An Asymptotic Theory for Randomly-Forced Heat Equations

Davar Khoshnevisan with M. Foondun and E. Nualart
Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

CIMAT
Workshop on ID Processes
March 17-20, 2009
Guanajuato, Mexico

Outline

- The heat equation with random forcing

Outline

- The heat equation with random forcing
- The linear equation and its connections with local times of LP's

Outline

- The heat equation with random forcing
- The linear equation and its connections with local times of LP's
- The nonlinear equation \& intermittency, and their connections with recurrence/transience of LP's

The basic problem

- Let $L:=$ generator of a Lévy process.

The basic problem

- Let $L:=$ generator of a Lévy process.
- $\dot{W}:=$ space-time white noise [roughly speaking a GGRF with $\left.E(\dot{W}(t, x) \dot{W}(s, y))=\delta_{0}(t-s) \delta_{0}(y-x)\right]$.

The basic problem

- Let $L:=$ generator of a Lévy process.
- $\dot{W}:=$ space-time white noise [roughly speaking a GGRF with $\left.E(\dot{W}(t, x) \dot{W}(s, y))=\delta_{0}(t-s) \delta_{0}(y-x)\right]$.
- The nonlinear heat equation for L with forcing \dot{W} :

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+b(u(t, x))+\sigma(u(t, x)) \dot{W}(t, x)
$$

The basic problem

- Let $L:=$ generator of a Lévy process.
- $\dot{W}:=$ space-time white noise [roughly speaking a GGRF with $\left.E(\dot{W}(t, x) \dot{W}(s, y))=\delta_{0}(t-s) \delta_{0}(y-x)\right]$.
- The nonlinear heat equation for L with forcing \dot{W} :

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+b(u(t, x))+\sigma(u(t, x)) \dot{W}(t, x)
$$

- Some questions:

The basic problem

- Let $L:=$ generator of a Lévy process.
- $\dot{W}:=$ space-time white noise [roughly speaking a GGRF with $\left.E(\dot{W}(t, x) \dot{W}(s, y))=\delta_{0}(t-s) \delta_{0}(y-x)\right]$.
- The nonlinear heat equation for L with forcing \dot{W} :

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+b(u(t, x))+\sigma(u(t, x)) \dot{W}(t, x)
$$

- Some questions:
- Existence, uniqueness, and regularity [L versus \dot{W}]?

The basic problem

- Let $L:=$ generator of a Lévy process.
- $\dot{W}:=$ space-time white noise [roughly speaking a GGRF with

$$
\left.E(\dot{W}(t, x) \dot{W}(s, y))=\delta_{0}(t-s) \delta_{0}(y-x)\right] .
$$

- The nonlinear heat equation for L with forcing \dot{W} :

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+b(u(t, x))+\sigma(u(t, x)) \dot{W}(t, x)
$$

- Some questions:
- Existence, uniqueness, and regularity [L versus \dot{W}]?
- Structure of the solution [intermittence]?

The basic problem

- Let $L:=$ generator of a Lévy process.
- $\dot{W}:=$ space-time white noise [roughly speaking a GGRF with

$$
\left.E(\dot{W}(t, x) \dot{W}(s, y))=\delta_{0}(t-s) \delta_{0}(y-x)\right]
$$

- The nonlinear heat equation for L with forcing \dot{W} :

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+b(u(t, x))+\sigma(u(t, x)) \dot{W}(t, x)
$$

- Some questions:
- Existence, uniqueness, and regularity [L versus \dot{W}]?
- Structure of the solution [intermittence]?
- What if \dot{W} is replaced by spatially-colored noise?

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process
- If $\left\{P_{t}\right\}_{t>0}:=$ the semigroup of a Lévy process X, then

$$
L \phi:=\lim _{t \rightarrow 0} \frac{P_{t} \phi-\phi}{t} \quad \text { in } L^{2}\left(\mathbf{R}^{d}\right) \quad \forall \phi \in L^{2}\left(\mathbf{R}^{d}\right)
$$

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process
- If $\left\{P_{t}\right\}_{t>0}:=$ the semigroup of a Lévy process X, then

$$
L \phi:=\lim _{t \rightarrow 0} \frac{P_{t} \phi-\phi}{t} \quad \text { in } L^{2}\left(\mathbf{R}^{d}\right) \quad \forall \phi \in L^{2}\left(\mathbf{R}^{d}\right)
$$

- $\hat{L}=-\Psi$, viz.: $\forall \phi \in \mathscr{S}\left(\mathbf{R}^{d}\right)$,

$$
\widehat{L \phi}=\lim _{t \rightarrow 0} \frac{\widehat{P_{t} \phi}-\hat{\phi}}{t}
$$

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process
- If $\left\{P_{t}\right\}_{t>0}:=$ the semigroup of a Lévy process X, then

$$
L \phi:=\lim _{t \rightarrow 0} \frac{P_{t} \phi-\phi}{t} \quad \text { in } L^{2}\left(\mathbf{R}^{d}\right) \quad \forall \phi \in L^{2}\left(\mathbf{R}^{d}\right)
$$

- $\hat{L}=-\Psi$, viz.: $\forall \phi \in \mathscr{S}\left(\mathbf{R}^{d}\right)$,

$$
\widehat{L \phi}=\lim _{t \rightarrow 0} \frac{\widehat{P_{t} \phi}-\hat{\phi}}{t}
$$

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process
- If $\left\{P_{t}\right\}_{t>0}:=$ the semigroup of a Lévy process X, then

$$
L \phi:=\lim _{t \rightarrow 0} \frac{P_{t} \phi-\phi}{t} \quad \text { in } L^{2}\left(\mathbf{R}^{d}\right) \quad \forall \phi \in L^{2}\left(\mathbf{R}^{d}\right)
$$

- $\hat{L}=-\Psi$, viz.: $\forall \phi \in \mathscr{S}\left(\mathbf{R}^{d}\right)$,

$$
\widehat{L \phi}=\lim _{t \rightarrow 0} \frac{\widehat{P_{t} \phi}-\hat{\phi}}{t}=\lim _{t \rightarrow 0} \frac{e^{-t \psi}-1}{t} \cdot \hat{\phi}
$$

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process
- If $\left\{P_{t}\right\}_{t>0}:=$ the semigroup of a Lévy process X, then

$$
L \phi:=\lim _{t \rightarrow 0} \frac{P_{t} \phi-\phi}{t} \quad \text { in } L^{2}\left(\mathbf{R}^{d}\right) \quad \forall \phi \in L^{2}\left(\mathbf{R}^{d}\right)
$$

- $\hat{L}=-\Psi$, viz.: $\forall \phi \in \mathscr{S}\left(\mathbf{R}^{d}\right)$,

$$
\widehat{L \phi}=\lim _{t \rightarrow 0} \frac{\widehat{P_{t} \phi}-\hat{\phi}}{t}=\lim _{t \rightarrow 0} \frac{e^{-t \psi}-1}{t} \cdot \hat{\phi}=-\psi \cdot \hat{\phi}
$$

The generator of a Lévy process

- Let $L:=$ generator of a Lévy process
- If $\left\{P_{t}\right\}_{t>0}:=$ the semigroup of a Lévy process X, then

$$
L \phi:=\lim _{t \rightarrow 0} \frac{P_{t} \phi-\phi}{t} \quad \text { in } L^{2}\left(\mathbf{R}^{d}\right) \quad \forall \phi \in L^{2}\left(\mathbf{R}^{d}\right)
$$

- $\hat{L}=-\Psi$, viz.: $\forall \phi \in \mathscr{S}\left(\mathbf{R}^{d}\right)$,

$$
\widehat{L \phi}=\lim _{t \rightarrow 0} \frac{\widehat{P_{t} \phi}-\hat{\phi}}{t}=\lim _{t \rightarrow 0} \frac{e^{-t \psi}-1}{t} \cdot \hat{\phi}=-\psi \cdot \hat{\phi}
$$

The heat equation

Kolmogorov's equation

- Want the [fundamental] solution to the heat equation:

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x) \quad \text { s.t. } \quad v(0, x)=\delta_{0}(x)
$$

The heat equation

Kolmogorov's equation

- Want the [fundamental] solution to the heat equation:

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x) \quad \text { s.t. } \quad v(0, x)=\delta_{0}(x)
$$

- Take F.T. [in x]:

$$
\frac{\partial}{\partial t} \hat{v}(t, \xi)=-\Psi(\xi) \cdot \hat{v}(t, \xi) \quad \text { s.t. } \quad \hat{v}(0, \xi)=1
$$

The heat equation

Kolmogorov's equation

- Want the [fundamental] solution to the heat equation:

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x) \quad \text { s.t. } \quad v(0, x)=\delta_{0}(x)
$$

- Take F.T. [in x]:

$$
\frac{\partial}{\partial t} \hat{v}(t, \xi)=-\Psi(\xi) \cdot \hat{v}(t, \xi) \quad \text { s.t. } \quad \hat{v}(0, \xi)=1
$$

- $\therefore \hat{v}(t, \xi)=e^{-t \Psi(\xi)}$, and the solution is measure-valued:

$$
v(t, A):=P\left\{X_{t} \in A\right\}:=P_{t}(A)
$$

The heat equation with forcing

- If $\dot{W}(t, x):=$ external heat at (t, x), then the heat equation with forcing W [space-time white noise] is

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x)+\dot{W}(t, x)
$$

The heat equation with forcing

- If $\dot{W}(t, x):=$ external heat at (t, x), then the heat equation with forcing \dot{W} [space-time white noise] is

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x)+\dot{W}(t, x) .
$$

- $\dot{W}(t, x):=\partial^{d+1} W / \partial t \partial x_{1} \cdots \partial x_{d}$, for a Br. sheet W.

The heat equation with forcing

- If $\dot{W}(t, x):=$ external heat at (t, x), then the heat equation with forcing \dot{W} [space-time white noise] is

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x)+\dot{W}(t, x) .
$$

- $\dot{W}(t, x):=\partial^{d+1} W / \partial t \partial x_{1} \cdots \partial x_{d}$, for a Br. sheet W.
- Interpretation: Multiply by $\phi \in \mathscr{S}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)$:

$$
-(\dot{\phi}, v)=\left(L^{*} \phi, v\right)+\underbrace{\iint \phi(t, x) \dot{W}(t, x) d t d x}_{\int \phi d W} .
$$

The heat equation with forcing

- If $\dot{W}(t, x):=$ external heat at (t, x), then the heat equation with forcing \dot{W} [space-time white noise] is

$$
\frac{\partial}{\partial t} v(t, x)=(L v)(t, x)+\dot{W}(t, x) .
$$

- $\dot{W}(t, x):=\partial^{d+1} W / \partial t \partial x_{1} \cdots \partial x_{d}$, for a Br. sheet W.
- Interpretation: Multiply by $\phi \in \mathscr{S}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)$:

$$
-(\dot{\phi}, v)=\left(L^{*} \phi, v\right)+\underbrace{\iint \phi(t, x) \dot{W}(t, x) d t d x}_{\int \phi d W} .
$$

- Solve by variation of parameters [Duhamel's formula].

The linear heat equation

- Consider

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\dot{W}(t, x) \quad \text { a.s. } \quad u(0, x) \equiv 0
$$

The linear heat equation

- Consider

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\dot{W}(t, x) \quad \text { a.s. } \quad u(0, x) \equiv 0
$$

- The solution is $\left[f(t, \phi):=\int f(t, x) \phi(x) d x \Rightarrow f(t, x)=f\left(t, \delta_{x}\right)\right]$:

$$
u(t, \phi)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left(P_{t-s} \phi\right)(y) W(d y d s)
$$

The linear heat equation

- Consider

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\dot{W}(t, x) \quad \text { a.s. } \quad u(0, x) \equiv 0
$$

- The solution is $\left[f(t, \phi):=\int f(t, x) \phi(x) d x \Rightarrow f(t, x)=f\left(t, \delta_{x}\right)\right]$:

$$
u(t, \phi)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left(P_{t-s} \phi\right)(y) W(d y d s)
$$

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{t-s} \phi\right)(y)\right|^{2} d y d s
$$

The linear heat equation

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{\boldsymbol{s}} \phi\right)(y)\right|^{2} d y d s
$$

The linear heat equation

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{s} \phi\right)(y)\right|^{2} d y d s
$$

- By Plancherel's theorem,

$$
E\left(|u(t, \phi)|^{2}\right)=\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|e^{-s \psi(\xi)} \hat{\phi}(\xi)\right|^{2} d \xi d s
$$

The linear heat equation

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{s} \phi\right)(y)\right|^{2} d y d s
$$

- By Plancherel's theorem,

$$
E\left(|u(t, \phi)|^{2}\right)=\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|e^{-s \psi(\xi)} \hat{\phi}(\xi)\right|^{2} d \xi d s
$$

The linear heat equation

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{s} \phi\right)(y)\right|^{2} d y d s
$$

- By Plancherel's theorem,

$$
\begin{aligned}
E\left(|u(t, \phi)|^{2}\right) & =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|e^{-s \Psi(\xi)} \hat{\phi}(\xi)\right|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2 \operatorname{Re} \Psi(\xi)}|\hat{\phi}(\xi)|^{2} d \xi d s
\end{aligned}
$$

The linear heat equation

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{s} \phi\right)(y)\right|^{2} d y d s
$$

- By Plancherel's theorem,

$$
\begin{aligned}
E\left(|u(t, \phi)|^{2}\right) & =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|e^{-s \Psi(\xi)} \hat{\phi}(\xi)\right|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2 s \operatorname{Re} \Psi(\xi)}|\hat{\phi}(\xi)|^{2} d \xi d s \\
& \asymp \int_{\mathbf{R}^{d}} \frac{|\hat{\phi}(\xi)|^{2}}{1+2 \operatorname{Re} \Psi(\xi)} d \xi .
\end{aligned}
$$

The linear heat equation

- By Wiener's isometry,

$$
E\left(|u(t, \phi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(P_{\boldsymbol{s}} \phi\right)(y)\right|^{2} d y d s
$$

- By Plancherel's theorem,

$$
\begin{aligned}
E\left(|u(t, \phi)|^{2}\right) & =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|e^{-s \Psi(\xi)} \hat{\phi}(\xi)\right|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2 \operatorname{Re} \Psi(\xi)}|\hat{\phi}(\xi)|^{2} d \xi d s \\
& \asymp \int_{\mathbf{R}^{d}} \frac{|\hat{\phi}(\xi)|^{2}}{1+2 \operatorname{Re} \Psi(\xi)} d \xi .
\end{aligned}
$$

- Therefore (Dalang, 1999): the heat equation has function solutions iff $[1+2 \operatorname{Re} \Psi]^{-1} \in L^{1}\left(\mathbf{R}^{d}\right)$.

The linear heat equation
 $\partial_{t} u=L u+\dot{W} \quad u(0, x)=0$

(Dalang, 1999): The linear heat equation has function solutions iff $[1+2 \operatorname{Re} \Psi]^{-1} \in L^{1}\left(\mathbf{R}^{d}\right)$.

Theorem (Foondun-K-Nualart, 2009+) Let $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ by the symmetrization of X.

The linear heat equation

$\partial_{t} u=L u+\dot{W} \quad u(0, x)=0$
(Dalang, 1999): The linear heat equation has function solutions iff $[1+2 \operatorname{Re} \Psi]^{-1} \in L^{1}\left(\mathbf{R}^{d}\right)$.

Theorem (Foondun-K-Nualart, 2009+) Let $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ by the symmetrization of X.

- The linear heat equation has function solutions iff \bar{X} has local times.

The linear heat equation

$\partial_{t} u=L u+\dot{W} \quad u(0, x)=0$
(Dalang, 1999): The linear heat equation has function solutions iff
$[1+2 \operatorname{Re} \Psi]^{-1} \in L^{1}\left(\mathbf{R}^{d}\right)$.
Theorem (Foondun-K-Nualart, 2009+)
Let $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ by the symmetrization of X.

- The linear heat equation has function solutions iff \bar{X} has local times.
- The solution to the linear heat equation is cont. in x iff the local times of \bar{X} are.

The linear heat equation

$\partial_{t} u=L u+\dot{W} \quad u(0, x)=0$
(Dalang, 1999): The linear heat equation has function solutions iff
$[1+2 \operatorname{Re} \Psi]^{-1} \in L^{1}\left(\mathbf{R}^{d}\right)$.
Theorem (Foondun-K-Nualart, 2009+)
Let $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ by the symmetrization of X.

- The linear heat equation has function solutions iff \bar{X} has local times.
- The solution to the linear heat equation is cont. in x iff the local times of \bar{X} are.
- The solution to the linear heat equation is Hölder cont. in x iff the local times of \bar{X} are. And the critical Hölder exponents are the same.

The linear heat equation

$\partial_{t} u=L u+\dot{W} \quad u(0, x)=0$
(Dalang, 1999): The linear heat equation has function solutions iff
$[1+2 \operatorname{Re} \psi]^{-1} \in L^{1}\left(\mathbf{R}^{d}\right)$.
Theorem (Foondun-K-Nualart, 2009+)
Let $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ by the symmetrization of X.

- The linear heat equation has function solutions iff \bar{X} has local times.
- The solution to the linear heat equation is cont. in x iff the local times of \bar{X} are.
- The solution to the linear heat equation is Hölder cont. in x iff the local times of \bar{X} are. And the critical Hölder exponents are the same.

Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)
Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with $u(0, x)=0$. Consider

$$
\begin{equation*}
\frac{\partial}{\partial t} U(t, x)=(L U)(t, x)+b(U(t, x))+\dot{W}(t, x), \tag{1}
\end{equation*}
$$

subject to $U(0, x)=0$. Then, $u-U$ is locally-uniformly bounded and continuous.

Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)
Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with $u(0, x)=0$. Consider

$$
\begin{equation*}
\frac{\partial}{\partial t} U(t, x)=(L U)(t, x)+b(U(t, x))+\dot{W}(t, x), \tag{1}
\end{equation*}
$$

subject to $U(0, x)=0$. Then, $u-U$ is locally-uniformly bounded and continuous.

- Using local-time theory, we can construct u with $\operatorname{Osc} u \equiv \infty$.

Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)
Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with $u(0, x)=0$. Consider

$$
\begin{equation*}
\frac{\partial}{\partial t} U(t, x)=(L U)(t, x)+b(U(t, x))+\dot{W}(t, x), \tag{1}
\end{equation*}
$$

subject to $U(0, x)=0$. Then, $u-U$ is locally-uniformly bounded and continuous.

- Using local-time theory, we can construct u with $\operatorname{Osc} u \equiv \infty$.
- The blowup of u forces the blowup of U.

Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)
Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with $u(0, x)=0$. Consider

$$
\begin{equation*}
\frac{\partial}{\partial t} U(t, x)=(L U)(t, x)+b(U(t, x))+\dot{W}(t, x), \tag{1}
\end{equation*}
$$

subject to $U(0, x)=0$. Then, $u-U$ is locally-uniformly bounded and continuous.

- Using local-time theory, we can construct u with Oscu $\equiv \infty$.
- The blowup of u forces the blowup of U.
- Everything holds if b is locally Lipschitz.

Multiplicative nonlinearities

- The equation

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\sigma(u(t, x)) \dot{W}(t, x)
$$

where:

Multiplicative nonlinearities

- The equation

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\sigma(u(t, x)) \dot{W}(t, x)
$$

where:

- $u(0, x)$ is bounded, measurable, and nonrandom;

Multiplicative nonlinearities

- The equation

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\sigma(u(t, x)) \dot{W}(t, x)
$$

where:

- $u(0, x)$ is bounded, measurable, and nonrandom;
- σ is Lipschitz continuous.

Multiplicative nonlinearities

- The equation

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\sigma(u(t, x)) \dot{W}(t, x)
$$

where:

- $u(0, x)$ is bounded, measurable, and nonrandom;
- σ is Lipschitz continuous.
- The most-studied case (parabolic Anderson model):

$$
L=\kappa \Delta \quad \text { and } \quad \sigma(u)=\lambda u
$$

Multiplicative nonlinearities

- The equation

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\sigma(u(t, x)) \dot{W}(t, x)
$$

where:

- $u(0, x)$ is bounded, measurable, and nonrandom;
- σ is Lipschitz continuous.
- The most-studied case (parabolic Anderson model):

$$
L=\kappa \Delta \quad \text { and } \quad \sigma(u)=\lambda u .
$$

- (Dalang, 1999): If the linear equation $[\sigma \equiv 0]$ has a unique solution, then the nonlinear one does too.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Aka separation of scales; noise on all levels; high peaks; localization; etc

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) W$

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; . . .): Consider the "upper $L^{p}(P)$-Liapounov exponent":

$$
\bar{\gamma}(p):=\limsup _{t \rightarrow \infty} t^{-1} \ln E\left(|u(t, x)|^{p}\right)
$$

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper $L^{p}(P)$-Liapounov exponent":

$$
\bar{\gamma}(p):=\limsup _{t \rightarrow \infty} t^{-1} \ln E\left(|u(t, x)|^{p}\right)
$$

- Convexity: $\bar{\gamma}(p) / p$ is increasing on $p \in[2, \infty)$.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper $L^{p}(P)$-Liapounov exponent":

$$
\bar{\gamma}(p):=\underset{t}{\lim \sup t^{-1} \ln E\left(|u(t, x)|^{p}\right) ~}
$$

- Convexity: $\bar{\gamma}(p) / p$ is increasing on $p \in[2, \infty)$.

Definition
Intermittency: $\bar{\gamma}(p) / p$ is strictly increasing on $[2, \infty)$.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper $L^{p}(P)$-Liapounov exponent":

$$
\bar{\gamma}(p):=\underset{t}{\lim \sup t^{-1} \ln E\left(|u(t, x)|^{p}\right) ~}
$$

- Convexity: $\bar{\gamma}(p) / p$ is increasing on $p \in[2, \infty)$.

Definition
Intermittency: $\bar{\gamma}(p) / p$ is strictly increasing on $[2, \infty)$.
Proposition (Carmona and Molchanov '94)
Intermittency holds if $\bar{\gamma}(2)>0$ and $\bar{\gamma}(p)<\infty$ for all $p \geq 2$.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Suppose the linear equation has a solution.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Suppose the linear equation has a solution.
- The nonlinear one does too.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- $\mathbf{R}=1$, necessarily.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- $\mathbf{R}=1$, necessarily.

Theorem (Foondun-K, '09)

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- $\mathbf{R}=1$, necessarily.

Theorem (Foondun-K, '09)

- Suppose $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ is recurrent and $\lim _{|x| \rightarrow \infty}|\sigma(x) / x|>0$. Then there exists $\eta_{0}>0$ such that if $u(0, x) \geq \eta_{0}$ for all x, then u is intermittent.

[Weak] Intermittency

$\partial_{t} u=L u+\sigma(u) \dot{W}$

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- $\mathbf{R}=1$, necessarily.

Theorem (Foondun-K, '09)

- Suppose $\bar{X}_{t}:=X_{t}-X_{t}^{\prime}$ is recurrent and $\lim _{|x| \rightarrow \infty}|\sigma(x) / x|>0$. Then there exists $\eta_{0}>0$ such that if $u(0, x) \geq \eta_{0}$ for all x, then u is intermittent.
- Suppose \bar{X} is transient. Then for all integers $p \geq 2$ there exists $\delta(p)>0$ such that $\bar{\gamma}(p)=0$ as soon as $\operatorname{Lip}_{\sigma}<\delta(p)$.

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.
- Another physically-important case: u_{0} has compact support.

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.
- Another physically-important case: u_{0} has compact support.
- We know very little in this case.

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.
- Another physically-important case: u_{0} has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

Then, $u(t, \cdot) \in L^{2}\left(\mathbf{R}^{d}\right)$ a.s. for all $t>0$, and

$$
\frac{L_{\sigma}^{2}}{8 \kappa} \leq \limsup _{t \rightarrow \infty} t^{-1} \ln E(\overbrace{x \in \mathbf{R}^{d}}^{\text {Could go out of "E" }}|u(t, x)|^{2}) \leq \frac{L i p_{\sigma}^{2}}{8 \kappa} .
$$

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.
- Another physically-important case: u_{0} has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

- $\dot{u}(t, x)=\kappa u^{\prime \prime}(t, x)+\sigma(u) \dot{W}(t, x) \quad[x \in \mathbf{R}, t>0]^{\prime}$

Then, $u(t, \cdot) \in L^{2}\left(\mathbf{R}^{d}\right)$ a.s. for all $t>0$, and

$$
\frac{L_{\sigma}^{2}}{8 \kappa} \leq \limsup _{t \rightarrow \infty} t^{-1} \ln E(\overbrace{x \in \mathbf{R}^{d}}^{\text {Could go out of " } \mathrm{sen}^{\prime \prime}}|u(t, x)|^{2}) \leq \frac{L i p_{\sigma}^{2}}{8 \kappa} .
$$

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.
- Another physically-important case: u_{0} has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

- $\dot{u}(t, x)=\kappa u^{\prime \prime}(t, x)+\sigma(u) \dot{W}(t, x) \quad[x \in \mathbf{R}, t>0]$ '
- $\sigma:=$ Lipschitz continuous, $\sigma(0)=0$, and $|\sigma(u)| \geq \mathrm{L}_{\sigma}|u|$;

Then, $u(t, \cdot) \in L^{2}\left(\mathbf{R}^{d}\right)$ a.s. for all $t>0$, and

$$
\frac{L_{\sigma}^{2}}{8 \kappa} \leq \limsup _{t \rightarrow \infty} t^{-1} \ln E(\overbrace{\sup _{x \in \mathbf{R}^{d}}^{\text {Could go out of "E" }}}|u(t, x)|^{2}) \leq \frac{\operatorname{Lip}_{\sigma}^{2}}{8 \kappa}
$$

A related question

Proof implies coagulation; related to the replica method

- Best results when u_{0} is bounded below.
- Another physically-important case: u_{0} has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

- $\dot{u}(t, x)=\kappa u^{\prime \prime}(t, x)+\sigma(u) \dot{W}(t, x) \quad[x \in \mathbf{R}, t>0]$ '
- $\sigma:=$ Lipschitz continuous, $\sigma(0)=0$, and $|\sigma(u)| \geq \mathrm{L}_{\sigma}|u|$;
- $u_{0}: \geq \neq 0$; Hölder-continuous of order $\geq 1 / 2$; and supported compactly.

Then, $u(t, \cdot) \in L^{2}\left(\mathbf{R}^{d}\right)$ a.s. for all $t>0$, and

$$
\frac{L_{\sigma}^{2}}{8 \kappa} \leq \limsup _{t \rightarrow \infty} t^{-1} \ln E(\overbrace{\sup _{x \in \mathbf{R}^{d}}^{\text {Could go out of "E" }}}|u(t, x)|^{2}) \leq \frac{L i p_{\sigma}^{2}}{8 \kappa}
$$

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x)
$$

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x)
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x)
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(d x) \ll d x$.

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x)
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(d x) \ll d x$.
- Examples of interest:

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x) .
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(d x) \ll d x$.
- Examples of interest:
- [OU] $f(x)=c \exp \left(-c^{\prime}\|x\|^{\alpha}\right)$ for $\alpha \in(0,2]$.

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x) .
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(d x) \ll d x$.
- Examples of interest:
- [OU] $f(x)=c \exp \left(-c^{\prime}\|x\|^{\alpha}\right)$ for $\alpha \in(0,2]$.
- [Poisson] $f(x)=c\left\{\|x\|^{2}+c^{\prime}\right\}^{-(d+1) / 2}$.

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x) .
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(d x) \ll d x$.
- Examples of interest:
- [OU] $f(x)=c \exp \left(-c^{\prime}\|x\|^{\alpha}\right)$ for $\alpha \in(0,2]$.
- [Poisson] $f(x)=c\left\{\|x\|^{2}+c^{\prime}\right\}^{-(d+1) / 2}$.
- [Cauchy] $f(x)=c \prod_{j=1}^{d}\left\{1+x_{j}^{2}\right\}^{-1}$.

Other related questions

- In stat. mech. one might want to replace white noise \dot{W} with colored noise \dot{F}
- Roughly speaking, we want \dot{F} to be a GGRF with

$$
E(\dot{F}(t, x) \dot{F}(s, y))=\delta_{0}(t-s) f(y-x) .
$$

- Bochner-Minlos-Schwartz theorem: f is pos. semidef; $f:=\hat{\mu}$ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(d x) \ll d x$.
- Examples of interest:
- [OU] $f(x)=c \exp \left(-c^{\prime}\|x\|^{\alpha}\right)$ for $\alpha \in(0,2]$.
- [Poisson] $f(x)=c\left\{\|x\|^{2}+c^{\prime}\right\}^{-(d+1) / 2}$.
- [Cauchy] $f(x)=c \prod_{j=1}^{d}\left\{1+x_{j}^{2}\right\}^{-1}$.
- [Riesz] $f(x)=c /\|x\|^{\alpha}$ for $\alpha \in(0, d)$.

Assumptions on the noise

- $\hat{f}:=$ a function [spectral density].

Assumptions on the noise

- $\hat{f}:=$ a function [spectral density].
- $f: \mathbf{R}^{d} \rightarrow \overline{\mathbf{R}}$ is continuous.

Assumptions on the noise

- $\hat{f}:=$ a function [spectral density].
- $f: \mathbf{R}^{d} \rightarrow \overline{\mathbf{R}}$ is continuous.
- One of the following holds:

Assumptions on the noise

- $\hat{f}:=$ a function [spectral density].
- $f: \mathbf{R}^{d} \rightarrow \overline{\mathbf{R}}$ is continuous.
- One of the following holds:
- $f(x)<\infty$ iff $x \neq 0$;

Assumptions on the noise

- $\hat{f}:=$ a function [spectral density].
- $f: \mathbf{R}^{d} \rightarrow \overline{\mathbf{R}}$ is continuous.
- One of the following holds:
- $f(x)<\infty$ iff $x \neq 0$;
- $\hat{f} \in L^{\infty}\left(\mathbf{R}^{d}\right)$ and $f(x)<\infty$ if $x \neq 0$.

Assumptions on the noise

- $\hat{f}:=$ a function [spectral density].
- $f: \mathbf{R}^{d} \rightarrow \overline{\mathbf{R}}$ is continuous.
- One of the following holds:
- $f(x)<\infty$ iff $x \neq 0$;
- $\hat{f} \in L^{\infty}\left(\mathbf{R}^{d}\right)$ and $f(x)<\infty$ if $x \neq 0$.

Theorem (Dalang, '99; Nualart \& Quer-Sardanyons, '06; Foondun-K, '10+)
If σ is Lipschitz and $u(0, \cdot)$ is nonrandom and bounded, then

$$
\frac{\partial}{\partial t} u(t, x)=(L u)(t, x)+\sigma(u(t, x)) \dot{F}(t, x)
$$

has a unique solution provided that

$$
\int_{\mathbf{R}^{d}} \frac{\hat{f}(\xi)}{1+2 \operatorname{Re} \Psi(\xi)} d \xi<\infty \quad[i f f, \text { when } \sigma:=\text { const }] \text {. }
$$

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf |x| \rightarrow \infty \quad \sigma(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on ψ and f :

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf \operatorname{lix}_{\mid \rightarrow \infty} \sigma(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf \operatorname{lix}_{\mid \rightarrow \infty} \sigma(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.
- If $\int_{\|\xi\|<1} \hat{f}(\xi)<\operatorname{Re} \Psi(\xi) d \xi<\infty$ and Lip ${ }_{\sigma}$ sufficiently small, then non-intermittency.

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf |x| \rightarrow \infty=\infty(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.
- If $\int_{\|\xi\|<1} \hat{f}(\xi)<\operatorname{Re} \Psi(\xi) d \xi<\infty$ and $L p_{\sigma}$ sufficiently small, then non-intermittency.
- The technical conditions are:

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf { }_{|x| \rightarrow \infty} \sigma(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.
- If $\int_{\|\xi\|<1} \hat{f}(\xi)<\operatorname{Re} \Psi(\xi) d \xi<\infty$ and Lip ${ }_{\sigma}$ sufficiently small, then non-intermittency.
- The technical conditions are:
- $P_{t}(d x) \ll d x$ [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64-65; ...]

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf |x| \rightarrow \infty=\infty(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.
- If $\int_{\|\xi\|<1} \hat{f}(\xi)<\operatorname{Re} \Psi(\xi) d \xi<\infty$ and Lip ${ }_{\sigma}$ sufficiently small, then non-intermittency.
- The technical conditions are:
- $P_{t}(d x) \ll d x$ [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64-65; ...]
- f and ψ are symmetric in all variables;

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf |x| \rightarrow \infty=0$. $\sigma(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on Ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.
- If $\int_{\|\xi\|<1} \hat{f}(\xi)<\operatorname{Re} \Psi(\xi) d \xi<\infty$ and $L p_{\sigma}$ sufficiently small, then non-intermittency.
- The technical conditions are:
- $P_{t}(d x) \ll d x$ [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64-65; ...]
- f and Ψ are symmetric in all variables;
- f is coordinatewise decreasing; and

Intermittency

Theorem (Foondun-K, '10+)
Suppose $\liminf |x| \rightarrow \infty=0$. $\sigma(x) /|x|>0$ and $\int_{\mathbf{R}^{d}} \hat{f}(\xi) /(1+2 \operatorname{Re} \Psi(\xi)) d \xi<\infty$. Under technical conditions on Ψ and f :

- If $\int_{\|\xi\|<1} \hat{f}(\xi) / \operatorname{Re} \Psi(\xi) d \xi=\infty$ and $\inf u_{0}$ is sufficiently large, then intermittency.
- If $\int_{\|\xi\|<1} \hat{f}(\xi)<\operatorname{Re} \Psi(\xi) d \xi<\infty$ and $L p_{\sigma}$ sufficiently small, then non-intermittency.
- The technical conditions are:
- $P_{t}(d x) \ll d x$ [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64-65; ...]
- f and ψ are symmetric in all variables;
- f is coordinatewise decreasing; and
- $u(0, \cdot)>0$ pointwise and $P\{u(t, \cdot)>0\}=1$ [Kotelenez, '92; Manthey-Zausinger, '99; Manthey, '01].

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$. By the inversion theorem, $(3) \Rightarrow(1)+(2)$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$. By the inversion theorem, $(3) \Rightarrow(1)+(2)$. Suppose (1)+(2).

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$. By the inversion theorem, (3) $\Rightarrow(1)+(2)$. Suppose (1)+(2). Let $\breve{f}(x):=f(-x)$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$. By the inversion theorem, (3) $\Rightarrow(1)+(2)$. Suppose (1)+(2). Let $\breve{f}(x):=f(-x)$. The F.T. of $p_{t / 4} * \breve{p}_{t / 4}$ is $\exp (-(t / 2) \operatorname{Re} \psi)$.

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$. By the inversion theorem, (3) $\Rightarrow(1)+(2)$. Suppose (1)+(2). Let $\breve{f}(x):=f(-x)$. The F.T. of $p_{t / 4} * \breve{p}_{t / 4}$ is $\exp (-(t / 2) \operatorname{Re} \psi)$. By Plancherel,

$$
\|\exp (-(t / 2) \operatorname{Re} \psi)\|_{2}^{2}=(2 \pi)^{d}\left\|p_{t / 4} * \breve{p}_{t / 4}\right\|_{2}^{2}
$$

Hawkes' Lemma (early half of '80's)

When is $P_{t}(d x) \ll d x$?

- Lemma. $p_{t}(x)=P_{t}(d x) / d x$; TFAE:

1. $p_{t} \exists$ and is in $L^{2}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
2. $p_{t} \exists$ and is in $L^{\infty}\left(\mathbf{R}^{d}\right)$ for all $t>0$;
3. $\exp (-t \operatorname{Re} \psi) \in L^{1}\left(\mathbf{R}^{d}\right)$ for all $t>0$.

- Proof: Since $\left\|p_{t}\right\|_{2}^{2} \leq\left\|p_{t}\right\|_{\infty},(2) \Rightarrow(1)$. Since $p_{t}=p_{t / 2} * p_{t / 2}$, Young's inequality: $\left\|p_{t}\right\|_{\infty} \leq\left\|p_{t / 2}\right\|_{2}^{2}$; therefore, (1) $\Leftrightarrow(2)$. By the inversion theorem, (3) $\Rightarrow(1)+(2)$. Suppose (1)+(2). Let $\breve{f}(x):=f(-x)$. The F.T. of $p_{t / 4} * \breve{p}_{t / 4}$ is $\exp (-(t / 2) \operatorname{Re} \psi)$. By Plancherel,

$$
\|\exp (-(t / 2) \operatorname{Re} \psi)\|_{2}^{2}=(2 \pi)^{d}\left\|p_{t / 4} * \breve{p}_{t / 4}\right\|_{2}^{2} \leq(2 \pi)^{d}\left\|p_{t / 4} * \breve{p}_{t / 4}\right\|_{\infty} .
$$

\therefore by Young's inequality,

$$
\|\exp (-t \operatorname{Re} \Psi)\|_{1}=\|\exp (-(t / 2) \operatorname{Re} \Psi)\|_{2}^{2} \leq(2 \pi)^{d}\left\|p_{t / 4}\right\|_{2}^{2}
$$

$\therefore(1)+(2) \Rightarrow(3)$.

Concluding remarks

Lemma (Zabczyk, '70)
Suppose X is a radial Lévy process in $d \geq 2$. Then, $P_{t}(d x) \ll d x$ if and only if $\Psi(\xi) \rightarrow \infty$ as $\|\xi\| \rightarrow \infty$.

Concluding remarks

Lemma (Zabczyk, '70)
Suppose X is a radial Lévy process in $d \geq 2$. Then, $P_{t}(d x) \ll d x$ if and only if $\Psi(\xi) \rightarrow \infty$ as $\|\xi\| \rightarrow \infty$.

- If $P_{t}(d x) / d x=p_{t}(x)$, then $\Psi(\xi) \rightarrow \infty$ by the Riemann-Lebesgue lemma. Thus, in this case, the RL lemma is sharp!

Concluding remarks

Lemma (Zabczyk, '70)
Suppose X is a radial Lévy process in $d \geq 2$. Then, $P_{t}(d x) \ll d x$ if and only if $\Psi(\xi) \rightarrow \infty$ as $\|\xi\| \rightarrow \infty$.

- If $P_{t}(d x) / d x=p_{t}(x)$, then $\Psi(\xi) \rightarrow \infty$ by the Riemann-Lebesgue lemma. Thus, in this case, the RL lemma is sharp!
- False if $d=1$.

Concluding remarks

Lemma (Zabczyk, '70)
Suppose X is a radial Lévy process in $d \geq 2$. Then, $P_{t}(d x) \ll d x$ if and only if $\Psi(\xi) \rightarrow \infty$ as $\|\xi\| \rightarrow \infty$.

- If $P_{t}(d x) / d x=p_{t}(x)$, then $\Psi(\xi) \rightarrow \infty$ by the Riemann-Lebesgue lemma. Thus, in this case, the RL lemma is sharp!
- False if $d=1$.
- What are good NASC conditions for $P_{t}(d x) \ll d x$ in terms of Ψ ?

