Macroscopic Dimension

Davar Khoshnevisan
Based on joint works with Nicos Georgiou, Kunwoo Kim, Alex Ramos, \& Yimin Xiao

Department of Mathematics, University of Utah
http://www.math.utah.edu/~davar
Research supported in part by generous grants from the National Science Foundation

Macroscopic Minkowski Dimension

- If $A \subset[0, \infty)$ is a set, then define

$$
N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| .
$$

Macroscopic Minkowski Dimension

- If $A \subset[0, \infty)$ is a set, then define

$$
N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| .
$$

- The macroscopic Minkowski dimension of A (e.g., Barlow-Taylor, 1989) is

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(N_{n}(A) \vee 1\right) .
$$

Macroscopic Minkowski Dimension

- If $A \subset[0, \infty)$ is a set, then define

$$
N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right|
$$

- The macroscopic Minkowski dimension of A (e.g., Barlow-Taylor, 1989) is

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(N_{n}(A) \vee 1\right) .
$$

- Example. $\operatorname{Dim}_{M}($ Primes $)=\operatorname{Dim}_{M}(\mathbb{N})=\operatorname{Dim}_{M}\left(\mathbb{R}_{+}\right)=1$.

Macroscopic Minkowski Dimension

- If $A \subset[0, \infty)$ is a set, then define

$$
N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| .
$$

- The macroscopic Minkowski dimension of A (e.g., Barlow-Taylor, 1989) is

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(N_{n}(A) \vee 1\right) .
$$

- Example. $\operatorname{Dim}_{M}($ Primes $)=\operatorname{Dim}_{M}(\mathbb{N})=\operatorname{Dim}_{M}\left(\mathbb{R}_{+}\right)=1$.
- Example. Let $f(k):=k^{p}$ for $k \in \mathbb{N}$, where $p \geq 1$. Then,

$$
\operatorname{Dim}_{\mathrm{M}}(f(\mathbb{N}))=\operatorname{Dim}_{\mathrm{M}}\left(\cup_{k=0}^{\infty}\left\{k^{p}\right\}\right)=p^{-1} .
$$

Reason. $N_{n}\left(\left\{k^{p}\right\}_{k=0}^{\infty}\right) \asymp 2^{(n+1) / p}-2^{n / p} \asymp 2^{n / p}$.

Macroscopic Minkowski Dimension

- If $A \subset[0, \infty)$ is a set, then define

$$
N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| .
$$

- The macroscopic Minkowski dimension of A (e.g., Barlow-Taylor, 1989) is

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(N_{n}(A) \vee 1\right) .
$$

- Example. $\operatorname{Dim}_{M}($ Primes $)=\operatorname{Dim}_{M}(\mathbb{N})=\operatorname{Dim}_{M}\left(\mathbb{R}_{+}\right)=1$.
- Example. Let $f(k):=k^{p}$ for $k \in \mathbb{N}$, where $p \geq 1$. Then,

$$
\operatorname{Dim}_{\mathrm{M}}(f(\mathbb{N}))=\operatorname{Dim}_{\mathrm{M}}\left(U_{k=0}^{\infty}\left\{k^{p}\right\}\right)=p^{-1} .
$$

Reason. $N_{n}\left(\left\{k^{p}\right\}_{k=0}^{\infty}\right)=2^{(n+1) / p}-2^{n / p} \asymp 2^{n / p}$.

- Example. $\operatorname{Dim}_{\mathrm{M}}(f(\mathbb{N}))=1$ if $f(k)=k^{p}$ for $k \in \mathbb{N}$ and $0<p<1$.

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{M}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:

Macroscopic Minkowski Dimension

$\left.N_{n}(A):=\mid\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right\} ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{M}(Z)=0$ a.s.

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right)
$$

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{M}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum \mathrm{P}\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right)
$$

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \mathrm{P}\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)}
\end{aligned}
$$

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \mathrm{P}\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} .
\end{aligned}
$$

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{M}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \quad \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \mathrm{P}\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \quad \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{j_{1}} \frac{1}{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} . \\
& \Rightarrow \sup _{n \geq 1} \operatorname{Eexp}\left(c N_{n}(Z) / n\right)<\infty \forall c<C_{2}
\end{aligned}
$$

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{M}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{1} \frac{1}{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} . \\
& \Rightarrow \sup _{n \geq 1} \mathrm{E} \exp \left(c N_{n}(Z) / n\right)<\infty \forall c<C_{2} \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(Z)>2^{n \varepsilon}\right\}< \\
& \infty \quad \forall \varepsilon>0 . \text { In particular, } \operatorname{Dim}_{\mathrm{M}}(Z)=0 \text { a.s. [Borel-Cantelli lemma] }
\end{aligned}
$$

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{1} \mathrm{P}\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{1} \frac{1}{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} . \\
& \Rightarrow \sup _{n \geq 1} \mathrm{E} \exp \left(c N_{n}(Z) / n\right)<\infty \forall c<C_{2} \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(Z)>2^{n \varepsilon}\right\}< \\
& \infty \quad \forall \varepsilon>0 . \text { In particular, } \operatorname{Dim}_{M}(Z)=0 \text { a.s. [Borel-Cantelli lemma] }
\end{aligned}
$$

- If $d=1$, then $\operatorname{Dim}_{M}(Z)=1 / 2$ a.s. Indeed,

Macroscopic Minkowski Dimension

$\left.N_{n}(A):=\mid\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right\} ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{gathered}
\mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{\boldsymbol{n}} \leq j_{1} \leq \cdots \leq j_{k}<2^{\boldsymbol{n}+\boldsymbol{1}}} \mathrm{P}\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
\leq C_{1}^{k} k!\sum_{2^{\boldsymbol{n}} \leq j_{1} \leq \cdots \leq j_{k}<2^{n^{+\boldsymbol{1}}}} \cdots \sum_{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} \\
\Rightarrow \sup _{n \geq 1} \mathrm{E} \exp \left(c N_{n}(Z) / n\right)<\infty \forall c<C_{2} \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(Z)>2^{n \varepsilon}\right\}< \\
\infty \quad \forall \varepsilon>0 . \text { In particular, } \operatorname{Dim}_{\mathrm{M}}(Z)=0 \text { a.s. } \text { [Borel-Cantelli lemma] }
\end{gathered}
$$

- If $d=1$, then $\operatorname{Dim}_{M}(Z)=1 / 2$ a.s. Indeed,

Macroscopic Minkowski Dimension

$\left.N_{n}(A):=\mid\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right\} ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{1} \frac{1}{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} . \\
& \Rightarrow \sup _{n \geq 1} \mathrm{E} \exp \left(c N_{n}(Z) / n\right)<\infty \forall c<C_{2} \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(Z)>2^{n \varepsilon}\right\}< \\
& \infty \quad \forall \varepsilon>0 . \text { In particular, } \operatorname{Dim}_{M}(Z)=0 \text { a.s. [Borel-Cantelli lemma] }
\end{aligned}
$$

- If $d=1$, then $\operatorname{Dim}_{M}(Z)=1 / 2$ a.s. Indeed, $\lim \sup _{n \rightarrow \infty} N_{n}(Z) / \sqrt{2^{n+1} \log _{2}(n)}=1$ a.s. [Kesten, 1965]

Macroscopic Minkowski Dimension

$N_{n}(A):=\left|\left\{2^{n} \leq j<2^{n+1}: A \cap[j, j+1) \neq \varnothing\right\}\right| ; \operatorname{Dim}_{\mathrm{M}}(A):=\lim \sup _{n \rightarrow \infty} n^{-1} \log _{2}\left(N_{n}(A) \vee 1\right)$

- Example. Let $Z:=\{n \geq 0: X(n)=0\}$ where $X:=$ the simple walk on \mathbb{Z}^{d}. Then:
- $d \geq 3 \Rightarrow Z$ is bounded by transience, and hence $\operatorname{Dim}_{\mathrm{M}}(Z)=0$ a.s.
- $d=2 \Rightarrow Z$ is unbounded. However, [Spitzer, 1976]

$$
\begin{aligned}
& \mathrm{E}\left(\left|N_{n}(Z)\right|^{k}\right) \leq k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots\left(X\left(j_{\ell}\right)=0 \forall \ell=1, \ldots, k\right) \\
& \leq C_{1}^{k} k!\sum_{2^{n} \leq j_{1} \leq \cdots \leq j_{k}<2^{n+1}} \cdots \sum_{1} \frac{1}{j_{1}\left(j_{2}-j_{1}\right) \cdots\left(j_{k}-j_{k-1}\right)} \leq C_{2}^{k} k!n^{k} . \\
& \Rightarrow \sup _{n \geq 1} \mathrm{E} \exp \left(c N_{n}(Z) / n\right)<\infty \forall c<C_{2} \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(Z)>2^{n \varepsilon}\right\}< \\
& \infty \quad \forall \varepsilon>0 . \text { In particular, } \operatorname{Dim}_{M}(Z)=0 \text { a.s. [Borel-Cantelli lemma] }
\end{aligned}
$$

- If $d=1$, then $\operatorname{Dim}_{M}(Z)=1 / 2$ a.s. Indeed,
$\lim \sup _{n \rightarrow \infty} N_{n}(Z) / \sqrt{2^{n+1} \log _{2}(n)}=1$ a.s. [Kesten, 1965]
- The same for $Z:=B^{-1}(\{0\})$ for $B:=$ a $B M\left(\mathbb{R}^{d}\right)$.

Macroscopic Minkowski Dimension

- There are natural ways to extend $\operatorname{Dim}_{\mathrm{m}}(A)$ for cases where $A \subseteq \mathbb{R}^{d}$, where $d \geq 1$. Here is one:

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(\left|A^{(\mathrm{pix})} \cap q_{n}\right| \vee 1\right),
$$

where $)_{n}:=\left[-2^{n}, 2^{n}\right)^{d}$ and $A^{(\text {pix })}:=\left\{x \in \mathbb{Z}^{d}: \operatorname{dist}(x, A) \leq 1\right\}$.

Macroscopic Minkowski Dimension

- There are natural ways to extend $\operatorname{Dim}_{\mathrm{m}}(A)$ for cases where $A \subseteq \mathbb{R}^{d}$, where $d \geq 1$. Here is one:

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(\left|A^{(\mathrm{pix})} \cap q_{n}\right| \vee 1\right),
$$

where $\mathscr{V}_{n}:=\left[-2^{n}, 2^{n}\right)^{d}$ and $A^{(\text {pix })}:=\left\{x \in \mathbb{Z}^{d}: \operatorname{dist}(x, A) \leq 1\right\}$.

- There is also a [more complicated] notion of macroscopic Hausdorff dimension (Barlow-Taylor, 1989; 1992. Naudts, 1988), denoted by $\operatorname{Dim}_{\mathrm{H}}$, which I will not define, in order to keep the exposition relatively simple. Fact. $0 \leq \operatorname{Dim}_{\mathrm{H}}(A) \leq \operatorname{Dim}_{M}(A) \leq d$.

Macroscopic Minkowski Dimension

- There are natural ways to extend $\operatorname{Dim}_{\mathrm{m}}(A)$ for cases where $A \subseteq \mathbb{R}^{d}$, where $d \geq 1$. Here is one:

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(\left|A^{(\mathrm{pix})} \cap \vartheta_{n}\right| \vee 1\right),
$$

where $9_{n}:=\left[-2^{n}, 2^{n}\right)^{d}$ and $A^{(\mathrm{pix})}:=\left\{x \in \mathbb{Z}^{d}: \operatorname{dist}(x, A) \leq 1\right\}$.

- There is also a [more complicated] notion of macroscopic Hausdorff dimension (Barlow-Taylor, 1989; 1992. Naudts, 1988), denoted by $\operatorname{Dim}_{\mathrm{H}}$, which I will not define, in order to keep the exposition relatively simple. Fact. $0 \leq \operatorname{Dim}_{\mathrm{H}}(A) \leq \operatorname{Dim}_{M}(A) \leq d$.
- Example. $\operatorname{Dim}_{\mathrm{M}}\left(\mathbb{Z}^{d}\right)=\operatorname{Dim}_{\mathrm{M}}\left(\mathbb{N}^{d}\right)=\operatorname{Dim}_{\mathrm{M}}\left(\mathbb{R}^{d}\right)=d$.

Macroscopic Minkowski Dimension

- There are natural ways to extend $\operatorname{Dim}_{\mathrm{m}}(A)$ for cases where $A \subseteq \mathbb{R}^{d}$, where $d \geq 1$. Here is one:

$$
\operatorname{Dim}_{\mathrm{M}}(A):=\limsup _{n \rightarrow \infty} \frac{1}{n} \log _{2}\left(\left|A^{(\mathrm{pix})} \cap q_{n}\right| \vee 1\right),
$$

where 9$)_{n}:=\left[-2^{n}, 2^{n}\right)^{d}$ and $A^{(\mathrm{pix})}:=\left\{x \in \mathbb{Z}^{d}: \operatorname{dist}(x, A) \leq 1\right\}$.

- There is also a [more complicated] notion of macroscopic Hausdorff dimension (Barlow-Taylor, 1989; 1992. Naudts, 1988), denoted by $\operatorname{Dim}_{\mathrm{H}}$, which I will not define, in order to keep the exposition relatively simple. Fact. $0 \leq \operatorname{Dim}_{H}(A) \leq \operatorname{Dim}_{M}(A) \leq d$.
- Example. $\operatorname{Dim}_{M}\left(\mathbb{Z}^{d}\right)=\operatorname{Dim}_{M}\left(\mathbb{N}^{d}\right)=\operatorname{Dim}_{M}\left(\mathbb{R}^{d}\right)=d$.
- The main result of [Barlow-Taylor, 1992] is the fact that if $d \geq 2$ and X denotes a non-degenerate transient random walk on \mathbb{Z}^{d} that is "stable-like" with index $0<\alpha \leq 2$, then
$\operatorname{Dim}_{\mathrm{M}}($ range of $X)=\operatorname{Dim}_{\mathrm{H}}($ range of $X)=\alpha$ a.s. The precise statement follows.

Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let $X:=a$ transient walk on \mathbb{Z}^{d} s.t. $\exists \alpha \in(0,2]$ with

$$
g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}=\|x\|^{-d-\alpha} \quad \text { for }\|x\| \gg 1 .
$$

Then, $\operatorname{Dim}_{\mathbb{M}}(X(\mathbb{N}))=\operatorname{Dim}_{H}(X(\mathbb{N}))=\alpha$ a.s.

Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let $X:=a$ transient walk on \mathbb{Z}^{d} s.t. $\exists \alpha \in(0,2]$ with

$$
g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}=\|x\|^{-d-\alpha} \quad \text { for }\|x\| \gg 1 .
$$

Then, $\operatorname{Dim}_{\mathbb{M}}(X(\mathbb{N}))=\operatorname{Dim}_{H}(X(\mathbb{N}))=\alpha$ a.s.

- The same where $X:=S \alpha S\left(\mathbb{R}^{d}\right)$, transient $[d>\alpha]$.

Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let $X:=a$ transient walk on \mathbb{Z}^{d} s.t. $\exists \alpha \in(0,2]$ with

$$
g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}=\|x\|^{-d-\alpha} \quad \text { for }\|x\| \gg 1 .
$$

Then, $\operatorname{Dim}_{M}(X(\mathbb{N}))=\operatorname{Dim}_{H}(X(\mathbb{N}))=\alpha$ a.s.

- The same where $X:=S \alpha S\left(\mathbb{R}^{d}\right)$, transient $[d>\alpha]$.
- Barlow and Taylor (1992) ask for an index/formula for $\operatorname{Dim}_{\mathrm{H}}(X(\mathbb{N}))$ for a general transient walk [and implicitly also for $\left.\operatorname{Dim}_{M}(X(\mathbb{N}))\right]$.

Macroscopic Minkowski Dimension

Theorem (Barlow-Taylor, 1992)
Let $X:=a$ transient walk on \mathbb{Z}^{d} s.t. $\exists \alpha \in(0,2]$ with

$$
g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}=\|x\|^{-d-\alpha} \quad \text { for }\|x\| \gg 1 .
$$

Then, $\operatorname{Dim}_{M}(X(\mathbb{N}))=\operatorname{Dim}_{H}(X(\mathbb{N}))=\alpha$ a.s.

- The same where $X:=S \alpha S\left(\mathbb{R}^{d}\right)$, transient $[d>\alpha]$.
- Barlow and Taylor (1992) ask for an index/formula for $\operatorname{Dim}_{\mathrm{H}}(X(\mathbb{N}))$ for a general transient walk [and implicitly also for $\left.\operatorname{Dim}_{M}(X(\mathbb{N}))\right]$.
- The formula for $\operatorname{Dim}_{H}(X(\mathbb{N}))$ is very complicated [Georgiou-K-Kim-Ramos, 2015]. I will point out only the formula for $\operatorname{Dim}_{M}(X(\mathbb{N}))$ for politeness' sake [ibid.].

Macroscopic Minkowski Dimension

Theorem (Georgiou-K-Kim-Ramos, 2015)
Let $X:=$ transient walk on \mathbb{Z}^{d} with Green function $g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}$. Then,

$$
\operatorname{Dim}_{\mathrm{M}}(X(\mathbb{N}))=\inf \left\{\gamma \in(0, d): \sum_{x \in \mathbb{Z}^{d} \backslash\{0\}} \frac{g(x)}{\|x\|^{\gamma}}<\infty\right\} \quad \text { a.s. }
$$

Macroscopic Minkowski Dimension

Theorem (Georgiou-K-Kim-Ramos, 2015)
Let $X:=$ transient walk on \mathbb{Z}^{d} with Green function
$g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}$. Then,

$$
\operatorname{Dim}_{\mathrm{M}}(X(\mathbb{N}))=\inf \left\{\gamma \in(0, d): \sum_{x \in \mathbb{Z}^{d} \backslash\{0\}} \frac{g(x)}{\|x\|^{\gamma}}<\infty\right\} \quad \text { a.s. }
$$

- If $g(x)=\|x\|^{-d-\alpha}$ then we recover the theorem of Barlow and Taylor $\left[\operatorname{Dim}_{M}(X(\mathbb{N}))=\alpha\right]$.

Macroscopic Minkowski Dimension

Theorem (Georgiou-K-Kim-Ramos, 2015)
Let $X:=$ transient walk on \mathbb{Z}^{d} with Green function
$g(x):=\sum_{n=0}^{\infty} \mathrm{P}\{X(n)=x\}$. Then,

$$
\operatorname{Dim}_{\mathrm{M}}(X(\mathbb{N}))=\inf \left\{\gamma \in(0, d): \sum_{x \in \mathbb{Z}^{d} \backslash\{0\}} \frac{g(x)}{\|x\|^{\gamma}}<\infty\right\} \quad \text { a.s. }
$$

- If $g(x)=\|x\|^{-d-\alpha}$ then we recover the theorem of Barlow and Taylor $\left[\operatorname{Dim}_{\mathrm{M}}(X(\mathbb{N}))=\alpha\right]$.
- There is a formula also for $\operatorname{Dim}_{H}(X(\mathbb{N}))$ [Barlow-Taylor problem] but it is very complicated, and so I omit it.

Macroscopic Minkowski Dimension

Some Open Problems

- Let $X:=$ a transient Lévy process on \mathbb{R}^{d}, char. exponent Ψ. Is there an explicit formula for $\operatorname{Dim}_{M}\left(X\left(\mathbb{R}_{+}\right)\right)$in terms of Ψ ?

Macroscopic Minkowski Dimension

Some Open Problems

- Let $X:=$ a transient Lévy process on \mathbb{R}^{d}, char. exponent Ψ. Is there an explicit formula for $\operatorname{Dim}_{M}\left(X\left(\mathbb{R}_{+}\right)\right)$in terms of Ψ ?
- There are parallels with the microscopic theory. If one takes them seriously then there are related problems for "additive random walks." Almost all are open [most are likely to be "hard"]. For instance, let X^{1}, \ldots, X^{N} be N independent walks on \mathbb{Z}^{d} and define

$$
\mathfrak{X}(\overrightarrow{\mathbf{n}}):=X^{1}\left(n_{1}\right)+\cdots+X^{N}\left(n_{N}\right) \quad \forall \overrightarrow{\mathbf{n}} \in \mathbb{N}^{N} .
$$

Suppose the green's function of X^{i} satisfies $g^{i}(x)=\|x\|^{-d-\alpha}$ for all $1 \leq i \leq N$ and $\|x\| \gg 1$.

Macroscopic Minkowski Dimension

Some Open Problems

- Let $X:=$ a transient Lévy process on \mathbb{R}^{d}, char. exponent Ψ. Is there an explicit formula for $\operatorname{Dim}_{M}\left(X\left(\mathbb{R}_{+}\right)\right)$in terms of Ψ ?
- There are parallels with the microscopic theory. If one takes them seriously then there are related problems for "additive random walks." Almost all are open [most are likely to be "hard"]. For instance, let X^{1}, \ldots, X^{N} be N independent walks on \mathbb{Z}^{d} and define

$$
\mathfrak{X}(\overrightarrow{\mathbf{n}}):=X^{1}\left(n_{1}\right)+\cdots+X^{N}\left(n_{N}\right) \quad \forall \overrightarrow{\mathbf{n}} \in \mathbb{N}^{N} .
$$

Suppose the green's function of X^{i} satisfies $g^{i}(x)=\|x\|^{-d-\alpha}$ for all $1 \leq i \leq N$ and $\|x\| \gg 1$.

Macroscopic Minkowski Dimension

Some Open Problems

- Let $X:=$ a transient Lévy process on \mathbb{R}^{d}, char. exponent Ψ. Is there an explicit formula for $\operatorname{Dim}_{M}\left(X\left(\mathbb{R}_{+}\right)\right)$in terms of Ψ ?
- There are parallels with the microscopic theory. If one takes them seriously then there are related problems for "additive random walks." Almost all are open [most are likely to be "hard"]. For instance, let X^{1}, \ldots, X^{N} be N independent walks on \mathbb{Z}^{d} and define

$$
\mathfrak{X}(\overrightarrow{\mathbf{n}}):=X^{1}\left(n_{1}\right)+\cdots+X^{N}\left(n_{N}\right) \quad \forall \overrightarrow{\mathbf{n}} \in \mathbb{N}^{N} .
$$

Suppose the green's function of X^{i} satisfies $g^{i}(x)=\|x\|^{-d-\alpha}$ for all $1 \leq i \leq N$ and $\|x\| \gg 1$.

Conjecture (Georgiou-K-Kim-Ramos, 2015). $A \subseteq \mathbb{Z}^{d}$ nonrandom:

1. If $\operatorname{Dim}_{H}(A)>d-\alpha N$ then $\mathfrak{X}\left(\mathbb{N}^{N}\right) \cap A$ is a.s. unbounded;

Macroscopic Minkowski Dimension

Some Open Problems

- Let $X:=$ a transient Lévy process on \mathbb{R}^{d}, char. exponent Ψ. Is there an explicit formula for $\operatorname{Dim}_{M}\left(X\left(\mathbb{R}_{+}\right)\right)$in terms of Ψ ?
- There are parallels with the microscopic theory. If one takes them seriously then there are related problems for "additive random walks." Almost all are open [most are likely to be "hard"]. For instance, let X^{1}, \ldots, X^{N} be N independent walks on \mathbb{Z}^{d} and define

$$
\mathfrak{X}(\overrightarrow{\mathbf{n}}):=X^{1}\left(n_{1}\right)+\cdots+X^{N}\left(n_{N}\right) \quad \forall \overrightarrow{\mathbf{n}} \in \mathbb{N}^{N} .
$$

Suppose the green's function of X^{i} satisfies $g^{i}(x)=\|x\|^{-d-\alpha}$ for all $1 \leq i \leq N$ and $\|x\| \gg 1$.

Conjecture (Georgiou-K-Kim-Ramos, 2015). $A \subseteq \mathbb{Z}^{d}$ nonrandom:

1. If $\operatorname{Dim}_{H}(A)>d-\alpha N$ then $\mathfrak{X}\left(\mathbb{N}^{N}\right) \cap A$ is a.s. unbounded;
2. If $\operatorname{Dim}_{H}(A)<d-\alpha N$ then $\mathfrak{X}\left(\mathbb{N}^{N}\right) \cap A$ is a.s. bounded.

Macroscopic Minkowski Dimension

Some Open Problems

- Let $X:=$ a transient Lévy process on \mathbb{R}^{d}, char. exponent Ψ. Is there an explicit formula for $\operatorname{Dim}_{M}\left(X\left(\mathbb{R}_{+}\right)\right)$in terms of Ψ ?
- There are parallels with the microscopic theory. If one takes them seriously then there are related problems for "additive random walks." Almost all are open [most are likely to be "hard"]. For instance, let X^{1}, \ldots, X^{N} be N independent walks on \mathbb{Z}^{d} and define

$$
\mathfrak{X}(\overrightarrow{\mathbf{n}}):=X^{1}\left(n_{1}\right)+\cdots+X^{N}\left(n_{N}\right) \quad \forall \overrightarrow{\mathbf{n}} \in \mathbb{N}^{N} .
$$

Suppose the green's function of X^{i} satisfies $g^{i}(x)=\|x\|^{-d-\alpha}$ for all $1 \leq i \leq N$ and $\|x\| \gg 1$.

Conjecture (Georgiou-K-Kim-Ramos, 2015). $A \subseteq \mathbb{Z}^{d}$ nonrandom:

1. If $\operatorname{Dim}_{H}(A)>d-\alpha N$ then $\mathfrak{X}\left(\mathbb{N}^{N}\right) \cap A$ is a.s. unbounded;
2. If $\operatorname{Dim}_{H}(A)<d-\alpha N$ then $\mathfrak{X}\left(\mathbb{N}^{N}\right) \cap A$ is a.s. bounded.

- A positive resolution has many consequences.

Law of the Iterated Logarithm

$B:=1-\mathrm{D}$ Brownian motion, $c>0$

- Consider the random set $\mathcal{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.

Law of the Iterated Logarithm

$B:=1-\mathrm{D}$ Brownian motion, $c>0$

- Consider the random set $\mathcal{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then \mathcal{L}_{c}^{B} is a.s. bounded. If $c<1$, then \mathcal{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

Law of the Iterated Logarithm

$B:=1-\mathrm{D}$ Brownian motion, $c>0$

- Consider the random set $\mathcal{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then \mathscr{L}_{c}^{B} is a.s. bounded. If $c<1$, then \mathscr{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

- Theorem (Lévy, 1937). \mathscr{L}_{1}^{B} is a.s. unbounded.

Law of the Iterated Logarithm

$B:=1-\mathrm{D}$ Brownian motion, $c>0$

- Consider the random set $\mathcal{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then \mathcal{L}_{c}^{B} is a.s. bounded. If $c<1$, then \mathscr{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

- Theorem (Lévy, 1937). \mathscr{L}_{1}^{B} is a.s. unbounded.
- Theorem (Essentially due to Strassen, 1964). $\forall c \in(0,1]$,

$$
\text { Upper density }\left(\mathscr{L}_{c}^{B}\right)=1-\exp \left\{-4\left[\frac{1}{c^{2}}-1\right]\right\}
$$

Law of the Iterated Logarithm

 $B:=1$-D Brownian motion, $c>0$- Consider the random set $\mathcal{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$.
- Theorem (Khintchine, 1924). If $c>1$, then \mathcal{L}_{c}^{B} is a.s. bounded. If $c<1$, then \mathscr{L}_{c}^{B} is a.s. unbounded. Equivalently,

$$
\limsup _{t \rightarrow \infty} \frac{B(t)}{\sqrt{2 t \log \log t}}=1 \quad \text { a.s. }
$$

- Theorem (Lévy, 1937). \mathscr{L}_{1}^{B} is a.s. unbounded.
- Theorem (Essentially due to Strassen, 1964). $\forall c \in(0,1]$,

$$
\text { Upper density }\left(\mathscr{L}_{c}^{B}\right)=1-\exp \left\{-4\left[\frac{1}{c^{2}}-1\right]\right\} \quad \text { a.s. }
$$

$-\Rightarrow \operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{B}=\left\{\begin{array}{ll}0 & \text { if } c>1, \\ 1 & \text { if } c<1 .\end{array}\right.$ What about $\mathscr{L}_{1}^{B} ?$

Law of the Iterated Logarithm

$\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{H / M} \mathscr{L}_{1}^{B}=1$ a.s.

Law of the Iterated Logarithm

$\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{1}^{B}=1$ a.s.
- Strategy of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.

Law of the Iterated Logarithm
$\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathcal{L}_{1}^{B}=1$ a.s.
- Strategy of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\mathrm{E} \mu\left(2^{n}, 2^{n+1}\right)=\int_{2^{n}}^{2^{n+1}} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t
$$

Law of the Iterated Logarithm
$\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{1}^{B}=1$ a.s.
- Strategy of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\mathrm{E} \mu\left(2^{n}, 2^{n+1}\right)=\int_{2^{n}}^{2^{n+1}} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t
$$

Law of the Iterated Logarithm

$\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{1}^{B}=1$ a.s.
- Strategy of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\begin{aligned}
\operatorname{E} \mu\left(2^{n}, 2^{n+1}\right) & =\int_{2^{n}}^{2^{n+1}} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t \\
& =\int_{2^{n}}^{2^{n+1}} \frac{d t}{\log t \sqrt{\log \log t}}
\end{aligned}
$$

Law of the Iterated Logarithm
$\mathscr{L}_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{1}^{B}=1$ a.s.
- Strategy of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\begin{aligned}
E \mu\left(2^{n}, 2^{n+1}\right) & =\int_{2^{n}}^{2^{n+1}} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t \\
& =\int_{2^{n}}^{2^{n+1}} \frac{d t}{\log t \sqrt{\log \log t}}=\frac{2^{n}}{n \sqrt{\log n}}
\end{aligned}
$$

- It turns out that $\mu\left(2^{n}, 2^{n+1}\right)=2^{n} n^{-1}(\log n)^{-1 / 2}$ "for most n^{\prime} s."

Law of the Iterated Logarithm
$x_{c}^{B}:=\{t \geq 8: B(t)>c \sqrt{2 t \log \log t}\}$

- Proposition (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{1}^{B}=1$ a.s.
- Strategy of proof. Let $\mu(G):=|\{t \in G: B(t) \geq \sqrt{2 t \log \log t}\}|$.
- By the Tonelli theorem,

$$
\begin{aligned}
E \mu\left(2^{n}, 2^{n+1}\right) & =\int_{2^{n}}^{2^{n+1}} \mathrm{P}\{B(t) \geq \sqrt{2 t \log \log t}\} d t \\
& =\int_{2^{n}}^{2^{n+1}} \frac{d t}{\log t \sqrt{\log \log t}}=\frac{2^{n}}{n \sqrt{\log n}} .
\end{aligned}
$$

- It turns out that $\mu\left(2^{n}, 2^{n+1}\right)=2^{n} n^{-1}(\log n)^{-1 / 2}$ "for most n^{\prime} s."
- Use $\sum_{n} n^{-1}(\log n)^{-1 / 2}=\infty$ and the def$\frac{\mathrm{n}}{}$ of $\operatorname{Dim}_{\mathrm{H}} \odot$.

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$.

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$.
- We can re-write the LIL times as follows:

$$
\mathscr{L}_{c}^{B}:=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$.
- We can re-write the LIL times as follows:

$$
\mathscr{L}_{c}^{B}:=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$.
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathscr{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{u \geq \log (100): X_{u}>c \sqrt{2 \log u}\right\}
\end{aligned}
$$

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$.
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathcal{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{u \geq \log (100): X_{u}>c \sqrt{2 \log u}\right\} \\
& :=\log \mathscr{L}_{c}^{X} .
\end{aligned}
$$

- We know: \mathscr{L}_{c}^{X} is unbounded iff $c \leq 1$.

Law of the Iterated Logarithm (re-iterated)

- Let $X_{s}:=e^{-s / 2} B\left(e^{s}\right)$. [OU process]
- X is a mean-zero Gaussian diffusion with $\operatorname{Cov}\left(X_{s}, X_{t}\right)=e^{-|t-s| / 2}$.
- We can re-write the LIL times as follows:

$$
\begin{aligned}
\mathcal{L}_{c}^{B} & :=\{t \geq 100: B(t)>c \sqrt{2 t \log \log t}\} \\
& =\log \left\{u \geq \log (100): X_{u}>c \sqrt{2 \log u}\right\} \\
& :=\log \mathscr{L}_{c}^{X} .
\end{aligned}
$$

- We know: \mathscr{L}_{c}^{X} is unbounded iff $c \leq 1$.
- Theorem (K-Kim-Xiao, 2015). $\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathcal{L}_{c}^{X}=1-c^{2}$ a.s. for all $c \in(0,1]$.

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{H / M}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H} / \mathrm{M}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"].

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the O-U process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{H / M}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"].
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes].

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the O-U process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{H / M}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"].
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes].
- The proof of the OU result consists of two bounds:

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the $O-U$ process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{H / M}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"].
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes].
- The proof of the OU result consists of two bounds:
- The upper bound requires a covering argument.

Law of the Iterated Logarithm (re-iterated)

- To recap: If $X:=$ the O-U process and $c \in(0,1]$, then

$$
\operatorname{Dim}_{\mathrm{H} / \mathrm{M}}\left\{t \geq 38: X_{t} \geq c \sqrt{2 \log t}\right\}=1-c^{2} \quad \text { a.s. }
$$

- The preceding shows that the tall peaks of the Ornstein-Uhlenbeck process undergo a "separation of scales" [The peak times form a large-scale "multifractal"].
- It is predicted that the solution to a large family of stochastic PDEs should also exhibit separation of scales; we have presented this in two disparate cases [universality classes].
- The proof of the OU result consists of two bounds:
- The upper bound requires a covering argument.
- The lower bound is slightly different from "standard" lower-bound methods

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.
- Goal: $\operatorname{Dim}_{\mathrm{H}} \mathcal{L}_{c}^{X} \geq 1-c^{2}$.

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.
- Goal: $\operatorname{Dim}_{H} \mathscr{L}_{c}^{X} \geq 1-c^{2}$.
- It suffices to consider only the case $c<1$.

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.
- Goal: $\operatorname{Dim}_{H} \mathscr{L}_{c}^{X} \geq 1-c^{2}$.
- It suffices to consider only the case $c<1$.
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell [$2^{n}, 2^{n+1}$) in to equally-spaced disjoint intervals of length $2^{\text {no }}$; you will need $\asymp 2^{n(1-\rho)}$ such subintervals.

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.
- Goal: $\operatorname{Dim}_{H} \mathscr{L}_{c}^{X} \geq 1-c^{2}$.
- It suffices to consider only the case $c<1$.
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell [$2^{n}, 2^{n+1}$) in to equally-spaced disjoint intervals of length $2^{n \rho}$; you will need $=2^{n(1-\rho)}$ such subintervals.
- One can show that a.s. for all n large, \mathscr{L}_{c}^{X} will a.s. intersect all of those subintervals for all n large.

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.
- Goal: $\operatorname{Dim}_{H} \mathscr{L}_{c}^{X} \geq 1-c^{2}$.
- It suffices to consider only the case $c<1$.
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell [$2^{n}, 2^{n+1}$) in to equally-spaced disjoint intervals of length $2^{n \rho}$; you will need $=2^{n(1-\rho)}$ such subintervals.
- One can show that a.s. for all n large, \mathscr{L}_{c}^{X} will a.s. intersect all of those subintervals for all n large.
- Therefore, $\operatorname{Dim}_{\mathrm{M}} \mathscr{L}_{c}^{X} \geq 1-\rho$ for all $\rho \in\left(c^{2}, 1\right)$.

Law of the Iterated Logarithm (re-iterated)

- Recall $X_{t}=e^{-t / 2} B\left(e^{t}\right)$ and $\mathscr{L}_{c}^{X}:=\left\{t \geq 65: X_{t} \geq c \sqrt{2 \log t}\right\}$.
- Goal: $\operatorname{Dim}_{H} \mathscr{L}_{c}^{X} \geq 1-c^{2}$.
- It suffices to consider only the case $c<1$.
- Choose and fix an arbitrary $\rho \in\left(c^{2}, 1\right)$, and subdivide every nth shell [$2^{n}, 2^{n+1}$) in to equally-spaced disjoint intervals of length $2^{n \rho}$; you will need $=2^{n(1-\rho)}$ such subintervals.
- One can show that a.s. for all n large, \mathscr{L}_{c}^{X} will a.s. intersect all of those subintervals for all n large.
- Therefore, $\operatorname{Dim}_{\mathrm{M}} \mathscr{L}_{c}^{X} \geq 1-\rho$ for all $\rho \in\left(c^{2}, 1\right)$.
- The proof of $\operatorname{Dim}_{H} \mathscr{L}_{c}^{X} \geq 1-\rho$ is only slightly more delicate.

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.
- Today we concentrate on 2 special cases only:

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.
- Today we concentrate on 2 special cases only:
- The linear heat equation (LHE): $\sigma(u) \propto 1$ and $u(0, x)=0$;

The Parabolic Anderson Model on \mathbb{R}

- Consider PAM on $\mathbb{R}: \xi:=$ space-time white noise;

$$
\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x) \quad[t>0, x \in \mathbb{R}] ;
$$

- subject to $u(0, x) \in L^{\infty}(\mathbb{R})$ non random and ≥ 0;
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ Lipschitz continuous and non random.
- Theorem. (Pardoux, 1974/75; Krylov-Rozovskiĭ, 1977; Walsh, 1984; ...) There exists a unique continuous solution.
- Theorem. (Mueller, 1991) If $\sigma(0)=0$ and $u(0, \bullet)>0$ on a set of positive measure, then $u(t, x)>0$ for all $t>0$ and $x \in \mathbb{R}$.
- Today we concentrate on 2 special cases only:
- The linear heat equation (LHE): $\sigma(u) \propto 1$ and $u(0, x)=0$;
- The parabolic Anderson model (PAM): $\sigma(u) \propto u$ and $u(0, x)=1$.

The Stochastic Heat Equation on \mathbb{R}

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.

The Stochastic Heat Equation on \mathbb{R}

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:

The Stochastic Heat Equation on \mathbb{R}

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $u_{0}=0$] is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:
- Intermittency ($t \rightarrow \infty$). Amir-Corwin-Quastel, 2011;

Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001; Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012; Cranston-Molchanov, 2007a, b; Cranston-Mountford-Shiga, 2002, 2005; den Hollander-Greven, 2007; Florescu-Viens, 2006; Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-den Hollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov, 2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova, 2008; Molchanov, 1991... .

The Stochastic Heat Equation on \mathbb{R}

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:
- Intermittency $(t \rightarrow \infty)$. Amir-Corwin-Quastel, 2011;

Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;
Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;
Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002, 2005; den Hollander-Greven, 2007; Florescu-Viens, 2006; Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-den Hollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov, 2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova, 2008; Molchanov, 1991... .

- Chaos $(x \rightarrow \pm \infty)$. Chen, 2014; Conus-Joseph-K, 2013.

The Stochastic Heat Equation on \mathbb{R}

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$

- LHE $\left[\sigma(u)=\lambda\right.$ and $\left.u_{0}=0\right]$ is a GRF and therefore well tempered.
- PAM $\left[\sigma(u)=\lambda u ; u_{0}=1\right]$ is highly complex; the more exposure to the noise, the more difficult to predict its behavior in all possible regimes:
- Intermittency $(t \rightarrow \infty)$. Amir-Corwin-Quastel, 2011;

Bertini-Cancrini, 1994; Carmona-Koralev-Molchanov, 2001;
Carmona-Molchanov, 1994; Carmona-Viens, 1998; Conus-K, 2012;
Cranston-Molchanov, 2007a,b; Cranston-Mountford-Shiga, 2002, 2005; den Hollander-Greven, 2007; Florescu-Viens, 2006; Foondun-K, 2009; Hofstad-König-Mörters, 2006; Gärtner-den Hollander, 2006; Gärtner-König, 2005; Gärtner-König-Molchanov, 2000; Grüninger-König, 2008; König-Lacoin-Mörters-Sidorova, 2008; Molchanov, 1991... .

- Chaos $(x \rightarrow \pm \infty)$. Chen, 2014; Conus-Joseph-K, 2013.
- Nonlinear noise excitation $(\lambda \rightarrow \pm \infty)$. Kim-K, 2015; Foondun-Joseph, 2015.

The Stochastic Heat Equation on $[0,1]$

 $\dot{u}(t, x)=u^{\prime \prime}(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x)$

The Stochastic Heat Equation on $[0,1]$

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=u$ on the left; $\sigma(u)=1$ on the right

The Stochastic Heat Equation on $[0,1]$

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\lambda \sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=10 u$ on the left; $\sigma(u)=10$ on the right

The Stochastic Heat Equation on $[0,1]$

$\dot{u}(t, x)=u^{\prime \prime}(t, x)+\sigma(u(t, x)) \xi(t, x)$ for $(t, x) \in(0, \infty) \times[0,1]$ with Dirichlet BC $u(0, x)=\sin (\pi x) ; \sigma(u)=50 u$ on the left; $\sigma(u)=50$ on the right

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: \quad Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\}
\end{aligned}
$$

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\}
\end{aligned}
$$

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathscr{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\}
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathscr{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\}
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:
- Theorem (K-Kim-Xiao, 2015). With probability one,

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathscr{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\}
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:
- Theorem (K-Kim-Xiao, 2015). With probability one,

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) & {[u(0, x):=1]}
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathscr{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathscr{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:
- Theorem (K-Kim-Xiao, 2015). With probability one,

$$
\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{Z}(t)=1-\frac{\sqrt{\pi}}{2} c^{2}
$$

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: \quad Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\}
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:
- Theorem (K-Kim-Xiao, 2015). With probability one,

$$
\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{Z}(t)=1-\frac{\sqrt{\pi}}{2} c^{2} \quad \operatorname{Dim}_{\mathrm{HM}} \mathscr{L}_{c}^{u}(t)=1-\frac{4 \sqrt{2}}{3} c^{3 / 2}
$$

where $\operatorname{Dim}_{\text {Н/м }}(A)<0$ means A is bounded.

- Much more complexity \exists in space-time [with Kim, 2015+], as predicted in the theoret. physics/Applied Math. literature [Doering-Gibbon, 1995].

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:
- Theorem (K-Kim-Xiao, 2015). With probability one,

$$
\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{Z}(t)=1-\frac{\sqrt{\pi}}{2} c^{2} \quad \operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{u}(t)=1-\frac{4 \sqrt{2}}{3} c^{3 / 2} \quad \text { a.s., }
$$

where $\operatorname{Dim}_{\text {н/м }}(A)<0$ means A is bounded.

- Much more complexity \exists in space-time [with Kim, 2015+], as predicted in the theoret. physics/Applied Math. literature [Doering-Gibbon, 1995].

The Main Results

$$
\begin{array}{ll}
\dot{Z}(t, x)=\frac{1}{2} Z^{\prime \prime}(t, x)+\xi(t, x) & {[Z(0, x)=0]} \\
\dot{u}(t, x)=\frac{1}{2} u^{\prime \prime}(t, x)+u(t, x) \xi(t, x) \quad[u(0, x):=1]
\end{array}
$$

- Natural to think of $h(t, x)=\log u(t, x)$ instead [H-C sol ${ }^{\mathrm{n}}$ to KPZ].
- Define for all $c, t>0$, [Conus-K-Joseph, 2013; Xia Chen, 2014]

$$
\begin{aligned}
\mathcal{L}_{c}^{Z}(t) & :=\left\{x \geq 10: Z(t, x) \geq c t^{1 / 4}[\log x]^{1 / 2}\right\} \\
\mathcal{L}_{c}^{u}(t) & :=\left\{x \geq 10: \log u(t, x) \geq c t^{1 / 3}[\log x]^{2 / 3}\right\} .
\end{aligned}
$$

- Both are "multifractals"; only u is "intermittent." [Re: Lawler, 2012]:
- Theorem (K-Kim-Xiao, 2015). With probability one,

$$
\operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{Z}(t)=1-\frac{\sqrt{\pi}}{2} c^{2} \quad \operatorname{Dim}_{\mathrm{H} / \mathrm{M}} \mathscr{L}_{c}^{u}(t)=1-\frac{4 \sqrt{2}}{3} c^{3 / 2} \quad \text { a.s., }
$$

where $\operatorname{Dim}_{\text {н/м }}(A)<0$ means A is bounded.

- Much more complexity \exists in space-time [with Kim, 2015+], as predicted in the theoret. physics/Applied Math. literature [Doering-Gibbon, 1995].

