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Macroscopic Minkowski Dimension
I If A ⊂ [0 ,∞) is a set, then define

Nn(A) := ∣∣{2n ≤ j < 2n+1 : A ∩ [j , j + 1) 6= ∅
}∣∣ .

I The macroscopic Minkowski dimension of A (e.g.,Barlow–Taylor, 1989) is
DimM (A) := lim sup

n→∞
1
n log2 (Nn(A) ∨ 1) .

I Example. DimM (Primes) = DimM (N) = DimM (R+) = 1.
I Example. Let f (k) := kp for k ∈ N, where p ≥ 1. Then,

DimM (f (N)) = DimM (∪∞k=0{kp}
) = p−1.

Reason. Nn({kp}∞k=0) � 2(n+1)/p − 2n/p � 2n/p .
I Example. DimM (f (N)) = 1 if f (k) = kp for k ∈ N and 0 < p < 1.
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Macroscopic Minkowski Dimension
Nn(A) := |{2n ≤ j < 2n+1 : A∩ [j , j + 1) 6= ∅}|; DimM (A) := lim supn→∞ n−1 log2(Nn(A)∨ 1)

I Example. Let Z := {n ≥ 0 : X (n) = 0} where X := the simplewalk on Zd . Then:

I d ≥ 3Ñ Z is bounded by transience, and hence DimM (Z ) = 0 a.s.
I d = 2Ñ Z is unbounded. However, [Spitzer, 1976]

E(|Nn(Z )|k) ≤ k! ∑
· · ·
∑

2n≤j1≤···≤jk<2n+1

P (X (j` ) = 0∀` = 1, . . . , k)

≤ C k
1 k! ∑

· · ·
∑

2n≤j1≤···≤jk<2n+1

1
j1(j2 − j1) · · · (jk − jk−1) ≤ C k

2 k!nk .

Ñ supn≥1 E exp(cNn(Z )/n) <∞∀c < C2 Ñ
∑

n P {Nn(Z ) > 2nε} <
∞ ∀ε > 0. In particular, DimM (Z ) = 0 a.s. [Borel–Cantelli lemma]

I If d = 1, then DimM (Z ) = 1/2 a.s. Indeed,
lim supn→∞ Nn(Z )/√2n+1 log2(n) = 1 a.s. [Kesten, 1965]

I The same for Z := B−1({0}) for B := a BM(Rd ).
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Macroscopic Minkowski Dimension
I There are natural ways to extend DimM (A) for cases where

A ⊆ Rd , where d ≥ 1. Here is one:
DimM (A) := lim sup

n→∞
1
n log2

(
|A(pix) ∩Vn| ∨ 1

)
,

where Vn := [−2n, 2n)d and A(pix) := {x ∈ Zd : dist(x ,A) ≤ 1}.

I There is also a [more complicated] notion of macroscopicHausdorff dimension (Barlow–Taylor, 1989; 1992. Naudts, 1988),denoted by DimH , which I will not define, in order to keep theexposition relatively simple. Fact. 0 ≤ DimH (A) ≤ DimM (A) ≤ d .
I Example. DimM (Zd ) = DimM (Nd ) = DimM (Rd ) = d .
I The main result of [Barlow–Taylor, 1992] is the fact that if d ≥ 2and X denotes a non-degenerate transient random walk on Zdthat is “stable-like” with index 0 < α ≤ 2, then

DimM (range of X ) = DimH (range of X ) = α a.s. The precisestatement follows.
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I Example. DimM (Zd ) = DimM (Nd ) = DimM (Rd ) = d .
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Macroscopic Minkowski DimensionTheorem (Barlow–Taylor, 1992)
Let X := a transient walk on Zd s.t. ∃α ∈ (0 , 2] with

g (x ) := ∞∑
n=0

P{X (n) = x} � ‖x‖−d−α for ‖x‖ � 1.

Then, DimM (X (N)) = DimH (X (N)) = α a.s.

I The same where X := SαS (Rd ), transient [d > α].
I Barlow and Taylor (1992) ask for an index/formula for

DimH (X (N)) for a general transient walk [and implicitly also for
DimM (X (N))].

I The formula for DimH (X (N)) is very complicated[Georgiou–K–Kim–Ramos, 2015]. I will point out only theformula for DimM (X (N)) for politeness’ sake [ibid.].
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Macroscopic Minkowski Dimension
Theorem (Georgiou–K–Kim–Ramos, 2015)
Let X := transient walk on Zd with Green function
g (x ) :=∑∞n=0 P{X (n) = x}. Then,

DimM (X (N)) = inf

γ ∈ (0 , d ) : ∑
x∈Zd\{0}

g (x )
‖x‖γ <∞

 a.s.

I If g (x ) � ‖x‖−d−α then we recover the theorem of Barlow andTaylor [DimM (X (N)) = α].
I There is a formula also for DimH (X (N)) [Barlow–Taylor problem]but it is very complicated, and so I omit it.
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Macroscopic Minkowski DimensionSome Open Problems
I Let X := a transient Lévy process on Rd , char. exponent Ψ. Isthere an explicit formula for DimM (X (R+)) in terms of Ψ?

I There are parallels with the microscopic theory. If one takesthem seriously then there are related problems for “additiverandom walks.” Almost all are open [most are likely to be “hard”].For instance, let X 1, . . . ,XN be N independent walks on Zd anddefine
X(~n) := X 1(n1) + · · ·+ XN (nN ) ∀~n ∈ NN .Suppose the green’s function of X i satisfies g i (x ) � ‖x‖−d−α forall 1 ≤ i ≤ N and ‖x‖ � 1.

Conjecture (Georgiou–K–Kim–Ramos, 2015). A ⊆ Zdnonrandom:

1. If DimH (A) > d − αN then X(NN ) ∩ A is a.s. unbounded;2. If DimH (A) < d − αN then X(NN ) ∩ A is a.s. bounded.

I A positive resolution has many consequences.
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Law of the Iterated Logarithm
B := 1-D Brownian motion, c > 0

I Consider the random set LB
c := {t ≥ 8 : B(t) > c

√
2t log log t

}
.

I Theorem (Khintchine, 1924). If c > 1, then LB
c is a.s. bounded. If

c < 1, then LB
c is a.s. unbounded. Equivalently,

lim sup
t→∞

B(t)√
2t log log t

= 1 a.s.
I Theorem (Lévy, 1937). LB

1 is a.s. unbounded.
I Theorem (Essentially due to Strassen, 1964). ∀c ∈ (0 , 1],

Upper density (LB
c ) = 1− exp

{
−4
[

1
c2 − 1

]}
a.s.

I Ñ DimH/M LB
c = {0 if c > 1,

1 if c < 1.
What about LB

1 ?
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Law of the Iterated Logarithm
LB

c := {t ≥ 8 : B(t) > c
√

2t log log t}

I Proposition (K-Kim-Xiao, 2015). DimH/M LB
1 = 1 a.s.

I Strategy of proof. Let µ(G ) := ∣∣∣{t ∈ G : B(t) ≥√2t log log t
}∣∣∣ .

I By the Tonelli theorem,
Eµ(2n, 2n+1) = ∫ 2n+1

2n
P{B(t) ≥√2t log log t

}
dt

�
∫ 2n+1

2n

dt
log t

√
log log t

� 2n

n
√

log n
.

I It turns out that µ(2n, 2n+1) � 2nn−1(log n)−1/2 “for most n’s.”
I Use ∑n n−1(log n)−1/2 =∞ and the defn of DimH §.
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Law of the Iterated Logarithm (re-iterated)
I Let Xs := e−s/2B(es ). [OU process]

I X is a mean-zero Gaussian diffusion with Cov(Xs ,Xt ) = e−|t−s|/2.
I We can re-write the LIL times as follows:

LB
c := {

t ≥ 100 : B(t) > c
√

2t log log t
}

= log
{

u ≥ log(100) : Xu > c
√

2 log u
}

:= logLX
c .

I We know: LX
c is unbounded iff c ≤ 1.

I Theorem (K-Kim-Xiao, 2015). DimH/M LX
c = 1− c2 a.s. for all

c ∈ (0 , 1].
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u ≥ log(100) : Xu > c
√

2 log u
}

:= logLX
c .

I We know: LX
c is unbounded iff c ≤ 1.

I Theorem (K-Kim-Xiao, 2015). DimH/M LX
c = 1− c2 a.s. for all

c ∈ (0 , 1].
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Law of the Iterated Logarithm (re-iterated)
I To recap: If X := the O-U process and c ∈ (0 , 1], then

DimH/M
{

t ≥ 38 : Xt ≥ c
√

2 log t
} = 1− c2 a.s.

I The preceding shows that the tall peaks of theOrnstein–Uhlenbeck process undergo a “separation of scales”[The peak times form a large-scale “multifractal”].
I It is predicted that the solution to a large family of stochasticPDEs should also exhibit separation of scales; we have presentedthis in two disparate cases [universality classes].
I The proof of the OU result consists of two bounds:

I The upper bound requires a covering argument.
I The lower bound is slightly different from “standard” lower-boundmethods . . . .
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Law of the Iterated Logarithm (re-iterated)
I Recall Xt = e−t/2B(et ) and LX

c := {t ≥ 65 : Xt ≥ c
√

2 log t}.

I Goal: DimH LX
c ≥ 1− c2.

I It suffices to consider only the case c < 1.
I Choose and fix an arbitrary ρ ∈ (c2 , 1), and subdivide every nth shell[2n, 2n+1) in to equally-spaced disjoint intervals of length 2nρ ; you willneed � 2n(1−ρ) such subintervals.
I One can show that a.s. for all n large, LX

c will a.s. intersect all of thosesubintervals for all n large.
I Therefore, DimM LX

c ≥ 1− ρ for all ρ ∈ (c2 , 1).
I The proof of DimH LX

c ≥ 1− ρ is only slightly more delicate.
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The Parabolic Anderson Model on R
I Consider PAM on R: ξ := space-time white noise;

u̇(t , x ) = u′′(t , x ) + σ (u(t , x ))ξ(t , x ) [t > 0, x ∈ R];

I subject to u(0 , x ) ∈ L∞(R) non random and ≥ 0;
I σ : R→ R Lipschitz continuous and non random.
I Theorem. (Pardoux, 1974/75; Krylov–Rozovskĭı, 1977; Walsh,1984; . . . ) There exists a unique continuous solution.
I Theorem. (Mueller, 1991) If σ (0) = 0 and u(0 , •) > 0 on a set of

positive measure, then u(t , x ) > 0 for all t > 0 and x ∈ R.
I Today we concentrate on 2 special cases only:

I The linear heat equation (LHE): σ (u) ∝ 1 and u(0 , x ) = 0;
I The parabolic Anderson model (PAM): σ (u) ∝ u and u(0 , x ) = 1.
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The Stochastic Heat Equation on R
u̇(t , x ) = u′′(t , x ) + σ (u(t , x ))ξ(t , x )

I LHE [σ (u) = λ and u0 = 0] is a GRF and therefore well tempered.

I PAM [σ (u) = λu; u0 = 1] is highly complex; the more exposure to thenoise, the more difficult to predict its behavior in all possible regimes:

I Intermittency (t →∞). Amir-Corwin-Quastel, 2011;Bertini–Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002,2005; den Hollander-Greven, 2007; Florescu-Viens, 2006;Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-denHollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov,2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova,2008; Molchanov, 1991. . . .
I Chaos (x → ±∞). Chen, 2014; Conus-Joseph-K, 2013.
I Nonlinear noise excitation (λ → ±∞). Kim-K, 2015;Foondun–Joseph, 2015.
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The Stochastic Heat Equation on [0 , 1]
u̇(t , x ) = u′′(t , x ) for (t , x ) ∈ (0 ,∞)× [0 , 1] with Dirichlet BC
u(0 , x ) = sin(πx )
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u̇(t , x ) = u′′(t , x ) + σ (u(t , x ))ξ(t , x ) for (t , x ) ∈ (0 ,∞)× [0 , 1] with Dirichlet BC
u(0 , x ) = sin(πx ); σ (u) = u on the left; σ (u) = 1 on the right
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The Stochastic Heat Equation on [0 , 1]
u̇(t , x ) = u′′(t , x ) + σ (u(t , x ))ξ(t , x ) for (t , x ) ∈ (0 ,∞)× [0 , 1] with Dirichlet BC
u(0 , x ) = sin(πx ); σ (u) = 50u on the left; σ (u) = 50 on the right
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The Main Results
Ż (t , x ) = 1

2Z ′′(t , x ) + ξ(t , x ) [Z (0 , x ) = 0]
u̇(t , x ) = 1

2u′′(t , x ) + u(t , x )ξ(t , x ) [u(0 , x ) := 1]
I Natural to think of h(t , x ) = log u(t , x ) instead [H-C soln to KPZ].

I Define for all c , t > 0, [Conus-K-Joseph, 2013; Xia Chen, 2014]
LZ

c (t) := {x ≥ 10 : Z (t , x ) ≥ ct1/4[log x ]1/2}
Lu

c (t) := {x ≥ 10 : log u(t , x ) ≥ ct1/3[log x ]2/3} .
I Both are “multifractals”; only u is “intermittent.” [Re: Lawler, 2012]:
I Theorem (K-Kim-Xiao, 2015). With probability one,

DimH/M LZ
c (t) = 1−

√
π
2

c2 DimH/M Lu
c (t) = 1− 4

√
2

3
c3/2 a.s.,

where DimH/M (A) < 0 means A is bounded.
I Much more complexity ∃ in space-time [with Kim, 2015+], as predictedin the theoret. physics/Applied Math. literature [Doering–Gibbon, 1995].
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