Intermittence \& Multifractality

Davar Khoshnevisan (joint with Kunwoo Kim \& Yimin Xiao)

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on \mathbb{R} : $\xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.
- Today we concentrate on 2 special cases only:

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.
- Today we concentrate on 2 special cases only:
- The linear heat equation (LHE): $\sigma(u)=1$ and $u(0, x)=0$;

The Stochastic Heat Equation on \mathbb{R}

- Consider SHE on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.
- Today we concentrate on 2 special cases only:
- The linear heat equation (LHE): $\sigma(u)=1$ and $u(0, x)=0$;
- The parabolic Anderson model (PAM): $\sigma(u)=u$ and $u(0, x)=1$.

The Stochastic Heat Equation on \mathbb{R} $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.

The Stochastic Heat Equation on \mathbb{R} $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:

The Stochastic Heat Equation on \mathbb{R} $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:
- Intermittency $(t \rightarrow \infty)$. Amir-Corwin-Quastel, 2011;

Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001; Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012; Cranston-Molchanov, 2007a, b; Cranston-Mountford-Shiga, 2002, 2005; den Hollander-Greven, 2007; Florescu-Viens, 2006; Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-den Hollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov, 2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova, 2008; Molchanov, 1991...

The Stochastic Heat Equation on \mathbb{R} $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:
- Intermittency $(t \rightarrow \infty)$. Amir-Corwin-Quastel, 2011;

Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001; Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012; Cranston-Molchanov, 2007a, b; Cranston-Mountford-Shiga, 2002, 2005; den Hollander-Greven, 2007; Florescu-Viens, 2006; Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-den Hollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov, 2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova, 2008; Molchanov, 1991...

- Chaos $(x \rightarrow \pm \infty)$. Chen, 2014; Conus-Joseph-K, 2013

The Stochastic Heat Equation on \mathbb{R} $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:
- Intermittency $(t \rightarrow \infty)$. Amir-Corwin-Quastel, 2011;

Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001; Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012; Cranston-Molchanov, 2007a, b; Cranston-Mountford-Shiga, 2002, 2005; den Hollander-Greven, 2007; Florescu-Viens, 2006; Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-den Hollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov, 2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova, 2008; Molchanov, 1991...

- Chaos $(x \rightarrow \pm \infty)$. Chen, 2014; Conus-Joseph-K, 2013
- Nonlinear noise excitation $(\lambda \rightarrow \pm \infty)$. Kim-K, 2014

The Stochastic Heat Equation on [0, 1] $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x)$

$$
\lambda=0
$$

The Stochastic Heat Equation on [0, 1] $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=u$ on the left; $\sigma(u)=1$ on the right

$$
\lambda=1
$$

The Stochastic Heat Equation on [0, 1] $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=u$ on the left; $\sigma(u)=1$ on the right

$$
\lambda=5
$$

The Stochastic Heat Equation on [0, 1] $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=u$ on the left; $\sigma(u)=1$ on the right

$$
\lambda=10
$$

The Stochastic Heat Equation on [0, 1] $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=u$ on the left; $\sigma(u)=1$ on the right

$$
\lambda=24
$$

The Stochastic Heat Equation on [0, 1] $\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=u$ on the left; $\sigma(u)=1$ on the right

$$
\lambda=50
$$

A Related Picture

Solar prominence video http://apod.nasa.gov/apod/ap110307.html

Is the Sun Missing Its Spots?

SUN GAZING These photos show sunspots near solar maximum on July 19, 2000, and near solar minimum on March $18,2009$.
Some global warming skeptics speculate that the Sun may be on the verge of an extended slumber.
By KENNETH CHANG
Published: July 20, 2009

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{n}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all c, $t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathscr{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathscr{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are large-scale "multifractals"; only u is "intermittent":

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are large-scale "multifractals"; only u is "intermittent":
- Theorem (K-Kim-Xiao, 2014+). With probability one,

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are large-scale "multifractals"; only u is "intermittent":
- Theorem (K-Kim-Xiao, 2014+). With probability one,

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are large-scale "multifractals"; only u is "intermittent":
- Theorem (K-Kim-Xiao, 2014+). With probability one,

$$
\operatorname{Dim}_{H} \mathscr{L}_{c}^{Z}(t)=1-\frac{\sqrt{\pi}}{2} c^{2}
$$

The Main Results
 $\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) \quad[Z(0, x)=0]$
 $\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathscr{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are large-scale "multifractals"; only u is "intermittent":
- Theorem (K-Kim-Xiao, 2014+). With probability one,

$$
\operatorname{Dim}_{H} \mathscr{L}_{c}^{Z}(t)=1-\frac{\sqrt{\pi}}{2} c^{2} \quad \operatorname{Dim}_{H} \mathscr{L}_{c}^{u}(t)=1-\frac{4 \sqrt{2}}{3} c^{3 / 2} \quad \text { a.s., }
$$

where $\operatorname{Dim}_{H} A<0$ means A is bounded.

Large-Scale Hausdorff Dimension

- We need to have a notion [analogous to Hausdorff dimension] that is useful for measuring the size of large [possibly discrete] sets in \mathbb{R}^{d}

Large-Scale Hausdorff Dimension

- We need to have a notion [analogous to Hausdorff dimension] that is useful for measuring the size of large [possibly discrete] sets in \mathbb{R}^{d}
- First successful attempt in this direction made by Naudts (1988)

Large-Scale Hausdorff Dimension

- We need to have a notion [analogous to Hausdorff dimension] that is useful for measuring the size of large [possibly discrete] sets in \mathbb{R}^{d}
- First successful attempt in this direction made by Naudts (1988)
- Naudts' notion of dimension is slightly faulty though $(\exists A, B$ such that $A \subset B$ and yet $\operatorname{dim}_{\text {Naudts }} A>\operatorname{dim}_{\text {Naudts }} B$)

Large-Scale Hausdorff Dimension

- We need to have a notion [analogous to Hausdorff dimension] that is useful for measuring the size of large [possibly discrete] sets in \mathbb{R}^{d}
- First successful attempt in this direction made by Naudts (1988)
- Naudts' notion of dimension is slightly faulty though $(\exists A, B$ such that $A \subset B$ and yet $\operatorname{dim}_{\text {Naudts }} A>\operatorname{dim}_{\text {Naudts }} B$)
- A much better notion was introduced by Barlow and Taylor (1988, 1989)

Large-Scale Hausdorff Dimension

- We need to have a notion [analogous to Hausdorff dimension] that is useful for measuring the size of large [possibly discrete] sets in \mathbb{R}^{d}
- First successful attempt in this direction made by Naudts (1988)
- Naudts' notion of dimension is slightly faulty though $(\exists A, B$ such that $A \subset B$ and yet $\operatorname{dim}_{\text {Naudts }} A>\operatorname{dim}_{\text {Naudts }} B$)
- A much better notion was introduced by Barlow and Taylor (1988, 1989)
- To simplify the exposition I will only talk about large-scale fractals in $[0, \infty)$ today.

Large-Scale Hausdorff Dimension

- Suppose $A \subset[0, \infty)$ is a set

Large-Scale Hausdorff Dimension

- Suppose $A \subset[0, \infty)$ is a set
- Given a real number $\rho>0$ and an integer $n \geq 0$, define

$$
v_{n}^{(\rho)}(A):=\inf \sum_{i}\left(\frac{r_{i}}{\mathrm{e}^{n}}\right)^{\rho}
$$

where the inf is taken over all intervals of the form $\left[x_{i}, x_{i}+r_{i}\right)$ such that:

Large-Scale Hausdorff Dimension

- Suppose $A \subset[0, \infty)$ is a set
- Given a real number $\rho>0$ and an integer $n \geq 0$, define

$$
v_{n}^{(\rho)}(A):=\inf \sum_{i}\left(\frac{r_{i}}{\mathrm{e}^{n}}\right)^{\rho}
$$

where the inf is taken over all intervals of the form $\left[x_{i}, x_{i}+r_{i}\right)$ such that:

$$
\text { - } \bigcup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{\mathrm{n}+1}\right)
$$

Large-Scale Hausdorff Dimension

- Suppose $A \subset[0, \infty)$ is a set
- Given a real number $\rho>0$ and an integer $n \geq 0$, define

$$
v_{n}^{(\rho)}(A):=\inf \sum_{i}\left(\frac{r_{i}}{\mathrm{e}^{n}}\right)^{\rho}
$$

where the inf is taken over all intervals of the form $\left[x_{i}, x_{i}+r_{i}\right)$ such that:

- $\bigcup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$
- $r_{i} \geq 1$ for all $i \geq 1$

Large-Scale Hausdorff Dimension

- Suppose $A \subset[0, \infty)$ is a set
- Given a real number $\rho>0$ and an integer $n \geq 0$, define

$$
v_{n}^{(\rho)}(A):=\inf \sum_{i}\left(\frac{r_{i}}{\mathrm{e}^{n}}\right)^{\rho},
$$

where the inf is taken over all intervals of the form $\left[x_{i}, x_{i}+r_{i}\right)$ such that:

- $\bigcup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$
- $r_{i} \geq 1$ for all $i \geq 1$
- Now define the large-scale Hausdorff dimension of A as

$$
\operatorname{Dim}_{\mathrm{H}} A:=\inf \left\{\rho>0: \sum_{n=0}^{\infty} v_{n}^{(\rho)}(A)<\infty\right\} .
$$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, \mathrm{e}, \mathrm{e}^{2}, \mathrm{e}^{3}, \cdots\right\}$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, \mathrm{e}, \mathrm{e}^{2}, \mathrm{e}^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[e^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=e^{n / 2}$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, e^{n+1}\right)$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, e^{n+1}\right)$
- $v_{n}^{(\rho)}(A) \leq \sum_{i \leq c e^{n / 2}}\left(e^{n / 2} / e^{n}\right)^{\rho}$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, e^{n+1}\right)$
- $v_{n}^{(\rho)}(A) \leq \sum_{i \leq c e^{n / 2}}\left(\mathrm{e}^{n / 2} / \mathrm{e}^{n}\right)^{\rho}$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, e^{n+1}\right)$
- $v_{n}^{(\rho)}(A) \leq \sum_{i \leq c e^{n / 2}}\left(\mathrm{e}^{n / 2} / \mathrm{e}^{n}\right)^{\rho} \leq c \mathrm{e}^{-n(\rho-1) / 2}$

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, e, e^{2}, e^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, e^{n+1}\right)$
- $v_{n}^{(\rho)}(A) \leq \sum_{i \leq c e^{n / 2}}\left(\mathrm{e}^{n / 2} / \mathrm{e}^{n}\right)^{\rho} \leq c \mathrm{e}^{-n(\rho-1) / 2}$
- Therefore, $\operatorname{Dim}_{\mathrm{H}} A \leq \rho$ for all $\rho>1$.

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, \mathrm{e}, \mathrm{e}^{2}, \mathrm{e}^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{\mathrm{H}} A \leq \operatorname{Dim}_{\mathrm{H}} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, \mathrm{e}^{n+1}\right)$
- $v_{n}^{(\rho)}(A) \leq \sum_{i \leq c e^{n / 2}}\left(\mathrm{e}^{n / 2} / \mathrm{e}^{n}\right)^{\rho} \leq \mathrm{ce} \mathrm{e}^{-n(\rho-1) / 2}$
- Therefore, $\operatorname{Dim}_{\mathrm{H}} A \leq \rho$ for all $\rho>1$.
- QED

Simple Facts About Large-Scale Hausdorff Dimension
 $\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
 $\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} \nu_{n}^{(\rho)}(A)<\infty\right\}$

- If A is bounded, then $\operatorname{Dim}_{\mathrm{H}} A=0(\inf \varnothing:=\infty)$
- The converse is not true
- Consider for example $A:=\left\{0, \mathrm{e}, \mathrm{e}^{2}, \mathrm{e}^{3}, \cdots\right\}$
- If $A \subset B$ then $\operatorname{Dim}_{H} A \leq \operatorname{Dim}_{H} B$
- $0 \leq \operatorname{Dim}_{\mathrm{H}} A \leq 1$ for all $A \subset[0, \infty)$
- Proof. Enough to consider $A=[0, \infty)$
- Cover $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ with intervals $\left[x_{i}, x_{i}+r_{i}\right)$ where $r_{i}=\mathrm{e}^{n / 2}$
- We need $\leq c e^{n / 2}$ such intervals to cover $A \cap\left[e^{n}, e^{n+1}\right)$
- $v_{n}^{(\rho)}(A) \leq \sum_{i \leq c e^{n / 2}}\left(\mathrm{e}^{n / 2} / \mathrm{e}^{n}\right)^{\rho} \leq c \mathrm{e}^{-n(\rho-1) / 2}$
- Therefore, $\operatorname{Dim}_{\mathrm{H}} A \leq \rho$ for all $\rho>1$.
- QED
- Lemma (Barlow-Taylor, 1989). In the definition of Dim_{H} we can replace " $\mathrm{e}^{n \text { " }}$ by c^{n} for any $\mathrm{c}>1$

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / e^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.U_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[e^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder
- Frostman's Lemma (Barlow-Taylor, 1989). Let μ denote a finite non-void measure on $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ and suppose

$$
K:=\sup _{\substack{x \geq 0, r \geq 1: \\[x, x+r] \subset\left[e^{n},, e^{n+1}\right)}} \frac{\mu[x, x+r]}{r^{\rho}}<\infty .
$$

Then, $v_{n}^{(\rho)}(A) \geq K^{-1} \mathrm{e}^{-n \rho} \mu(A)$.

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder
- Frostman's Lemma (Barlow-Taylor, 1989). Let μ denote a finite non-void measure on $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ and suppose

$$
K:=\sup _{\substack{x \geq 0, r \geq 1: \\[x, x+r] \subset\left[e^{n}, e^{n+1}\right)}} \frac{\mu[x, x+r]}{r^{\rho}}<\infty .
$$

Then, $v_{n}^{(\rho)}(A) \geq K^{-1} \mathrm{e}^{-n \rho} \mu(A)$.

- Corollary. $\operatorname{Dim}_{\mathrm{H}} \mathbb{N}=\operatorname{Dim}_{\mathrm{H}}[0, \infty)=1$.

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder
- Frostman's Lemma (Barlow-Taylor, 1989). Let μ denote a finite non-void measure on $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ and suppose

$$
K:=\quad \sup _{x \geq 0, r \geq 1:} \frac{\mu[x, x+r]}{r^{\rho}}<\infty .
$$

Then, $v_{n}^{(\rho)}(A) \geq K^{-1} \mathrm{e}^{-n \rho} \mu(A)$.

- Corollary. $\operatorname{Dim}_{H} \mathbb{N}=\operatorname{Dim}_{H}[0, \infty)=1$.
- Proof. Take μ to be the counting measure, restricted to $\left[e^{n}, e^{n+1}\right)$

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder
- Frostman's Lemma (Barlow-Taylor, 1989). Let μ denote a finite non-void measure on $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ and suppose

$$
K:=\sup _{\substack{x \geq 0, r \geq 1: \\ r+n)^{n}}} \frac{\mu[x, x+r]}{r^{\rho}}<\infty .
$$

Then, $v_{n}^{(\rho)}(A) \geq K^{-1} e^{-n \rho} \mu(A)$.

- Corollary. $\operatorname{Dim}_{\mathrm{H}} \mathbb{N}=\operatorname{Dim}_{\mathrm{H}}[0, \infty)=1$.
- Proof. Take μ to be the counting measure, restricted to $\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$
- $\mu[x, x+r]=r \Rightarrow K \leq \operatorname{cexp}\{n(1-\rho)\}$ if $\rho<1$

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder
- Frostman's Lemma (Barlow-Taylor, 1989). Let μ denote a finite non-void measure on $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ and suppose

$$
K:=\sup _{\substack{x \geq 0, r \geq 1: \\ r+n)^{n}}} \frac{\mu[x, x+r]}{r^{\rho}}<\infty .
$$

Then, $v_{n}^{(\rho)}(A) \geq K^{-1} e^{-n \rho} \mu(A)$.

- Corollary. $\operatorname{Dim}_{\mathrm{H}} \mathbb{N}=\operatorname{Dim}_{\mathrm{H}}[0, \infty)=1$.
- Proof. Take μ to be the counting measure, restricted to $\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$
- $\mu[x, x+r]=r \Rightarrow K \leq c \exp \{n(1-\rho)\}$ if $\rho<1$
- $\mu(\mathbb{N})=\exp (n)$

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- For upper bound, find a "good cover." Lower bound is harder
- Frostman's Lemma (Barlow-Taylor, 1989). Let μ denote a finite non-void measure on $A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$ and suppose

$$
K:=\sup _{\substack{x \geq 0, r \geq 1: \\[x, x+r] \subset\left[e^{n}, e^{n+1}\right)}} \frac{\mu[x, x+r]}{r^{\rho}}<\infty .
$$

Then, $v_{n}^{(\rho)}(A) \geq K^{-1} e^{-n \rho} \mu(A)$.

- Corollary. $\operatorname{Dim}_{\mathrm{H}} \mathbb{N}=\operatorname{Dim}_{\mathrm{H}}[0, \infty)=1$.
- Proof. Take μ to be the counting measure, restricted to $\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)$
- $\mu[x, x+r]=r \Rightarrow K \leq c \exp \{n(1-\rho)\}$ if $\rho<1$
- $\mu(\mathbb{N})=\exp (n)$
- $\therefore \inf _{n \geq 1} \nu_{n}^{(\rho)}(A)>0$ if $\rho<1 \Rightarrow \operatorname{Dim}_{H} \mathbb{N} \geq \rho$ for all $\rho<1$.

Methods for Estimating Dim $_{H}$

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- Here is another interesting method for obtaining a lower bound

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\mathrm{U}_{\mathrm{i} \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- Here is another interesting method for obtaining a lower bound
- Recall that the upper asymptotic density of $A \subset[0, \infty)$ with respect to measure μ is defined as $\mathscr{D}_{\mu}(A):=\varlimsup_{n \rightarrow \infty} n^{-1} \mu(A \cap[0, n])$.

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.U_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- Here is another interesting method for obtaining a lower bound
- Recall that the upper asymptotic density of $A \subset[0, \infty)$ with respect to measure μ is defined as $\mathscr{D}_{\mu}(A):=\varlimsup_{n \rightarrow \infty} n^{-1} \mu(A \cap[0, n])$.
- Lemma (K-Kim-Xiao, 2014+). If \exists measure μ on A s.t. $\mathscr{D}_{\mu}(A)>0$, and $\mu[x, x+r] \leq q r$, then $\operatorname{Dim}_{H} A=1$.

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.U_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- Here is another interesting method for obtaining a lower bound
- Recall that the upper asymptotic density of $A \subset[0, \infty)$ with respect to measure μ is defined as $\mathscr{D}_{\mu}(A):=\varlimsup_{n \rightarrow \infty} n^{-1} \mu(A \cap[0, n])$.
- Lemma (K-Kim-Xiao, 2014+). If \exists measure μ on A s.t. $\mathscr{D}_{\mu}(A)>0$, and $\mu[x, x+r] \leq q r$, then $\operatorname{Dim}_{H} A=1$.
- Proof. Clearly,

$$
\mu\left[c^{n}, c^{n+1}\right) \geq\left(o(1)+\mathscr{D}_{\mu}(A)\right) c^{n+1}-q c^{n}
$$

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.U_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- Here is another interesting method for obtaining a lower bound
- Recall that the upper asymptotic density of $A \subset[0, \infty)$ with respect to measure μ is defined as $\mathscr{D}_{\mu}(A):=\varlimsup_{n \rightarrow \infty} n^{-1} \mu(A \cap[0, n])$.
- Lemma (K-Kim-Xiao, 2014+). If \exists measure μ on A s.t. $\mathscr{D}_{\mu}(A)>0$, and $\mu[x, x+r] \leq q r$, then $\operatorname{Dim}_{H} A=1$.
- Proof. Clearly,

$$
\mu\left[c^{n}, c^{n+1}\right) \geq\left(o(1)+\mathscr{D}_{\mu}(A)\right) c^{n+1}-q c^{n}
$$

Methods for Estimating Dim_{H}

$\nu_{n}^{(\rho)}(A):=\inf \left\{\sum_{i}\left(r_{i} / \mathrm{e}^{n}\right)^{\rho}: \exists\left\{x_{j}\right\}\right.$ s.t. $\left.\cup_{i \geq 1}\left[x_{i}, x_{i}+r_{i}\right) \supset A \cap\left[\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)\right\}$
$\operatorname{Dim}_{H} A:=\inf \left\{\rho>0: \sum_{n} v_{n}^{(\rho)}(A)<\infty\right\}$

- Here is another interesting method for obtaining a lower bound
- Recall that the upper asymptotic density of $A \subset[0, \infty)$ with respect to measure μ is defined as $\mathscr{D}_{\mu}(A):=\varlimsup_{n \rightarrow \infty} n^{-1} \mu(A \cap[0, n])$.
- Lemma (K-Kim-Xiao, 2014+). If \exists measure μ on A s.t. $\mathscr{D}_{\mu}(A)>0$, and $\mu[x, x+r] \leq q r$, then $\operatorname{Dim}_{H} A=1$.
- Proof. Clearly,

$$
\begin{aligned}
\mu\left[c^{n}, c^{n+1}\right) & \geq\left(o(1)+\mathscr{D}_{\mu}(A)\right) c^{n+1}-q c^{n} \\
& =\left(o(1)+c \mathscr{D}_{\mu}(A)-q\right) c^{n} .
\end{aligned}
$$

- Choose and fix $c>q / \mathscr{D}_{\mu}(A)$, and then apply Frostman's lemma.

Related Facts

- Theorem (Barlow-Taylor, 1989). If $\{S(n)\}_{n=0}^{\infty}$ denotes the simple random walk on \mathbb{Z}^{d} and $d \geq 3$, then $\operatorname{Dim}_{\mathrm{H}} S(\mathbb{N})=2$ a.s.

Related Facts

- Theorem (Barlow-Taylor, 1989). If $\{S(n)\}_{n=0}^{\infty}$ denotes the simple random walk on \mathbb{Z}^{d} and $d \geq 3$, then $\operatorname{Dim}_{\mathrm{H}} S(\mathbb{N})=2$ a.s.
- Theorem (Barlow-Taylor, 1989). If $\{B(t)\}_{t \geq 0}$ denotes Brownian motion on \mathbb{R}^{d} and $d \geq 3$, then $\operatorname{Dim}_{H} B\left(\mathbb{R}_{+}\right)=2$ a.s.

Related Facts

- Theorem (Barlow-Taylor, 1989). If $\{S(n)\}_{n=0}^{\infty}$ denotes the simple random walk on \mathbb{Z}^{d} and $d \geq 3$, then $\operatorname{Dim}_{\mathrm{H}} S(\mathbb{N})=2$ a.s.
- Theorem (Barlow-Taylor, 1989). If $\{B(t)\}_{t \geq 0}$ denotes Brownian motion on \mathbb{R}^{d} and $d \geq 3$, then $\operatorname{Dim}_{H} B\left(\mathbb{R}_{+}\right)=2$ a.s.
- Barlow and Taylor have asked if one can compute explicitly $\operatorname{Dim}_{\mathrm{H}} S(\mathbb{N})$ for a general transient random walk on \mathbb{Z}^{d}. [The answer is "yes"; Georgiou-K-Kim-Ramos 2014+]

Related Facts

- Theorem (Barlow-Taylor, 1989). If $\{S(n)\}_{n=0}^{\infty}$ denotes the simple random walk on \mathbb{Z}^{d} and $d \geq 3$, then $\operatorname{Dim}_{\mathrm{H}} S(\mathbb{N})=2$ a.s.
- Theorem (Barlow-Taylor, 1989). If $\{B(t)\}_{t \geq 0}$ denotes Brownian motion on \mathbb{R}^{d} and $d \geq 3$, then $\operatorname{Dim}_{H} B\left(\mathbb{R}_{+}\right)=2$ a.s.
- Barlow and Taylor have asked if one can compute explicitly $\operatorname{Dim}_{\mathrm{H}} S(\mathbb{N})$ for a general transient random walk on \mathbb{Z}^{d}. [The answer is "yes"; Georgiou-K-Kim-Ramos 2014+]
- Remainder of today: Formulas for $\operatorname{Dim}_{\mathrm{H}} A$ where A is a non-trivial random set that is simpler to analyze than those in the SPDE examples earlier

Law of the Iterated Logarithm

$B:=1-D$ Brownian motion, $c>0$

- Consider the random set $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.

Law of the Iterated Logarithm

$B:=1-D$ Brownian motion, $c>0$

- Consider the random set $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then \mathcal{L}_{c}^{B} is a.s. bounded. If $c<1$, then \mathcal{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

Law of the Iterated Logarithm

$B:=1-D$ Brownian motion, $c>0$

- Consider the random set $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then $\mathcal{L}_{\mathrm{c}}^{B}$ is a.s. bounded. If $c<1$, then \mathcal{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

- Theorem (Lévy, 1937). \mathscr{L}_{1}^{B} is a.s. unbounded.

Law of the Iterated Logarithm

$B:=1-D$ Brownian motion, $c>0$

- Consider the random set $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then $\mathcal{L}_{\mathrm{c}}^{B}$ is a.s. bounded. If $c<1$, then \mathcal{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

- Theorem (Lévy, 1937). \mathscr{L}_{1}^{B} is a.s. unbounded.
- Theorem (Essentially due to Strassen, 1964). Let $\mu:=$ Leb. meas. Then, for all $c \in(0,1]$, a.s.,

$$
\mathscr{D}_{\mu}\left(\mathscr{L}_{c}^{B}\right)=1-\exp \left\{-4\left[\frac{1}{c^{2}}-1\right]\right\} .
$$

Law of the Iterated Logarithm

- Consider the random set $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then \mathcal{L}_{c}^{B} is a.s. bounded. If $c<1$, then \mathscr{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

- Theorem (Lévy, 1937). \mathscr{L}_{1}^{B} is a.s. unbounded.
- Theorem (Essentially due to Strassen, 1964). Let $\mu:=$ Leb. meas. Then, for all $c \in(0,1]$, a.s.,

$$
\mathscr{D}_{\mu}\left(\mathscr{L}_{c}^{B}\right)=1-\exp \left\{-4\left[\frac{1}{c^{2}}-1\right]\right\} .
$$

- Therefore $\operatorname{Dim}_{H} \mathscr{L}_{\mathrm{c}}^{B}=\left\{\begin{array}{ll}0 & \text { if } c>1 \\ 1 & \text { if } c<1 .\end{array}\right.$ What about \mathscr{L}_{1}^{B} ?

Law of the Iterated Logarithm $\mathcal{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.

Law of the Iterated Logarithm $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.
- Outline of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.

Law of the Iterated Logarithm $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.
- Outline of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\mathrm{E} \mu\left(\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)=\int_{\exp (n)}^{\exp (n+1)} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t
$$

Law of the Iterated Logarithm $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.
- Outline of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\mathrm{E} \mu\left(\mathrm{e}^{n}, \mathrm{e}^{n+1}\right)=\int_{\exp (n)}^{\exp (n+1)} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t
$$

Law of the Iterated Logarithm $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.
- Outline of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\begin{aligned}
\mathrm{E} \mu\left(\mathrm{e}^{n}, \mathrm{e}^{n+1}\right) & =\int_{\exp (n)}^{\exp (n+1)} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t \\
& =\int_{\exp (n)}^{\exp (n+1)} \frac{d t}{\log t \sqrt{\log \log t}}
\end{aligned}
$$

Law of the Iterated Logarithm $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.
- Outline of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\begin{aligned}
\mathrm{E} \mu\left(\mathrm{e}^{n}, \mathrm{e}^{n+1}\right) & =\int_{\exp (n)}^{\exp (n+1)} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t \\
& =\int_{\exp (n)}^{\exp (n+1)} \frac{d t}{\log t \sqrt{\log \log t}}=\frac{\mathrm{e}^{n}}{n \sqrt{\log n}} .
\end{aligned}
$$

- It turns out that $\mu\left(e^{n}, e^{n+1}\right)=e^{n} n^{-1}(\log n)^{-1 / 2}$ "for most n^{\prime} s." Also, $\mu[x, x+r) \leq r$.

Law of the Iterated Logarithm $\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathscr{L}_{1}^{B}=1$ a.s.
- Outline of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\begin{aligned}
\mathrm{E} \mu\left(e^{n}, \mathrm{e}^{n+1}\right) & =\int_{\exp (n)}^{\exp (n+1)} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t \\
& =\int_{\exp (n)}^{\exp (n+1)} \frac{d t}{\log t \sqrt{\log \log t}}=\frac{\mathrm{e}^{n}}{n \sqrt{\log n}} .
\end{aligned}
$$

- It turns out that $\mu\left(e^{n}, \mathrm{e}^{n+1}\right)=\mathrm{e}^{n} n^{-1}(\log n)^{-1 / 2}$ "for most n^{\prime} s." Also, $\mu[x, x+r) \leq r$.
- Apply Frostman to see that $v_{n}^{(1)}\left(\mathcal{L}_{1}^{B}\right) \geq c n^{-1}(\log n)^{-1 / 2}$ for most n 's, a.s. Since $\sum_{n} n^{-1}(\log n)^{-1 / 2}=\infty$, we obtain the result.

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\mathrm{e}^{-|t-s| / 2}$
- We can re-write the LIL times as follows:

$$
\mathscr{L}_{c}^{B}:=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\mathrm{e}^{-|t-s| / 2}$
- We can re-write the LIL times as follows:

$$
\mathscr{L}_{\mathrm{c}}^{B}:=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\mathrm{e}^{-|t-s| / 2}$
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathscr{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{e^{s} \geq 100: B\left(e^{s}\right)>c \sqrt{2 e^{s} \log s}\right\}
\end{aligned}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\mathrm{e}^{-|t-s| / 2}$
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathcal{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{e^{s} \geq 100: B\left(e^{s}\right)>c \sqrt{2 e^{s} \log s}\right\} \\
& =\log \left\{u \geq \log (100): X_{u}>c \sqrt{2 \log u}\right\}
\end{aligned}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\mathrm{e}^{-|t-s| / 2}$
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathscr{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{e^{s} \geq 100: B\left(e^{s}\right)>c \sqrt{2 e^{s} \log s}\right\} \\
& =\log \left\{u \geq \log (100): X_{u}>c \sqrt{2 \log u}\right\} \\
& :=\log \mathscr{L}_{c}^{X} .
\end{aligned}
$$

- We know: $\mathscr{L}_{\mathrm{c}}^{X}$ is unbounded iff $\mathrm{c} \leq 1$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathscr{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{e^{s} \geq 100: B\left(e^{s}\right)>c \sqrt{2 e^{s} \log s}\right\} \\
& =\log \left\{u \geq \log (100): X_{u}>c \sqrt{2 \log u}\right\} \\
& :=\log \mathscr{L}_{c}^{X} .
\end{aligned}
$$

- We know: \mathscr{L}_{c}^{X} is unbounded iff $c \leq 1$
- Theorem (K-Kim-Xiao, 2014+). $\operatorname{Dim}_{H} \mathcal{L}_{C}^{X}=1-c^{2}$ a.s. for all $c \in(0,1]$.

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"]

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"]
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes]

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"]
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes]
- The proof consists of two bounds, of course:

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"]
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes]
- The proof consists of two bounds, of course:
- The upper bound requires a covering argument

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"]
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes]
- The proof consists of two bounds, of course:
- The upper bound requires a covering argument
- The lower bound is slightly different from the preceding lower-bound methods ...

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{c}^{X} \geq 1-c^{2}$

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathscr{L}_{c}^{X} \geq 1-c^{2}$
- It suffices to consider only the case $c<1$

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{c}^{X} \geq 1-c^{2}$
- It suffices to consider only the case $c<1$
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell $\left[e^{n}, e^{n+1}\right.$) in to equally-spaced disjoint intervals of length $e^{n \rho}$; you will need $\asymp \exp \{n(1-\rho)\}$ such subintervals

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{c}^{X} \geq 1-c^{2}$
- It suffices to consider only the case $c<1$
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell $\left[e^{n}, e^{n+1}\right)$ in to equally-spaced disjoint intervals of length $e^{n \rho}$; you will need $\simeq \exp \{n(1-\rho)\}$ such subintervals
- One can show that a.s. for all n large, \mathscr{L}_{c}^{X} will a.s. intersect all of those subintervals for all n large

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{c}^{X} \geq 1-c^{2}$
- It suffices to consider only the case $c<1$
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell $\left[e^{n}, e^{n+1}\right.$) in to equally-spaced disjoint intervals of length $e^{n \rho}$; you will need $\simeq \exp \{n(1-\rho)\}$ such subintervals
- One can show that a.s. for all n large, \mathscr{L}_{c}^{X} will a.s. intersect all of those subintervals for all n large
- Therefore a.s. \mathcal{L}_{c}^{X} contains a set of $\simeq \exp \{n(1-\rho)\}$ many points with pairwise distance $\geq \exp \{n \rho\}$

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{c}^{X} \geq 1-c^{2}$
- It suffices to consider only the case $c<1$
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell $\left[e^{n}, e^{n+1}\right.$) in to equally-spaced disjoint intervals of length $e^{n \rho}$; you will need $\simeq \exp \{n(1-\rho)\}$ such subintervals
- One can show that a.s. for all n large, \mathscr{L}_{c}^{X} will a.s. intersect all of those subintervals for all n large
- Therefore a.s. \mathscr{L}_{c}^{X} contains a set of $=\exp \{n(1-\rho)\}$ many points with pairwise distance $\geq \exp \{n \rho\}$
- One can show that such a [\approx self-similar $]$ set will have dimension $\geq 1-\rho$; therefore, $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{\mathrm{c}}^{X} \geq 1-\rho$ for all $\rho \in\left(c^{2}, 1\right)$.

