}$, the cyclic group on 2 elements $[\{0,1\}$, addition mod 1$]$
- Lévy processes on G switch their state at rate $\kappa \geqslant 0$

Example 2
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=\mathbf{Z}_{2}$, the cyclic group on 2 elements $[\{0,1\}$, addition mod 1$]$
- Lévy processes on G switch their state at rate $\kappa \geqslant 0$
- Our SPDE yields the 2-D Itô diffusion $t \mapsto\left(u_{t}(0), u_{t}(1)\right)$:

$$
\left[\begin{array}{l}
d u_{t}(0)=\kappa\left[u_{t}(1)-u_{t}(0)\right] d t+\lambda \sigma\left(u_{t}(0)\right) d B_{t}(0) \\
d u_{t}(1)=\kappa\left[u_{t}(0)-u_{t}(1)\right] d t+\lambda \sigma\left(u_{t}(1)\right) d B_{t}(1) .
\end{array}\right.
$$

Example 2
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=\mathbf{Z}_{2}$, the cyclic group on 2 elements $[\{0,1\}$, addition mod 1$]$
- Lévy processes on G switch their state at rate $\kappa \geqslant 0$
- Our SPDE yields the 2-D Itô diffusion $t \mapsto\left(u_{t}(0), u_{t}(1)\right)$:

$$
\left[\begin{array}{l}
d u_{t}(0)=\kappa\left[u_{t}(1)-u_{t}(0)\right] d t+\lambda \sigma\left(u_{t}(0)\right) d B_{t}(0), \\
d u_{t}(1)=\kappa\left[u_{t}(0)-u_{t}(1)\right] d t+\lambda \sigma\left(u_{t}(1)\right) d B_{t}(1) .
\end{array}\right.
$$

- 2 Itô diffusions with attractive OU-type molecular forcing [molecular diffusion for a 1-Dim 2-body system with elastic bonds]

Example 2
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G:=\mathbf{Z}_{2}$, the cyclic group on 2 elements $[\{0,1\}$, addition mod 1$]$
- Lévy processes on G switch their state at rate $\kappa \geqslant 0$
- Our SPDE yields the 2-D Itô diffusion $t \mapsto\left(u_{t}(0), u_{t}(1)\right)$:

$$
\left[\begin{array}{l}
d u_{t}(0)=\kappa\left[u_{t}(1)-u_{t}(0)\right] d t+\lambda \sigma\left(u_{t}(0)\right) d B_{t}(0) \\
d u_{t}(1)=\kappa\left[u_{t}(0)-u_{t}(1)\right] d t+\lambda \sigma\left(u_{t}(1)\right) d B_{t}(1) .
\end{array}\right.
$$

- 2 Itô diffusions with attractive OU-type molecular forcing [molecular diffusion for a 1-Dim 2-body system with elastic bonds]
- Can be easily extended to $G=Z_{n}$

Example 3 (Classical)
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G=\mathrm{R}$ and $\mathscr{L}=\kappa \partial_{x x}^{2}$ —the stochastic heat equation on R

Example 3 (Classical)
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G=\mathrm{R}$ and $\mathscr{L}=\kappa \partial_{x x}^{2}$-the stochastic heat equation on R - $G=[0,1]$ and $\mathscr{L}=\kappa \partial_{x x}^{2}$ with periodic ∂ condition-the stochastic heat equation on the circle

Example 3 (Classical) $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

- $G=\mathrm{R}$ and $\mathscr{L}=\kappa \partial_{x x}^{2}$-the stochastic heat equation on R
- $G=[0,1]$ and $\mathscr{L}=\kappa \partial_{x x}^{2}$ with periodic ∂ condition-the stochastic heat equation on the circle
- $G=Z^{d}$ and $\mathscr{L}=\kappa \Delta_{\mathbf{Z}^{d}}$-the semi-dicrete stochastic heat equation

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathrm{R}_{>0}^{\times}\left[\mathrm{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathrm{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathbf{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathbf{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}
- Our SPDE becomes [Itô formula]:

$$
\dot{u}_{t}(x)=\frac{1}{2} x^{2} u_{t}^{\prime \prime}(x)+\left(\delta+\frac{1}{2}\right) x u_{t}^{\prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) .
$$

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathrm{R}_{>0}^{\times}\left[\mathrm{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}
- Our SPDE becomes [Itô formula]:

$$
\dot{u}_{t}(x)=\frac{1}{2} x^{2} u_{t}^{\prime \prime}(x)+\left(\delta+\frac{1}{2}\right) x u_{t}^{\prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) .
$$

- Aside. $\delta=-1 / 2$ is somewhat special [exp. mart.]:

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathbf{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}
- Our SPDE becomes [Itô formula]:

$$
\dot{u}_{t}(x)=\frac{1}{2} x^{2} u_{t}^{\prime \prime}(x)+\left(\delta+\frac{1}{2}\right) x u_{t}^{\prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) .
$$

- Aside. $\delta=-1 / 2$ is somewhat special [exp. mart.]:
- Drift-free SPDE

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathbf{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}
- Our SPDE becomes [Itô formula]:

$$
\dot{u}_{t}(x)=\frac{1}{2} x^{2} u_{t}^{\prime \prime}(x)+\left(\delta+\frac{1}{2}\right) x u_{t}^{\prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) .
$$

- Aside. $\delta=-1 / 2$ is somewhat special [exp. mart.]:
- Drift-free SPDE
- $E X_{t}=$ identity of $\mathbf{R}_{>0}^{\times}$

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathrm{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}
- Our SPDE becomes [Itô formula]:

$$
\dot{u}_{t}(x)=\frac{1}{2} x^{2} u_{t}^{\prime \prime}(x)+\left(\delta+\frac{1}{2}\right) x u_{t}^{\prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) .
$$

- Aside. $\delta=-1 / 2$ is somewhat special [exp. mart.]:
- Drift-free SPDE
- $E X_{t}=$ identity of $\mathbf{R}_{>0}^{\times}$
- QV: $\sum_{0 \leqslant j \leqslant\left\lfloor 2^{n t}\right\rfloor}\left(X_{(j+1) / 2^{n}} X_{j / 2^{n}}^{-1}\right)^{2} \rightarrow t$ as $n \rightarrow \infty$ a.s.

Example 4 (A SHE with a quadratic scatterer)

- $G=\mathbf{R}_{>0}^{\times}\left[\mathrm{R}_{>0}\right.$ with group multiplication $\left.=\times\right]$
- X is a Lévy process on $\mathbf{R}_{>0}^{\times}$iff $X_{t}=\exp \left(Y_{t}\right)$ for a Lévy process Y on R
- E.g., $X_{t}=\exp \left\{B_{t}+\delta t\right\}$, where $B=$ Br. motion on \mathbf{R}
- Our SPDE becomes [Itô formula]:

$$
\dot{u}_{t}(x)=\frac{1}{2} x^{2} u_{t}^{\prime \prime}(x)+\left(\delta+\frac{1}{2}\right) x u_{t}^{\prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) .
$$

- Aside. $\delta=-1 / 2$ is somewhat special [exp. mart.]:
- Drift-free SPDE
- $E X_{t}=$ identity of $\mathbf{R}_{>0}^{\times}$
- QV: $\sum_{\left.0 \leqslant j \leqslant\left\lfloor 2^{n}+\right\rfloor\right]}\left(X_{(j+1) / 2^{n}} X_{j / 2^{n}}^{-1}\right)^{2} \rightarrow t$ as $n \rightarrow \infty$ a.s.
- X is "Gaussian"

Dalang's Condition
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \xi_{t}(x)$

Theorem (essentially due to Dalang, 1999)

Consider the linear $S P D E \sigma \equiv 1$. Then our SPDE has a function solution if and only if

$$
\begin{equation*}
\int_{G^{*}}\left(\frac{1}{1+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)<\infty \tag{D}
\end{equation*}
$$

where $G^{*}:=$ the dual group to G

Dalang's Condition
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \xi_{t}(x)$

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE $\sigma \equiv 1$. Then our SPDE has a function solution if and only if

$$
\begin{equation*}
\int_{G^{*}}\left(\frac{1}{1+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)<\infty \tag{D}
\end{equation*}
$$

where $G^{*}:=$ the dual group to G

- $m_{G^{*}}:=$ Haar measure on G^{*}, normalized to make Fourier transform an isometry on $L^{2}(G)$

Dalang's Condition
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \xi_{t}(x)$

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE $\sigma \equiv 1$. Then our SPDE has a function solution if and only if

$$
\int_{G^{*}}\left(\frac{1}{1+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)<\infty
$$

where $G^{*}:=$ the dual group to G

- $m_{G^{*}}:=$ Haar measure on G^{*}, normalized to make Fourier transform an isometry on $L^{2}(G)$
- $\mathrm{E}\left(\chi, X_{t}\right)=\exp (-t \Psi(\chi))$ for all $\chi \in G^{*}$ and $t \geqslant 0$

Dalang's Condition
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \xi_{t}(x)$

Theorem (essentially due to Dalang, 1999)

Consider the linear SPDE $\sigma \equiv 1$. Then our SPDE has a function solution if and only if

$$
\begin{equation*}
\int_{G^{*}}\left(\frac{1}{1+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)<\infty, \tag{D}
\end{equation*}
$$

where $G^{*}:=$ the dual group to G

- $m_{G^{*}}:=$ Haar measure on G^{*}, normalized to make Fourier transform an isometry on $L^{2}(G)$
- $\mathrm{E}\left(\chi, X_{t}\right)=\exp (-t \Psi(\chi))$ for all $\chi \in G^{*}$ and $t \geqslant 0$
- (D) iff $X_{t} Y_{t}^{-1}$ has local times, where Y is an indept copy of X [essentially due to Hawkes 1986]; see also Foondun-K-Nualart (2011) and Eisenbaum-Foondun-K (2011)

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;
- Therefore, (D) is assumed from now on

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;
- Therefore, (D) is assumed from now on
- This is the only requirement for our Lévy process

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;
- Therefore, (D) is assumed from now on
- This is the only requirement for our Lévy process
- Condition (D) always holds when G is discrete:

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;
- Therefore, (D) is assumed from now on
- This is the only requirement for our Lévy process
- Condition (D) always holds when G is discrete:
- Proof 1. G* is compact [Pontryagin-van Kampen duality]

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;
- Therefore, (D) is assumed from now on
- This is the only requirement for our Lévy process
- Condition (D) always holds when G is discrete:
- Proof 1. G* is compact [Pontryagin-van Kampen duality]
- Proof 2. $X_{t} Y_{t}^{-1}$ always has local times when G is discrete [elementary computations]

Remarks

Condition (D): $\int_{G^{*}}(1+\operatorname{Re} \Psi(\chi))^{-1} m_{G^{*}}(d \chi)<\infty$

- We will need the linear solution to have a function solution in order to be able to apply variation of parameters to the non-linear equation;
- Therefore, (D) is assumed from now on
- This is the only requirement for our Lévy process
- Condition (D) always holds when G is discrete:
- Proof 1. G* is compact [Pontryagin-van Kampen duality]
- Proof 2. $X_{t} Y_{t}^{-1}$ always has local times when G is discrete [elementary computations]
- This is a first example of how the structure of G alone can matter: When G is discrete the linear SPDE always has a function solution

Existence and Uniqueness

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

Theorem (K-Kim)

Suppose that σ is Lipschitz continuous, and either $\sigma(0)=0$ or G is compact. If, in addition, $u_{0} \in L^{2}(G)$ is non random, then our $S P D E$ has a solution that satisfies the following energy inequality for some $c \in(0, \infty)$:

$$
\mathscr{E}_{t}(\lambda)^{2}:=\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \leqslant c \exp (c t) \quad \text { for all } t \geqslant 0
$$

\exists uniqueness among solutions that have an energy inequality.

Existence and Uniqueness

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

Theorem (K-Kim)

Suppose that σ is Lipschitz continuous, and either $\sigma(0)=0$ or G is compact. If, in addition, $u_{0} \in L^{2}(G)$ is non random, then our $S P D E$ has a solution that satisfies the following energy inequality for some $c \in(0, \infty)$:

$$
\mathscr{E}_{t}(\lambda)^{2}:=\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \leqslant c \exp (c t) \quad \text { for all } t \geqslant 0
$$

\exists uniqueness among solutions that have an energy inequality.

- When $\sigma(0)=0$, this is essentially due to Dalang and Mueller (2003)

Existence and Uniqueness

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

Theorem (K-Kim)

Suppose that σ is Lipschitz continuous, and either $\sigma(0)=0$ or G is compact. If, in addition, $u_{0} \in L^{2}(G)$ is non random, then our SPDE has a solution that satisfies the following energy inequality for some $c \in(0, \infty)$:

$$
\mathscr{E}_{t}(\lambda)^{2}:=\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \leqslant c \exp (c t) \quad \text { for all } t \geqslant 0
$$

\exists uniqueness among solutions that have an energy inequality.

- When $\sigma(0)=0$, this is essentially due to Dalang and Mueller (2003)
- We are interested in the behavior of $\mathscr{E} t(\lambda)$ for $\lambda \gg 1$

Existence and Uniqueness

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$

Theorem (K-Kim)

Suppose that σ is Lipschitz continuous, and either $\sigma(0)=0$ or G is compact. If, in addition, $u_{0} \in L^{2}(G)$ is non random, then our SPDE has a solution that satisfies the following energy inequality for some $c \in(0, \infty)$:

$$
\mathscr{E}_{t}(\lambda)^{2}:=\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right) \leqslant c \exp (c t) \quad \text { for all } t \geqslant 0
$$

\exists uniqueness among solutions that have an energy inequality.

- When $\sigma(0)=0$, this is essentially due to Dalang and Mueller (2003)
- We are interested in the behavior of $\mathscr{E}_{t}(\lambda)$ for $\lambda \gg 1$
- From now on either G is compact or $\sigma(0)=0$

Linear noise excitation $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Proposition (K-Kim)

Linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Proposition (K-Kim)

- If G is compact and σ is bounded, then $\mathscr{E}_{t}(\lambda)=O(\lambda) \forall t \geqslant 0$

Linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Proposition (K-Kim)

- If G is compact and σ is bounded, then $\mathscr{E}_{t}(\lambda)=O(\lambda) \forall t \geqslant 0$
- If in addition ess $\inf _{z \in G}\left|u_{0}(z)\right|>0$ and $\inf _{z \in \mathrm{R}}|\sigma(z)|>0$, then in fact $\mathscr{E}_{t}(\lambda)=\lambda \forall t>0$

Linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Proposition (K-Kim)

- If G is compact and σ is bounded, then $\mathscr{E}_{t}(\lambda)=O(\lambda) \forall t \geqslant 0$
- If in addition ess $\inf _{z \in \mathcal{G}}\left|u_{0}(z)\right|>0$ and $\inf _{z \in \mathrm{R}}|\sigma(z)|>0$, then in fact $\mathscr{E}_{t}(\lambda)=\lambda \forall t>0$
- For simplicity let us consider only the case that $\inf _{z \in \mathbf{R}}|\sigma(z) / z|>0$

Linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Proposition (K-Kim)

- If G is compact and σ is bounded, then $\mathscr{E}_{t}(\lambda)=O(\lambda) \forall t \geqslant 0$
- If in addition ess $\inf _{z \in \mathcal{G}}\left|u_{0}(z)\right|>0$ and $\inf _{z \in \mathrm{R}}|\sigma(z)|>0$, then in fact $\mathscr{E}_{t}(\lambda)=\lambda \forall t>0$
- For simplicity let us consider only the case that $\inf _{z \in \mathbf{R}}|\sigma(z) / z|>0$
- It is known (Foondun-Kh, 2010) that our SPDE is typically "intermittent"

Linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Proposition (K-Kim)

- If G is compact and σ is bounded, then $\mathscr{E}_{t}(\lambda)=O(\lambda) \forall t \geqslant 0$
- If in addition ess $\inf _{z \in \mathcal{G}}\left|u_{0}(z)\right|>0$ and $\inf _{z \in \mathrm{R}}|\sigma(z)|>0$, then in fact $\mathscr{E}_{t}(\lambda)=\lambda \forall t>0$
- For simplicity let us consider only the case that $\inf _{z \in \mathbf{R}}|\sigma(z) / z|>0$
- It is known (Foondun-Kh, 2010) that our SPDE is typically "intermittent"
- Wish to understand the noise excitation of such SPDEs

Non-linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$
Theorem (K-Kim)
Under the preceding conditions:

Non-linear noise excitation
 $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

Under the preceding conditions:

- Suppose that G is discrete. Then,

$$
A \exp \left\{A \lambda^{2}\right\} \leqslant \mathscr{E}_{t}(\lambda) \leqslant B \exp \left\{B \lambda^{2}\right\} \quad \text { for all } \lambda \geqslant 1
$$

Non-linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{\mathrm{E}\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

Under the preceding conditions:

- Suppose that G is discrete. Then,

$$
A \exp \left\{A \lambda^{2}\right\} \leqslant \mathscr{E}_{t}(\lambda) \leqslant B \exp \left\{B \lambda^{2}\right\} \quad \text { for all } \lambda \geqslant 1
$$

- Suppose G is connected and: (1) either it is non compact; or (2) it is compact and metrizable with cardinality $\geqslant 2$ [hence $=\infty$]. Then,

$$
\mathscr{E}_{t}(\lambda) \geqslant C \exp \left\{C \lambda^{4}\right\} \quad \text { for all } \lambda \geqslant 1
$$

Non-linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

Under the preceding conditions:

- Suppose that G is discrete. Then,

$$
A \exp \left\{A \lambda^{2}\right\} \leqslant \mathscr{E}_{t}(\lambda) \leqslant B \exp \left\{B \lambda^{2}\right\} \quad \text { for all } \lambda \geqslant 1
$$

- Suppose G is connected and: (1) either it is non compact; or (2) it is compact and metrizable with cardinality $\geqslant 2$ [hence $=\infty$]. Then,

$$
\mathscr{E}_{t}(\lambda) \geqslant C \exp \left\{C \lambda^{4}\right\} \quad \text { for all } \lambda \geqslant 1
$$

- For every $\theta \geqslant 4, \exists$ a model for which $\log \mathscr{E}_{t}(\lambda)=\lambda^{\theta}$

Non-linear noise excitation

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

Under the preceding conditions:

- Suppose that G is discrete. Then,

$$
A \exp \left\{A \lambda^{2}\right\} \leqslant \mathscr{E}_{t}(\lambda) \leqslant B \exp \left\{B \lambda^{2}\right\} \quad \text { for all } \lambda \geqslant 1
$$

- Suppose G is connected and: (1) either it is non compact; or (2) it is compact and metrizable with cardinality $\geqslant 2$ [hence $=\infty$]. Then,

$$
\mathscr{E}_{t}(\lambda) \geqslant C \exp \left\{C \lambda^{4}\right\} \quad \text { for all } \lambda \geqslant 1
$$

- For every $\theta \geqslant 4, \exists$ a model for which $\log \mathscr{E}_{t}(\lambda)=\lambda^{\theta}$

Outline of proof

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

- Start with a priori abstract bounds on $\mathscr{E}_{t}(\lambda)$ in terms of

$$
\Upsilon(\beta):=\int_{G^{*}}\left(\frac{1}{\beta+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi) \quad \text { for } \beta \gg 1
$$

This is the max of the β-resolvent density of $X_{t} Y_{t}^{-1}$

Outline of proof

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

- Start with a priori abstract bounds on $\mathscr{E}_{t}(\lambda)$ in terms of

$$
\Upsilon(\beta):=\int_{G^{*}}\left(\frac{1}{\beta+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi) \quad \text { for } \beta \gg 1
$$

This is the max of the β-resolvent density of $X_{t} Y_{t}^{-1}$

- An upper bound à la Foondun-Kh (2010):

$$
\mathscr{E}_{\mathscr{E}}(\lambda) \leqslant \text { const } \cdot \exp \left\{\frac{t}{2} \Upsilon^{-1}\left(\frac{\text { const }}{\lambda^{2}}\right)\right\}
$$

Outline of proof

$\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

- Start with a priori abstract bounds on $\mathscr{E}_{t}(\lambda)$ in terms of

$$
\Upsilon(\beta):=\int_{G^{*}}\left(\frac{1}{\beta+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi) \quad \text { for } \beta \gg 1
$$

This is the max of the β-resolvent density of $X_{t} Y_{t}^{-1}$

- An upper bound à la Foondun-Kh (2010):

$$
\mathscr{E}_{\mathscr{E}}(\lambda) \leqslant \text { const } \cdot \exp \left\{\frac{t}{2} \Upsilon^{-1}\left(\frac{\text { const }}{\lambda^{2}}\right)\right\}
$$

- A lower bound:

$$
\mathscr{E}_{t}(\lambda) \geqslant c^{-1} e^{-c t} \cdot \sqrt{1+\sum_{j=1}^{\infty}\left(\frac{\lambda^{2}}{c} \cdot \Upsilon(j / t)\right)^{j}}
$$

Outline of proof: The discrete case

- Since G is discrete, G^{*} is compact [Pontryagin-van Kampen duality], and hence

$$
\Upsilon(\beta)=\int_{G^{*}}\left(\frac{1}{\beta+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)=\frac{1}{\beta} \quad \text { for } \beta \geqslant 1 .
$$

Outline of proof: The discrete case

- Since G is discrete, G^{*} is compact [Pontryagin-van Kampen duality], and hence

$$
\Upsilon(\beta)=\int_{G^{*}}\left(\frac{1}{\beta+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)=\frac{1}{\beta} \quad \text { for } \beta \geqslant 1 .
$$

- Use this formula in the abstract bounds

Outline of proof: The discrete case $\partial_{t} u_{1}(x)=\mathscr{L} u_{1}(x)+\lambda \sigma\left(u_{1}(x) \xi_{1}(x), \delta_{1}(\lambda):=\sqrt{E\left(\left\|u_{\|}\right\|_{2}^{2}(G)\right.}\right.$

- Since G is discrete, G^{*} is compact [Pontryagin-van Kampen duality], and hence

$$
\Upsilon(\beta)=\int_{G^{*}}\left(\frac{1}{\beta+\operatorname{Re} \Psi(\chi)}\right) m_{G^{*}}(d \chi)=\frac{1}{\beta} \quad \text { for } \beta \geqslant 1 .
$$

- Use this formula in the abstract bounds
- The connected case is more interesting because we do not have formulas for the behavior of Υ

Reduction principle 1: Group invariance $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

Reduction principle 1: Group invariance $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

- If $h: G \rightarrow \Gamma$ is a topological isometry, then $v_{t}(x):=u_{t}\left(h^{-1}(x)\right)$ solves [in law] the SPDE

$$
\partial_{t} v_{t}(x)=\mathscr{L}_{h} v_{t}(x)+\frac{\lambda}{\sqrt{\mu(h)}} \sigma\left(v_{t}(x)\right) \zeta_{t}(x), \quad \text { where: }
$$

Reduction principle 1: Group invariance $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

- If $h: G \rightarrow \Gamma$ is a topological isometry, then $v_{t}(x):=u_{t}\left(h^{-1}(x)\right)$ solves [in law] the SPDE

$$
\partial_{t} v_{t}(x)=\mathscr{L}_{h} v_{t}(x)+\frac{\lambda}{\sqrt{\mu(h)}} \sigma\left(v_{t}(x)\right) \zeta_{t}(x), \quad \text { where: }
$$

- $\mu(h) \in(0, \infty)$

Reduction principle 1: Group invariance $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

- If $h: G \rightarrow \Gamma$ is a topological isometry, then $v_{t}(x):=u_{t}\left(h^{-1}(x)\right)$ solves [in law] the SPDE

$$
\partial_{t} v_{t}(x)=\mathscr{L}_{h} v_{t}(x)+\frac{\lambda}{\sqrt{\mu(h)}} \sigma\left(v_{t}(x)\right) \zeta_{t}(x), \quad \text { where: }
$$

- $\mu(h) \in(0, \infty)$
- ζ is space-time white noise on $\mathrm{R}_{+} \times \Gamma$

Reduction principle 1: Group invariance $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

- If $h: G \rightarrow \Gamma$ is a topological isometry, then $v_{t}(x):=u_{t}\left(h^{-1}(x)\right)$ solves [in law] the SPDE

$$
\partial_{t} v_{t}(x)=\mathscr{L}_{h} v_{t}(x)+\frac{\lambda}{\sqrt{\mu(h)}} \sigma\left(v_{t}(x)\right) \zeta_{t}(x), \quad \text { where: }
$$

- $\mu(h) \in(0, \infty)$
- ζ is space-time white noise on $\mathrm{R}_{+} \times \Gamma$
- $\mathscr{L}_{h}:=$ the $L^{2}(\Gamma)$-generator of the Lévy process $h\left(X_{t}\right)$

Reduction principle 1: Group invariance $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

- If $h: G \rightarrow \Gamma$ is a topological isometry, then $v_{t}(x):=u_{t}\left(h^{-1}(x)\right)$ solves [in law] the SPDE

$$
\partial_{t} v_{t}(x)=\mathscr{L}_{h} v_{t}(x)+\frac{\lambda}{\sqrt{\mu(h)}} \sigma\left(v_{t}(x)\right) \zeta_{t}(x), \quad \text { where: }
$$

- $\mu(h) \in(0, \infty)$
- ζ is space-time white noise on $\mathrm{R}_{+} \times \Gamma$
- $\mathscr{L}_{h}:=$ the $L^{2}(\Gamma)$-generator of the Lévy process $h\left(X_{t}\right)$
- If $\Gamma=G$ and $h \in \operatorname{Aut}(G)$, then μ is the modulus of h

Reduction principle 2: Projections reduce energy $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x) \xi_{1}(x), \varepsilon_{1}(\lambda):=\sqrt{\left.E\| \| u_{1} \|_{L_{1},(\theta)}^{2}\right)}\right.$

Theorem (K-Kim)
If $G=\Gamma \times K$ and K is a compact abelian group, then

$$
\begin{equation*}
\mathscr{E}_{u_{t}}(\lambda) \geqslant \mathscr{E}_{V_{t}}(\lambda), \tag{1}
\end{equation*}
$$

where v_{t} solves the same SPDE, but on Γ with \mathscr{L} replaced by the generator of the projection of X onto Γ. Furthermore, v exists [as a finite-energy solution] when u does

Reduction principle 2: Projections reduce energy $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

If $G=\Gamma \times K$ and K is a compact abelian group, then

$$
\begin{equation*}
\mathscr{E}_{u_{t}}(\lambda) \geqslant \mathscr{E}_{v_{t}}(\lambda), \tag{1}
\end{equation*}
$$

where v_{t} solves the same SPDE, but on Γ with \mathscr{L} replaced by the generator of the projection of X onto Γ. Furthermore, v exists [as a finite-energy solution] when u does

- Now apply our reduction principles in structure theory of LCA groups; compare everything to Br. motion $\mathscr{L} f=f^{\prime \prime}$ on R

Reduction principle 2: Projections reduce energy $\partial_{t} u_{t}(x)=\mathscr{L} u_{t}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x), \mathscr{E}_{t}(\lambda):=\sqrt{E\left(\left\|u_{t}\right\|_{L^{2}(G)}^{2}\right)}$

Theorem (K-Kim)

If $G=\Gamma \times K$ and K is a compact abelian group, then

$$
\begin{equation*}
\mathscr{E}_{u_{t}}(\lambda) \geqslant \mathscr{E}_{v_{t}}(\lambda), \tag{1}
\end{equation*}
$$

where v_{t} solves the same SPDE, but on Γ with \mathscr{L} replaced by the generator of the projection of X onto Γ. Furthermore, v exists [as a finite-energy solution] when u does

- Now apply our reduction principles in structure theory of LCA groups; compare everything to Br. motion $\mathscr{L} f=f^{\prime \prime}$ on R
- For α-stable processes on $\mathbf{R}, \log \mathscr{E}_{+}(\lambda)=\lambda^{4 /(\alpha-1)}$, for all $\alpha \in(1,2]$

Back to $[0,1]$ with Dirichlet 0-boundary conditions

Two asides:
Theorem (Foondun-Joseph, 2014)
If u solves $\partial_{t} u=u^{\prime \prime}+\sigma(u) \xi$ on $[0,1]$ with $u_{t}(0)=u_{t}(1)=0$ and nice I.C., then $\log \mathscr{E}_{t}(\lambda)=\lambda^{4}$ for all $\lambda \geqslant 1$.
... as compared with

Back to $[0,1]$ with Dirichlet 0-boundary conditions

Two asides:

Theorem (Foondun-Joseph, 2014)

If u solves $\partial_{t} u=u^{\prime \prime}+\sigma(u) \xi$ on $[0,1]$ with $u_{t}(0)=u_{t}(1)=0$ and nice I.C., then $\log \mathscr{E}_{t}(\lambda)=\lambda^{4}$ for all $\lambda \geqslant 1$.
... as compared with
Theorem (K-Kim)
If u solves $\partial_{t}^{2} u=u^{\prime \prime}+\sigma(u) \xi$ on \mathbf{R} with nice B.C. and I.C., then $\log \mathscr{E}_{t}(\lambda)=\lambda$ for all $\lambda \geqslant 1$.

