Dissipation and High Disorder

Columbia-Princeton Probability Day, 2015

Davar Khoshnevisan (with Le Chen, Michael Cranston, \& Kunwoo Kim)
Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

A Brief Outline

Two Problems:

A Brief Outline

Two Problems:

1. An extinction problem for interacting diffusions

A Brief Outline

Two Problems:

1. An extinction problem for interacting diffusions
2. Optimal regularity of stochastic PDEs

A Brief Outline

Two Problems:

1. An extinction problem for interacting diffusions
2. Optimal regularity of stochastic PDEs

- Part of a big-picture analysis of intermittency \& sensitivity of complex systems

A Brief Outline

Two Problems:

1. An extinction problem for interacting diffusions
2. Optimal regularity of stochastic PDEs

- Part of a big-picture analysis of intermittency \& sensitivity of complex systems
- Connections to topics such as metastability \& phase transition

Large-scale structure of galaxies

S. F. Shandarin and Ya B. Zeldovich, Rev. Modern Phys. (1989)

A simple model for intermittency
 $\left[\dot{u}_{t}(x)=\frac{1}{2} u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion

A simple model for intermittency

$\left[\dot{u}_{t}(x)=\frac{1}{2} u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$
(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion
- The solution is the exponential martingale, $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$

A simple model for intermittency

$\left[\dot{u}_{t}(x)=\frac{1}{2} u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$
(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion
- The solution is the exponential martingale, $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $\lambda \rightarrow \infty$

A simple model for intermittency

$\left[\dot{u}_{t}(x)=\frac{1}{2} u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0}(x)=1\right]$
(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- $d u_{t}=\lambda u_{t} d b_{t}$, where $b_{t}=\eta([0, t])$ denotes 1-D Brownian motion
- The solution is the exponential martingale, $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $\lambda \rightarrow \infty$
- $\mathrm{E}\left(u_{t}^{2}\right)=\exp \left\{\lambda^{2} t\right\} \rightarrow \infty$ (fast!) as $\lambda \rightarrow \infty$

A SHE simulation $\left[\dot{u}_{t}(x)=\frac{1}{2} u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}(x)\right.$, $u_{0}(x)=\sin (\pi x), 0 \leqslant x \leqslant 1 ; u_{t}(0)=u_{t}(1)=0$.] $\lambda=0$ (left; $u_{t}(x)=\sin (\pi x) \exp \left(-\pi^{2} t / 2\right)$) and $\lambda=0.1$ (right)

A simulation $\left[\dot{u}_{t}(x)=\frac{1}{2} u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}(x)\right.$, $\left.u_{0}(x)=\sin (\pi x), 0 \leqslant x \leqslant 1 ; u_{t}(0)=u_{t}(1)=0.\right]$ $\lambda=2$ (left) and $\lambda=6$ (right)

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Theorem (R. Carmona-S. Molchanov, 1994)

Consider, say, $u_{0}(x) \equiv 1$. Then:

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Theorem (R. Carmona-S. Molchanov, 1994)

Consider, say, $u_{0}(x) \equiv 1$. Then:

$$
\text { - } \gamma_{k}:=\lim _{t \rightarrow \infty} t^{-1} \log \left\|u_{t}(x)\right\|_{L^{k}(\mathrm{P})} \text { exists and is finite } \forall k \geq 1 .
$$

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Theorem (R. Carmona-S. Molchanov, 1994)

Consider, say, $u_{0}(x) \equiv 1$. Then:

- $\gamma_{k}:=\lim _{t \rightarrow \infty} t^{-1} \log \left\|u_{t}(x)\right\|_{L^{k}(\mathrm{P})}$ exists and is finite $\forall k \geq 1$.
- If $d=1,2$, then $\gamma_{k}>0$.

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Theorem (R. Carmona-S. Molchanov, 1994)

Consider, say, $u_{0}(x) \equiv 1$. Then:

- $\gamma_{k}:=\lim _{t \rightarrow \infty} t^{-1} \log \left\|u_{t}(x)\right\|_{L^{k}(\mathrm{P})}$ exists and is finite $\forall k \geq 1$.
- If $d=1,2$, then $\gamma_{k}>0$.
- If $d \geq 3$, then $\exists k(\lambda)$ such that $\gamma_{k}>0$ iff $k \geq k(\lambda)$.

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Theorem (R. Carmona-S. Molchanov, 1994)

Consider, say, $u_{0}(x) \equiv 1$. Then:

- $\gamma_{k}:=\lim _{t \rightarrow \infty} t^{-1} \log \left\|u_{t}(x)\right\|_{L^{k}(\mathrm{P})}$ exists and is finite $\forall k \geq 1$.
- If $d=1,2$, then $\gamma_{k}>0$.
- If $d \geq 3$, then $\exists k(\lambda)$ such that $\gamma_{k}>0$ iff $k \geq k(\lambda)$.
- $\gamma_{k}>0 \forall k \geq K$ iff $k \mapsto \gamma_{k}$ is strictly increasing on $[K, \infty)$.

Carmona-Molchanov Theory

- $d u_{t}(x)=\left(\Delta_{\mathbf{Z}^{d}} u_{t}\right)(x) d t+\lambda u_{t}(x) d B_{t}(x), x \in \mathbf{Z}^{d}, \lambda>0$
- Solution exists and is unique if $u_{0} \in L^{\infty}\left(\mathbf{Z}^{d}\right)$ [Shiga-Shimizu, 1980]

Theorem (R. Carmona-S. Molchanov, 1994)

Consider, say, $u_{0}(x) \equiv 1$. Then:

- $\gamma_{k}:=\lim _{t \rightarrow \infty} t^{-1} \log \left\|u_{t}(x)\right\|_{L^{k}(\mathrm{P})}$ exists and is finite $\forall k \geq 1$.
- If $d=1,2$, then $\gamma_{k}>0$.
- If $d \geq 3$, then $\exists k(\lambda)$ such that $\gamma_{k}>0$ iff $k \geq k(\lambda)$.
- $\gamma_{k}>0 \forall k \geq K$ iff $k \mapsto \gamma_{k}$ is strictly increasing on $[K, \infty)$.
- I.e., If $\lambda, d \gg 1$ then many of the moments do not grow fast.

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;
- $\mathcal{G}=$ generator of a rate-1, finite-range, mean-0 random walk on \mathbf{Z}^{d};

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;
- $\mathcal{G}=$ generator of a rate-1, finite-range, mean-0 random walk on \mathbf{Z}^{d};
- $\lambda>0$ [coupling constant, level of the noise, ...];

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;
- $\mathcal{G}=$ generator of a rate-1, finite-range, mean-0 random walk on \mathbf{Z}^{d};
- $\lambda>0$ [coupling constant, level of the noise, ...];
- \exists a solution and is unique [Shiga and Shimizu, 1980].

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;
- $\mathcal{G}=$ generator of a rate-1, finite-range, mean-0 random walk on \mathbf{Z}^{d};
- $\lambda>0$ [coupling constant, level of the noise, ...];
- \exists a solution and is unique [Shiga and Shimizu, 1980].
- Assume that $\sigma(0)=0$ and $\inf _{|z|>0}|\sigma(z) / z|>0$.

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;
- $\mathcal{G}=$ generator of a rate-1, finite-range, mean-0 random walk on \mathbf{Z}^{d};
- $\lambda>0$ [coupling constant, level of the noise, ...];
- \exists a solution and is unique [Shiga and Shimizu, 1980].
- Assume that $\sigma(0)=0$ and $\inf _{|z|>0}|\sigma(z) / z|>0$.
- Corollary: $u_{t}(x)>0$ a.s. $\forall t>0, x \in Z^{d}$ [Georgiou et al, 2014; Shiga, 1992];

Interacting Diffusions

- Now consider interacting diffusions of the following type:

$$
d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x), \quad \text { where: }
$$

- $t>0, x \in \mathbf{Z}^{d}$;
- $u_{0}(x)=c_{0} \delta_{0}(x) \forall x \in \mathbf{Z}^{d}$, where $c_{0}>0$;
- $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ Lipschitz continuous nonrandom function;
- $\mathcal{G}=$ generator of a rate-1, finite-range, mean-0 random walk on \mathbf{Z}^{d};
- $\lambda>0$ [coupling constant, level of the noise, ...];
- \exists a solution and is unique [Shiga and Shimizu, 1980].
- Assume that $\sigma(0)=0$ and $\inf _{|z|>0}|\sigma(z) / z|>0$.
- Corollary: $u_{t}(x)>0$ a.s. $\forall t>0, x \in \mathbf{Z}^{d}$ [Georgiou et al, 2014; Shiga, 1992];
- Corollary: "Moment intermittency" [Foondun-K, 2009].

Local Dissipation/Extinction $d u_{t}(x)=\left(\zeta u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x)$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the \mathscr{G}-random walk.

Local Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the \mathscr{G}-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in Z^{d}\right]$.

Local Dissipation/Extinction
 $d u_{t}(x)=\left(\xi u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the \mathscr{G}-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in Z^{d}\right]$.
- If $\lambda=0$ then $u_{t}(x)=c_{0} p_{t}(-x)$ [Kolmogorov, Fokker-Planck]. Therefore, local dissipation/extinction: $\lim _{t \rightarrow \infty} u_{t}(x)=0$.

Local Dissipation/Extinction $d u_{t}(x)=\left(\xi u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the \mathcal{G}-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in Z^{d}\right]$.
- If $\lambda=0$ then $u_{t}(x)=c_{0} p_{t}(-x)$ [Kolmogorov, Fokker-Planck]. Therefore, local dissipation/extinction: $\lim _{t \rightarrow \infty} u_{t}(x)=0$.

Local Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the $\mathscr{\mathcal { G }}$-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in Z^{d}\right]$.
- If $\lambda=0$ then $u_{t}(x)=c_{0} p_{t}(-x)$ [Kolmogorov, Fokker-Planck]. Therefore, local dissipation/extinction: $\lim _{t \rightarrow \infty} u_{t}(x)=0$.

Theorem (Carmona-Koralov-Molchanov, 2001;
Carmona-Molchanov, 1994; Cranston-Mountford-Shiga, 2002; Shiga, 1992)

$$
d \geq 1 \Rightarrow \exists \lambda_{1}>0: \lambda>\lambda_{1} \Rightarrow \lim _{t \rightarrow \infty} u_{t}(x)=0 \text { a.s. [fast!] } \forall x \in \mathbf{Z}^{d} .
$$

Local Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the $\mathscr{\mathcal { G }}$-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in Z^{d}\right]$.
- If $\lambda=0$ then $u_{t}(x)=c_{0} p_{t}(-x)$ [Kolmogorov, Fokker-Planck]. Therefore, local dissipation/extinction: $\lim _{t \rightarrow \infty} u_{t}(x)=0$.

Theorem (Carmona-Koralov-Molchanov, 2001;
Carmona-Molchanov, 1994; Cranston-Mountford-Shiga, 2002; Shiga, 1992)

$$
d \geq 1 \Rightarrow \exists \lambda_{1}>0: \lambda>\lambda_{1} \Rightarrow \lim _{t \rightarrow \infty} u_{t}(x)=0 \text { a.s. [fast!] } \forall x \in \mathbf{Z}^{d} .
$$

Local Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the $\mathscr{\mathcal { G }}$-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in \mathbf{Z}^{d}\right]$.
- If $\lambda=0$ then $u_{t}(x)=c_{0} p_{t}(-x)$ [Kolmogorov, Fokker-Planck]. Therefore, local dissipation/extinction: $\lim _{t \rightarrow \infty} u_{t}(x)=0$.

Theorem (Carmona-Koralov-Molchanov, 2001;
Carmona-Molchanov, 1994; Cranston-Mountford-Shiga, 2002; Shiga, 1992)
$d \geq 1 \Rightarrow \exists \lambda_{1}>0: \lambda>\lambda_{1} \Rightarrow \lim _{t \rightarrow \infty} u_{t}(x)=0$ a.s. [fast!] $\forall x \in \mathbf{Z}^{d}$.
Theorem (Georgiou-Joseph-K-Shiu, 2014)
$d \geq 3 \Rightarrow \exists \lambda_{2}>0: 0<\lambda<\lambda_{2} \Rightarrow \lim _{t \rightarrow \infty} \sup _{x \in \mathbf{Z}^{d}} u_{t}(x)=0$ a.s.

Local Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Let $\left\{X_{t}\right\}_{t \geq 0}$ denote the $\mathscr{\mathcal { G }}$-random walk.
- Heat kernel $p_{t}(x):=\mathrm{P}\left\{X_{t}=x\right\}\left[t>0, x \in Z^{d}\right]$.
- If $\lambda=0$ then $u_{t}(x)=c_{0} p_{t}(-x)$ [Kolmogorov, Fokker-Planck]. Therefore, local dissipation/extinction: $\lim _{t \rightarrow \infty} u_{t}(x)=0$.

Theorem (Carmona-Koralov-Molchanov, 2001;
Carmona-Molchanov, 1994; Cranston-Mountford-Shiga, 2002; Shiga, 1992)
$d \geq 1 \Rightarrow \exists \lambda_{1}>0: \lambda>\lambda_{1} \Rightarrow \lim _{t \rightarrow \infty} u_{t}(x)=0$ a.s. [fast!] $\forall x \in \mathbf{Z}^{d}$.
Theorem (Georgiou-Joseph-K-Shiu, 2014)
$d \geq 3 \Rightarrow \exists \lambda_{2}>0: 0<\lambda<\lambda_{2} \Rightarrow \lim _{t \rightarrow \infty} \sup _{x \in \mathbf{Z}^{d}} u_{t}(x)=0$ a.s.

- I.e., Local dissipation is generic [also Greven-den Hollander, 2007]

Global Dissipation/Extinction

$d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Consider the total mass process $m(\lambda)$, where

$$
m_{t}(\lambda):=\left\|u_{t}\right\|_{L^{1}\left(\mathbf{Z}^{d}\right)}=\sum_{x \in \mathbf{Z}^{d}}\left|u_{t}(x)\right|=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x) \quad[t \geq 0]
$$

Global Dissipation/Extinction

$d u_{t}(x)=\left(G u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $$
u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Consider the total mass process $m(\lambda)$, where

$$
m_{t}(\lambda):=\left\|u_{t}\right\|_{L^{1}\left(\mathbf{Z}^{d}\right)}=\sum_{x \in \mathbf{Z}^{d}}\left|u_{t}(x)\right|=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x) \quad[t \geq 0] .
$$

- Fact 1. $m_{0}(\lambda)=c_{0}>0$.

Global Dissipation/Extinction

$$
d u_{t}(x)=\left(G u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Consider the total mass process $m(\lambda)$, where

$$
m_{t}(\lambda):=\left\|u_{t}\right\|_{L^{1}\left(\mathbf{Z}^{d}\right)}=\sum_{x \in \mathbf{Z}^{d}}\left|u_{t}(x)\right|=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x) \quad[t \geq 0] .
$$

- Fact 1. $m_{0}(\lambda)=c_{0}>0$.
- Fact 2. $m(\lambda)$ is a nonnegative, mean- c_{0}, continuous martingale [Spitzer, 1980; Dawson-Perkins, 2012]. Here is the proof:

Global Dissipation/Extinction

$$
d u_{t}(x)=\left(G u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x)
$$

- Consider the total mass process $m(\lambda)$, where

$$
m_{t}(\lambda):=\left\|u_{t}\right\|_{L^{1}\left(\mathbf{Z}^{d}\right)}=\sum_{x \in \mathbf{Z}^{d}}\left|u_{t}(x)\right|=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x) \quad[t \geq 0] .
$$

- Fact 1. $m_{0}(\lambda)=c_{0}>0$.
- Fact 2. $m(\lambda)$ is a nonnegative, mean- c_{0}, continuous martingale [Spitzer, 1980; Dawson-Perkins, 2012]. Here is the proof:
- Apply Duhamel's pcpl [Shiga and Shimizu, 1980]:

$$
u_{t}(x)=c_{0} p_{t}(-x)+\lambda \sum_{y \in \mathbf{Z}^{d}} \int_{0}^{t} p_{t-s}(y-x) \sigma\left(u_{s}(y)\right) d B_{s}(y) .
$$

Global Dissipation/Extinction

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x)$

- Consider the total mass process $m(\lambda)$, where

$$
m_{t}(\lambda):=\left\|u_{t}\right\|_{L^{1}\left(\mathbf{Z}^{d}\right)}=\sum_{x \in \mathbf{Z}^{d}}\left|u_{t}(x)\right|=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x) \quad[t \geq 0] .
$$

- Fact 1. $m_{0}(\lambda)=c_{0}>0$.
- Fact 2. $m(\lambda)$ is a nonnegative, mean- c_{0}, continuous martingale [Spitzer, 1980; Dawson-Perkins, 2012]. Here is the proof:
- Apply Duhamel's pcpl [Shiga and Shimizu, 1980]:

$$
u_{t}(x)=c_{0} p_{t}(-x)+\lambda \sum_{y \in \mathbf{Z}^{d}} \int_{0}^{t} p_{t-s}(y-x) \sigma\left(u_{s}(y)\right) d B_{s}(y) .
$$

- Therefore, $m_{t}(\lambda)=c_{0}+\lambda \int_{0}^{t} \sigma\left(u_{s}\right) \cdot d B_{s}$.

Global Dissipation/Extinction

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x)$

- Consider the total mass process $m(\lambda)$, where

$$
m_{t}(\lambda):=\left\|u_{t}\right\|_{L^{1}\left(\mathbf{Z}^{d}\right)}=\sum_{x \in \mathbf{Z}^{d}}\left|u_{t}(x)\right|=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x) \quad[t \geq 0]
$$

- Fact 1. $m_{0}(\lambda)=c_{0}>0$.
- Fact 2. $m(\lambda)$ is a nonnegative, mean- c_{0}, continuous martingale [Spitzer, 1980; Dawson-Perkins, 2012]. Here is the proof:
- Apply Duhamel's pcpl [Shiga and Shimizu, 1980]:

$$
u_{t}(x)=c_{0} p_{t}(-x)+\lambda \sum_{y \in \mathbf{Z}^{d}} \int_{0}^{t} p_{t-s}(y-x) \sigma\left(u_{s}(y)\right) d B_{s}(y) .
$$

- Therefore, $m_{t}(\lambda)=c_{0}+\lambda \int_{0}^{t} \sigma\left(u_{s}\right) \cdot d B_{s}$.
- Therefore, $m_{\infty}(\lambda):=\lim _{t \rightarrow \infty} m_{t}(\lambda)$ exists a.s. and is finite a.s. [Doob's MCT]

Global Dissipation/Extinction
 $d u_{t}(x)=\left(G u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x)$
 $m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

Global Dissipation/Extinction
 $d u_{t}(x)=\left(G u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in Z^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

Global Dissipation/Extinction
 $d u_{t}(x)=\left(G u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in Z^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.

Global Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in Z^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:

Global Dissipation/Extinction
 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in Z^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:
- If $\lambda>\lambda_{c}$, then $m_{\infty}(\lambda)=0$ a.s.

Global Dissipation/Extinction
 $d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:
- If $\lambda>\lambda_{c}$, then $m_{\infty}(\lambda)=0$ a.s.
- If $0<\lambda<\lambda_{c}$, then $m_{\infty}(\lambda)>0$ with positive probab. ["system survival" à la Liggett, 1985]

Global Dissipation/Extinction
 $d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$
 $u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:
- If $\lambda>\lambda_{c}$, then $m_{\infty}(\lambda)=0$ a.s.
- If $0<\lambda<\lambda_{c}$, then $m_{\infty}(\lambda)>0$ with positive probab. ["system survival" à la Liggett, 1985]
- Agrees, in principle, with the high-vs-low disorder regimes of random polymers [Ph. Carmona and Hu, 2006].

Global Dissipation/Extinction

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:
- If $\lambda>\lambda_{c}$, then $m_{\infty}(\lambda)=0$ a.s.
- If $0<\lambda<\lambda_{c}$, then $m_{\infty}(\lambda)>0$ with positive probab. ["system survival" à la Liggett, 1985]
- Agrees, in principle, with the high-vs-low disorder regimes of random polymers [Ph. Carmona and Hu, 2006].
- Implies delocalization when $d \geq 3$ and $\lambda<\lambda_{c}$.

Global Dissipation/Extinction

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:
- If $\lambda>\lambda_{c}$, then $m_{\infty}(\lambda)=0$ a.s.
- If $0<\lambda<\lambda_{c}$, then $m_{\infty}(\lambda)>0$ with positive probab. ["system survival" à la Liggett, 1985]
- Agrees, in principle, with the high-vs-low disorder regimes of random polymers [Ph. Carmona and Hu, 2006].
- Implies delocalization when $d \geq 3$ and $\lambda<\lambda_{c}$.
- $\lambda=\lambda_{c}$ is open.

Global Dissipation/Extinction

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

Theorem (Chen-Cranston-K-Kim, 2015)

- If $d=1,2$, then $m_{\infty}(\lambda)=0$ a.s.
- If $d \geq 3$ then $\exists \lambda_{c}=\lambda_{c}(d) \in(0, \infty)$ such that:
- If $\lambda>\lambda_{c}$, then $m_{\infty}(\lambda)=0$ a.s.
- If $0<\lambda<\lambda_{c}$, then $m_{\infty}(\lambda)>0$ with positive probab. ["system survival" à la Liggett, 1985]
- Agrees, in principle, with the high-vs-low disorder regimes of random polymers [Ph. Carmona and Hu, 2006].
- Implies delocalization when $d \geq 3$ and $\lambda<\lambda_{c}$.
- $\lambda=\lambda_{c}$ is open.
- Is there a second phase point? [Probably not].

Sketch of the Proof

$d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Emulate/translate a low-moment idea from additive interacting particle systems and/or semilinear SPDEs [Liggett, 1985; Mueller-Tribe, 2004].

Sketch of the Proof

$d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Emulate/translate a low-moment idea from additive interacting particle systems and/or semilinear SPDEs [Liggett, 1985; Mueller-Tribe, 2004].
- Choose and fix an arbitrary $\eta \in(0,1)$-say $\eta=1 / 2$.

Sketch of the Proof

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Emulate/translate a low-moment idea from additive interacting particle systems and/or semilinear SPDEs [Liggett, 1985; Mueller-Tribe, 2004].
- Choose and fix an arbitrary $\eta \in(0,1)$-say $\eta=1 / 2$.
- $f(t):=\mathrm{E}\left(\sqrt{m_{t}(\lambda)}\right)$

Sketch of the Proof

$d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Emulate/translate a low-moment idea from additive interacting particle systems and/or semilinear SPDEs [Liggett, 1985; Mueller-Tribe, 2004].
- Choose and fix an arbitrary $\eta \in(0,1)$-say $\eta=1 / 2$.
- $f(t):=\mathrm{E}\left(\sqrt{m_{t}(\lambda)}\right)$

Sketch of the Proof

$d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$

$$
u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- Emulate/translate a low-moment idea from additive interacting particle systems and/or semilinear SPDEs [Liggett, 1985; Mueller-Tribe, 2004].
- Choose and fix an arbitrary $\eta \in(0,1)$-say $\eta=1 / 2$.
- $f(t):=\mathrm{E}\left(\sqrt{m_{t}(\lambda)}\right)$ satisfies the diff. inequality,

$$
f^{\prime}(t) \leq-\alpha \sup _{K \in[a, b t]}\left[\frac{f(t)-\exp \left(-\gamma K^{2} / t\right)}{K^{d}}\right] \quad \text { for all } t \gg 1
$$

where $a, b, \alpha, \gamma \in(0, \infty)$ are not germaine to the discussion.

Sketch of the Proof

$d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$

$$
u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- Emulate/translate a low-moment idea from additive interacting particle systems and/or semilinear SPDEs [Liggett, 1985; Mueller-Tribe, 2004].
- Choose and fix an arbitrary $\eta \in(0,1)$-say $\eta=1 / 2$.
- $f(t):=\mathrm{E}\left(\sqrt{m_{t}(\lambda)}\right)$ satisfies the diff. inequality,

$$
f^{\prime}(t) \leq-\alpha \sup _{K \in[a, b t]}\left[\frac{f(t)-\exp \left(-\gamma K^{2} / t\right)}{K^{d}}\right] \quad \text { for all } t \gg 1
$$

where $a, b, \alpha, \gamma \in(0, \infty)$ are not germaine to the discussion.

- Conclude that

$$
f(t) \leq p \cdot \begin{cases}\exp \left(-q t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-r \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

Sketch of the Proof

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- It follows that

$$
E\left(\sqrt{m_{t}(\lambda)}\right) \leq A \cdot \begin{cases}\exp \left(-B t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-C \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

Sketch of the Proof

$$
d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- It follows that

$$
E\left(\sqrt{m_{t}(\lambda)}\right) \leq A \cdot \begin{cases}\exp \left(-B t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-C \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

- $t \mapsto \sqrt{m_{t}(\lambda)}$ is a continuous super martingale.

Sketch of the Proof

$d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$

$$
u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- It follows that

$$
E\left(\sqrt{m_{t}(\lambda)}\right) \leq A \cdot \begin{cases}\exp \left(-B t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-C \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

- $t \mapsto \sqrt{m_{t}(\lambda)}$ is a continuous super martingale.
- Use Doob's max. inequality \& the Borel-Cantelli lemma to deduce that, with probability one,

$$
m_{t}(\lambda) \leq D \cdot \begin{cases}\exp \left(-E t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-F \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

Sketch of the Proof

 $d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$$$
u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- It follows that

$$
E\left(\sqrt{m_{t}(\lambda)}\right) \leq A \cdot \begin{cases}\exp \left(-B t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-C \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

- $t \mapsto \sqrt{m_{t}(\lambda)}$ is a continuous super martingale.
- Use Doob's max. inequality \& the Borel-Cantelli lemma to deduce that, with probability one,

$$
m_{t}(\lambda) \leq D \cdot \begin{cases}\exp \left(-E t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-F \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

- In particular, $m_{\infty}(\lambda)=0$ a.s. when $d=1,2$.

Sketch of the Proof

 $d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$$$
u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- It follows that

$$
E\left(\sqrt{m_{t}(\lambda)}\right) \leq A \cdot \begin{cases}\exp \left(-B t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-C \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

- $t \mapsto \sqrt{m_{t}(\lambda)}$ is a continuous super martingale.
- Use Doob's max. inequality \& the Borel-Cantelli lemma to deduce that, with probability one,

$$
m_{t}(\lambda) \leq D \cdot \begin{cases}\exp \left(-E t^{1 / 3}\right) & \text { if } d=1 \\ \exp (-F \sqrt{\log t}) & \text { if } d=2\end{cases}
$$

- In particular, $m_{\infty}(\lambda)=0$ a.s. when $d=1,2$.
- Are there good lower bound? We can only prove that $\forall d \geq 1$ and $\lambda>0, \mathrm{E} \sqrt{m_{t}(\lambda)} \geq \mathrm{G} \cdot \exp (-H t)$ as $t \rightarrow \infty$ a.s.

Sketch of the Proof

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Next we prove the existence of a unique phase point.

Sketch of the Proof

$d u_{t}(x)=\left(\mathcal{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Next we prove the existence of a unique phase point.
- One can apply a comparison theorem [Cox-Fleischmann-Greven, 1996] to deduce that if $t>0$ and $\bar{\lambda} \geq \lambda>0$, then $\mathrm{Ee}^{-m_{t}(\bar{\lambda})} \geq \mathrm{Ee}^{-m_{t}(\lambda)}$.

Sketch of the Proof

$d u_{t}(x)=\left(\mathscr{G} u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x) \quad u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)$

- Next we prove the existence of a unique phase point.
- One can apply a comparison theorem [Cox-Fleischmann-Greven, 1996] to deduce that if $t>0$ and $\bar{\lambda} \geq \lambda>0$, then $\mathrm{Ee}^{-m_{t}(\bar{\lambda})} \geq \mathrm{Ee}^{-m_{t}(\lambda)}$.
- Send $t \rightarrow \infty$ to see that if $\bar{\lambda} \geq \lambda>0$, then $\mathrm{Ee}^{-m_{\infty}(\bar{\lambda})} \geq \mathrm{Ee}^{-m_{\infty}(\lambda)}$.

Sketch of the Proof

$d u_{t}(x)=\left(9 u_{t}\right)(x)+\lambda \sigma\left(u_{t}(x)\right) d B_{t}(x)$

$$
u_{0}(x)=c_{0} \delta_{0}(x) \quad m_{t}(\lambda):=\sum_{x \in \mathbf{Z}^{d}} u_{t}(x)
$$

- Next we prove the existence of a unique phase point.
- One can apply a comparison theorem [Cox-Fleischmann-Greven, 1996] to deduce that if $t>0$ and $\bar{\lambda} \geq \lambda>0$, then $\mathrm{Ee}^{-m_{t}(\bar{\lambda})} \geq \mathrm{Ee}^{-m_{t}(\lambda)}$.
- Send $t \rightarrow \infty$ to see that if $\bar{\lambda} \geq \lambda>0$, then $\mathrm{Ee}^{-m_{\infty}(\bar{\lambda})} \geq \mathrm{Ee}^{-m_{\infty}(\lambda)}$.
- Therefore,

$$
\begin{aligned}
\lambda_{c} & :=\inf \left\{\lambda>0: m_{\infty}(\lambda)=0 \text { a.s. }\right\} \\
& =\sup \left\{\lambda>0: \mathrm{Ee}^{-m_{\infty}(\lambda)}<1\right\} \\
& =\inf \left\{\lambda>0: \mathrm{Ee}^{-m_{\infty}(\lambda)}=1\right\}
\end{aligned}
$$

$$
[\inf \varnothing:=\infty] \Rightarrow 0 \leq \lambda_{c} \leq \infty \quad\left[d=1,2 \Rightarrow \lambda_{c}=0\right]
$$

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$
- $t>0, x \in \mathbf{R}, u_{0} \in L^{\infty}(\mathbf{R})$ nonrandom, $\sigma(0)=0, \sigma: \mathbf{R} \rightarrow \mathbf{R}$ Lipschitz and $\inf _{x}|\sigma(x) / x|>0, \lambda>0$.

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$
- $t>0, x \in \mathbf{R}, u_{0} \in L^{\infty}(\mathbf{R})$ nonrandom, $\sigma(0)=0, \sigma: \mathbf{R} \rightarrow \mathbf{R}$ Lipschitz and $\inf _{x}|\sigma(x) / x|>0, \lambda>0$.
- A unique continuous solution exists [Krylov-Rozovskiĭ, 1977; Pardoux, 1972/1975; Walsh, 1986]

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$
- $t>0, x \in \mathbf{R}, u_{0} \in L^{\infty}(\mathbf{R})$ nonrandom, $\sigma(0)=0, \sigma: \mathbf{R} \rightarrow \mathbf{R}$ Lipschitz and $\inf _{x}|\sigma(x) / x|>0, \lambda>0$.
- A unique continuous solution exists [Krylov-Rozovskiĭ, 1977; Pardoux, 1972/1975; Walsh, 1986]
- Fact. If $u_{0} \in L^{1}(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ then $u_{t} \in L^{1}(\mathbf{R})$ a.s. for all $t>0$.

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$
- $t>0, x \in \mathbf{R}, u_{0} \in L^{\infty}(\mathbf{R})$ nonrandom, $\sigma(0)=0, \sigma: \mathbf{R} \rightarrow \mathbf{R}$ Lipschitz and $\inf _{x}|\sigma(x) / x|>0, \lambda>0$.
- A unique continuous solution exists [Krylov-Rozovskiĭ, 1977; Pardoux, 1972/1975; Walsh, 1986]
- Fact. If $u_{0} \in L^{1}(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ then $u_{t} \in L^{1}(\mathbf{R})$ a.s. for all $t>0$.

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$
- $t>0, x \in \mathbf{R}, u_{0} \in L^{\infty}(\mathbf{R})$ nonrandom, $\sigma(0)=0, \sigma: \mathbf{R} \rightarrow \mathbf{R}$ Lipschitz and $\inf _{x}|\sigma(x) / x|>0, \lambda>0$.
- A unique continuous solution exists [Krylov-Rozovskiĭ, 1977; Pardoux, 1972/1975; Walsh, 1986]
- Fact. If $u_{0} \in L^{1}(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ then $u_{t} \in L^{1}(\mathbf{R})$ a.s. for all $t>0$.

Theorem (Chen-Cranston-K-Kim, 2015)

If $u_{0} \in L^{1}(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ is ≥ 0, then $\exists A, B \in(0, \infty)$ such that a.s.,

$$
\int_{-\infty}^{\infty} u_{t}(x) d x=\int_{-\infty}^{\infty}\left|u_{t}(x)\right| d x \leq A e^{-B t^{1 / 3}} \quad \text { for all } t \text { large } .
$$

Continuous SPDEs

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[\xi=$ space-time white noise $]$
- $t>0, x \in \mathbf{R}, u_{0} \in L^{\infty}(\mathbf{R})$ nonrandom, $\sigma(0)=0, \sigma: \mathbf{R} \rightarrow \mathbf{R}$ Lipschitz and $\inf _{x}|\sigma(x) / x|>0, \lambda>0$.
- A unique continuous solution exists [Krylov-Rozovskiĭ, 1977; Pardoux, 1972/1975; Walsh, 1986]
- Fact. If $u_{0} \in L^{1}(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ then $u_{t} \in L^{1}(\mathbf{R})$ a.s. for all $t>0$.

Theorem (Chen-Cranston-K-Kim, 2015)

If $u_{0} \in L^{1}(\mathbf{R}) \cap L^{\infty}(\mathbf{R})$ is ≥ 0, then $\exists A, B \in(0, \infty)$ such that a.s.,

$$
\int_{-\infty}^{\infty} u_{t}(x) d x=\int_{-\infty}^{\infty}\left|u_{t}(x)\right| d x \leq A e^{-B t^{1 / 3}} \quad \text { for all } t \text { large } .
$$

- For eq's on compact sets, $\left\|u_{t}\right\|_{L^{1}} \leq A e^{-B t}$ a.s. ...this is sharp.

Comments on Optimal Regularity of SPDEs The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]

Comments on Optimal Regularity of SPDEs The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995; Pazy, Kato, ...]

Comments on Optimal Regularity of SPDEs The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995;

Pazy, Kato, ...]

- E.g., we have already see that

Comments on Optimal Regularity of SPDEs The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995; Pazy, Kato, ...]
- E.g., we have already see that

$$
u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0 \text { a.s. }
$$

Comments on Optimal Regularity of SPDEs The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995; Pazy, Kato, ...]
- E.g., we have already see that
- $u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0$ a.s.
- $u_{0} \in L^{1}(\mathbf{R}) \Rightarrow u_{t} \in L^{1}(\mathbf{R}) \forall t \geq 0$ a.s.

Comments on Optimal Regularity of SPDEs The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$
[as before]
- Want properties that are conserved over time [Lunardi, 1995; Pazy, Kato, ...]
- E.g., we have already see that
- $u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0$ a.s.
- $u_{0} \in L^{1}(\mathbf{R}) \Rightarrow u_{t} \in L^{1}(\mathbf{R}) \forall t \geq 0$ a.s.
- Also, $u_{0} \in L^{2}(\mathbf{R}) \Rightarrow u_{t} \in L^{2}(\mathbf{R}) \forall t \geq 0$ a.s. [Dalang-Mueller, 2003]

Comments on Optimal Regularity of SPDEs

The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$
[as before]
- Want properties that are conserved over time [Lunardi, 1995;

Pazy, Kato, ...]

- E.g., we have already see that
- $u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0$ a.s.
- $u_{0} \in L^{1}(\mathbf{R}) \Rightarrow u_{t} \in L^{1}(\mathbf{R}) \forall t \geq 0$ a.s.
- Also, $u_{0} \in L^{2}(\mathbf{R}) \Rightarrow u_{t} \in L^{2}(\mathbf{R}) \forall t \geq 0$ a.s. [Dalang-Mueller, 2003]

Comments on Optimal Regularity of SPDEs

The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995;

Pazy, Kato, ...]

- E.g., we have already see that
- $u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0$ a.s.
- $u_{0} \in L^{1}(\mathbf{R}) \Rightarrow u_{t} \in L^{1}(\mathbf{R}) \forall t \geq 0$ a.s.
- Also, $u_{0} \in L^{2}(\mathbf{R}) \Rightarrow u_{t} \in L^{2}(\mathbf{R}) \forall t \geq 0$ a.s. [Dalang-Mueller, 2003]

Theorem (Chen-K-Kim, 2015)
$u_{0} \notin L^{1}(\mathbf{R}) \Rightarrow u_{t} \notin L^{1}(\mathbf{R}) \quad \forall t \geq 0$ a.s.

Comments on Optimal Regularity of SPDEs

The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995; Pazy, Kato, ...]
- E.g., we have already see that
- $u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0$ a.s.
- $u_{0} \in L^{1}(\mathbf{R}) \Rightarrow u_{t} \in L^{1}(\mathbf{R}) \forall t \geq 0$ a.s.
- Also, $u_{0} \in L^{2}(\mathbf{R}) \Rightarrow u_{t} \in L^{2}(\mathbf{R}) \forall t \geq 0$ a.s. [Dalang-Mueller, 2003]

Theorem (Chen-K-Kim, 2015)

$u_{0} \notin L^{1}(\mathbf{R}) \Rightarrow u_{t} \notin L^{1}(\mathbf{R}) \quad \forall t \geq 0$ a.s.

- "Reason" For all β large, if u and v solve our SPDE then

$$
\operatorname{Cov}\left(\left\|u_{t}\right\|_{L^{1}(\mathbf{R})},\left\|v_{t}\right\|_{L^{1}(\mathbf{R})}\right) \leq K e^{\beta t} \mathcal{E}_{\beta}\left(u_{0}, v_{0}\right) \quad \forall t>0 .
$$

Comments on Optimal Regularity of SPDEs

The L^{1} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- Want properties that are conserved over time [Lunardi, 1995; Pazy, Kato, ...]
- E.g., we have already see that
- $u_{0} \geq 0 \Rightarrow u_{t} \geq 0 \forall t \geq 0$ a.s.
- $u_{0} \in L^{1}(\mathbf{R}) \Rightarrow u_{t} \in L^{1}(\mathbf{R}) \forall t \geq 0$ a.s.
- Also, $u_{0} \in L^{2}(\mathbf{R}) \Rightarrow u_{t} \in L^{2}(\mathbf{R}) \forall t \geq 0$ a.s. [Dalang-Mueller, 2003]

Theorem (Chen-K-Kim, 2015)

$u_{0} \notin L^{1}(\mathbf{R}) \Rightarrow u_{t} \notin L^{1}(\mathbf{R}) \quad \forall t \geq 0$ a.s.

- "Reason" For all β large, if u and v solve our SPDE then

$$
\operatorname{Cov}\left(\left\|u_{t}\right\|_{L^{1}(\mathbf{R})},\left\|v_{t}\right\|_{L^{1}(\mathbf{R})}\right) \leq K e^{\beta t} \mathcal{O}_{\beta}\left(u_{0}, v_{0}\right) \quad \forall t>0 .
$$

- What about optimal reg. in L^{∞} ?

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x)$ [as before]

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[$ as before $]$
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.
- That is, the SPDE behaves as its nonrandom counterpart $[\lambda=0]$.

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.
- That is, the SPDE behaves as its nonrandom counterpart $[\lambda=0]$.
- The L^{∞} analysis is a little different b / c of "chaos."

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.
- That is, the SPDE behaves as its nonrandom counterpart $[\lambda=0]$.
- The L^{∞} analysis is a little different b / c of "chaos."
- First, two facts:

Comments on Optimal Regularity of SPDEs

The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[$ as before $]$
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.
- That is, the SPDE behaves as its nonrandom counterpart $[\lambda=0]$.
- The L^{∞} analysis is a little different b / c of "chaos."
- First, two facts:

Theorem

Comments on Optimal Regularity of SPDEs

The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad[$ as before $]$
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.
- That is, the SPDE behaves as its nonrandom counterpart $[\lambda=0]$.
- The L^{∞} analysis is a little different b / c of "chaos."
- First, two facts:

Theorem

- (Foondun-K, 2010) If u_{0} is Lipschitz continuous [say] with compact support, then $\sup _{x \in \mathbf{R}} u_{t}(x)<\infty$ a.s. for all $t \geq 0$.

Comments on Optimal Regularity of SPDEs

The L^{∞} Case

- $\partial_{t} u_{t}(x)=u_{t}^{\prime \prime}(x)+\lambda \sigma\left(u_{t}(x)\right) \xi_{t}(x) \quad$ [as before]
- We just saw that $u_{0} \in L^{1}(\mathbf{R})$ iff $u_{t} \in L^{1}(\mathbf{R})$ for all $t>0$.
- That is, the SPDE behaves as its nonrandom counterpart $[\lambda=0]$.
- The L^{∞} analysis is a little different b / c of "chaos."
- First, two facts:

Theorem

- (Foondun-K, 2010) If u_{0} is Lipschitz continuous [say] with compact support, then $\sup _{x \in \mathbf{R}} u_{t}(x)<\infty$ a.s. for all $t \geq 0$.
- (Conus et al, 2013) If $\inf _{x} u_{0}(x)>0$ then $\sup _{x \in \mathrm{R}} u_{t}(x)=\infty$ a.s. for all $t>0$.

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.
- Suppose the following exists in $[0, \infty]$:

$$
\Lambda:=\lim _{x \rightarrow \infty} \frac{\left|\log u_{0}(x)\right|}{[\log x]^{2 / 3}} .
$$

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.
- Suppose the following exists in $[0, \infty]$:

$$
\Lambda:=\lim _{x \rightarrow \infty} \frac{\left|\log u_{0}(x)\right|}{[\log x]^{2 / 3}} .
$$

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.
- Suppose the following exists in [0, ∞]:

$$
\Lambda:=\lim _{x \rightarrow \infty} \frac{\left|\log u_{0}(x)\right|}{[\log x]^{2 / 3}}
$$

Theorem (Chen-K-Kim, 20??)

Comments on Optimal Regularity of SPDEs The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.
- Suppose the following exists in [0, ∞]:

$$
\Lambda:=\lim _{x \rightarrow \infty} \frac{\left|\log u_{0}(x)\right|}{[\log x]^{2 / 3}} .
$$

Theorem (Chen-K-Kim, 20??)

- $\Lambda=\infty$ iff $\sup _{x \in \mathrm{R}} u_{t}(x)<\infty$ a.s. for all $t>0$;

Comments on Optimal Regularity of SPDEs

The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.
- Suppose the following exists in $[0, \infty]$:

$$
\Lambda:=\lim _{x \rightarrow \infty} \frac{\left|\log u_{0}(x)\right|}{[\log x]^{2 / 3}} .
$$

Theorem (Chen-K-Kim, 20??)

- $\Lambda=\infty$ iff $\sup _{x \in \mathbf{R}} u_{t}(x)<\infty$ a.s. for all $t>0$;
- $\Lambda=0$ iff $\sup _{x \in \mathrm{R}} u_{t}(x)=\infty$ a.s. for all $t>0$;

Comments on Optimal Regularity of SPDEs

The L^{∞} Case

- Suppose $u_{0}(x)=u_{0}(-x) \forall x \in \mathbf{R}$ and u_{0} is decreasing on $[0, \infty)$ with $\lim _{x \rightarrow \infty} u_{0}(x)=0$.
- Suppose the following exists in [0, ∞]:

$$
\Lambda:=\lim _{x \rightarrow \infty} \frac{\left|\log u_{0}(x)\right|}{[\log x]^{2 / 3}}
$$

Theorem (Chen-K-Kim, 20??)

- $\Lambda=\infty$ iff $\sup _{x \in \mathbf{R}} u_{t}(x)<\infty$ a.s. for all $t>0$;
- $\Lambda=0$ iff $\sup _{x \in \mathrm{R}} u_{t}(x)=\infty$ a.s. for all $t>0$;
- $0<\Lambda<\infty$ iff a.s. $\exists \tau \in(0, \infty)$ such that $\sup _{x \in \mathrm{R}} u_{t}(x)<\infty$ for all $0<t<\tau$ and $\sup _{x \in \mathbf{R}} u_{t}(x)=\infty$ for all $t>\tau$.

