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» The heat equation with random forcing
» The linear equation and its connections with local times of LP’s

» The nonlinear equation & intermittency, and their connections with
recurrence/transience of LP’s
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Let L := generator of a Lévy process.
W := space-time white noise [roughly speaking a GGRF with

E(W(t,x)W(s,y)) = do(t— 8)dp(y — x)]. .
The nonlinear heat equation for L with forcing W:

v

v

%u(t,x) = (Lu)(t,x) + b(u(t,x)) + o(u(t, x))W(t, x),

v

Some questions:
» Existence, uniqueness, and regularity [L versus W]?
» Structure of the solution [intermittence]?
» What if W is replaced by spatially-colored noise?
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» Want the [fundamental] solution to the heat equation:

Tt 0= (L(tx) st v(0.x) = dolx).

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 5/19



|
The heat equation

Kolmogorov’s equation

» Want the [fundamental] solution to the heat equation:
gtv(t,x) = (Lv)(t,x) s.t. v(0,x)=dp(x).
» Take F.T. [in x]:

S =—W(©)-U(t,) st 70,6 =1.

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 5/19



|
The heat equation

Kolmogorov’s equation

» Want the [fundamental] solution to the heat equation:
gtv(t,x) = (Lv)(t,x) s.t. v(0,x)=dp(x).
» Take F.T. [in x]:

SO =—W(©)-U(t.§) st 10, =1.

> . U(t,€) = e V(9 and the solution is measure-valued:

v(t,A) = P{X; € A} := Py(A).
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> If W(t,x) := external heat at (t, x), then the heat equation with
forcing W [space-time white noise] is

;’tv(t,x) = (Lv)(t,x) + W(t,x).
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I
The heat equation with forcing

> If W(t,x) := external heat at (f, x), then the heat equation with
forcing W [space-time white noise] is

o .
PT: v(t,x) = (Lv)(t,x)+ W(t,x).

> W(t,x):= a9 "W /0tdx; - - Oxg4, for a Br. sheet W.
> Interpretation: Multiply by ¢ € .#(R x RY):

—(¢,v) = (L"¢,v) / o(t, x)W(t,x)dtdx.

Jodw

» Solve by variation of parameters [Duhamel’s formula].
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» Consider

Zu(hx)(Lu)(t,x)qLW(t,x) a.s. u(0,x)=0.
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gtu(t,x) = (Lu)(t,x)+ W(t,x) as. wu(0,x)=0.

» The solutionis [f(t,¢) := [ f(t,x)p(x)dx = f(t,x) = f(t,dx)]:
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The linear heat equation

» Consider

aatu(t x) = (Lu)(t,x)+ W(t,x) as. u(0,x)=0.
» The solutionis [f(,¢) == [ f(t.x)o(x)dx = f(t,x)=1(t.0x)]:

t
ut.0)= [ [ (Prso)y) W(cy as)

» By Wiener’s isometry,

\uz‘ gb / / [(Pi—so)( dyds.
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» By Wiener’s isometry,

\U (t,0) / |(Ps¢)(y)|? dy ds.
Rd
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The linear heat equation

» By Wiener’s isometry,
E (Ju(t.0) / (Ps)(y)|2 dy ds.
Rd
» By Plancherel’s theorem,

E(jut,0)P) = (zjr)d/ot/ad

1 ! 2sRev p 2
- @i ), [ e i) o os
)P

e ¥ O3(c)| dcas

~

/Rd 1+2ReV(¢) dé.

» Therefore (Dalang, 1999): the heat equation has function
solutions iff [1 +2Rew]~' € L'(RY).
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opu=Lu+W  u(0,x)=0

(Dalang, 1999): The linear heat equation has function solutions iff
[1+2ReV]~! ¢ L'(RY).

Theorem (Foondun-K-Nualart, 2009+)
Let X; := X; — X| by the symmetrization of X.
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Let X; := X; — X| by the symmetrization of X.
» The linear heat equation has function solutions iff X has local
times.
> The solution to the linear heat equation is cont. in x iff the local
times of X are.

» The solution to the linear heat equation is Holder cont. in x iff the
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Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)

Suppose b is bounded and Lipschitz continuous, and the linear heat
equation has a function solution u with u(0,x) = 0. Consider

0 .

5 U1, x) = (LU)(t,x) + b(U(t, x)) + W(t, x), (1)
subject to U(0,x) = 0. Then, u — U is locally-uniformly bounded and
continuous.
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Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)

Suppose b is bounded and Lipschitz continuous, and the linear heat
equation has a function solution u with u(0,x) = 0. Consider

0

57Ut X) = (LU)(t,x) + b(U(t, X)) + W(t, ), (1)

subject to U(0,x) = 0. Then, u— U is locally-uniformly bounded and
continuous.

» Using local-time theory, we can construct u with Oscu = cc.
» The blowup of u forces the blowup of U.
» Everything holds if b is locally Lipschitz.
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» u(0,x) is bounded, measurable, and nonrandom;
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I
Multiplicative nonlinearities

» The equation

Ut x) = (Lu)(t, x) + o(u(t,x))W(t,x),

where:

» u(0,x) is bounded, measurable, and nonrandom;
» o is Lipschitz continuous.

» The most-studied case (parabolic Anderson model):

L=rA and o(u)=\u.

» (Dalang, 1999): If the linear equation [¢ = 0] has a unique
solution, then the nonlinear one does too.
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[Weak] Intermittency
o= Lu+o(u)W

» Aka separation of scales; noise on all levels; high peaks;
localization; etc
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» Math definition (Mandelbrot ’74; Zeldovitch et al ’80’s; Molchanov
'91; Carmona-Molchanov '94; Bertini-Cancrini '95;
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» Convexity: 7(p)/p is increasing on p € [2,0).

Definition
Intermittency: 7(p)/p is strictly increasing on [2, c0).
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'91; Carmona-Molchanov '94; Bertini-Cancrini '95;
Carmona-Viens '98; ...): Consider the “upper LP(P)-Liapounov
exponent”:
7(p) = limsupt~"In E (Ju(t,x)[P).

t—o0

» Convexity: 7(p)/p is increasing on p € [2,0).

Definition
Intermittency: 7(p)/p is strictly increasing on [2,c0).

Proposition (Carmona and Molchanov '94)
Intermittency holds if5(2) > 0 and7(p) < oo for all p > 2.
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[Weak] Intermittency
opu = Lu+o(u)W

» Suppose the linear equation has a solution.
» The nonlinear one does too.
» R =1, necessarily.

Theorem (Foondun-K, '09)

» Suppose X; := X; — X is recurrent and im0 |0 (X)/x| > 0.
Then there exists ny > 0 such that if u(0,x) > no for all x, then u is
intermittent.
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[Weak] Intermittency
opu = Lu+o(u)W

» Suppose the linear equation has a solution.
» The nonlinear one does too.
» R =1, necessarily.

Theorem (Foondun-K, '09)

» Suppose X; := X; — X] is recurrent and lim|y| oo [o(X)/Xx| > 0.
Then there exists ny > 0 such that if u(0,x) > no for all x, then u is
intermittent.

» Suppose X is transient. Then for all integers p > 2 there exists
d(p) > 0 such that v(p) = 0 as soon as Lip, < §(p).
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A related question

Proof implies coagulation; related to the replica method

» Best results when ug is bounded below.

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 14/19



|
A related question

Proof implies coagulation; related to the replica method

» Best results when ug is bounded below.
» Another physically-important case: uy has compact support.

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 14/19



|
A related question

Proof implies coagulation; related to the replica method

» Best results when ug is bounded below.
» Another physically-important case: uy has compact support.
» We know very little in this case.

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 14/19



|
A related question

Proof implies coagulation; related to the replica method

» Best results when ug is bounded below.
» Another physically-important case: uy has compact support.
» We know very little in this case.

Theorem (Foondun-K, '09+)

Then, u(t,-) € L?>(RY) a.s. for all t > 0, and

9
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Theorem (Foondun-K, '09+)

» U(t,x) =rU"(t,x)+o(u)W(t,x) [xeR, t>0]
» o := Lipschitz continuous, 0(0) = 0, and |o(u)| > L, |u|;
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Proof implies coagulation; related to the replica method

» Best results when ug is bounded below.
» Another physically-important case: uy has compact support.
» We know very little in this case.

Theorem (Foondun-K, '09+)

> U(t,x)=rU"(t,x)+o(u)W(t,x) [xeR, t>0]

» o := Lipschitz continuous, o(0) = 0, and |o(u)| > L. |u|;

> Up :> 0; Hélder-continuous of order > 1/2; and supported
compacitly.

Then, u(t,-) € L?>(RY) a.s. forall t > 0, and

2 Could go out of “E”

L . = Lj
=2 <limsupt~'InE sup lu(t,x)? | < /pff‘
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> In stat. mech. one might want to replace white noise W with
colored noise F

» Roughly speaking, we want F to be a GGRF with
E (F(t.x)F(s,y)) = do(t = $)f(y = x).

» Bochner—Minlos—Schwartz theorem: f is pos. semidef; f := i for a
tempered measure p [spectral measure]
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v

E ('F(t,x)'F(s,y)) = 5o(t — 8)(y — x).

Bochner—Minlos—Schwartz theorem: f is pos. semidef; f := /i for a
tempered measure p [spectral measure]

We will say a few things about the case that u(dx) < dx.
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> In stat. mech. one might want to replace white noise W with
colored noise F

Roughly speaking, we want F to be a GGRF with

v

E ('F(t,x)'F(s,y)) = 5o(t — 8)(y — x).

Bochner—Minlos—Schwartz theorem: f is pos. semidef; f := /i for a
tempered measure p [spectral measure]
We will say a few things about the case that u(dx) < dx.
Examples of interest:

> [OU] f(x) = cexp(—c||x||*) for a € (0,2].

» [Poisson] f(x) = c{||x||2 + ¢/}~ (@+1)/2,

» [Cauchy] f(x) = CH7:1{1 +x231
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Other related questions

> In stat. mech. one might want to replace white noise W with
colored noise F

Roughly speaking, we want F to be a GGRF with

v

E ('F(t,x)'F(s,y)) = 5o(t — 8)(y — x).

Bochner—Minlos—Schwartz theorem: f is pos. semidef; f := /i for a
tempered measure p [spectral measure]
We will say a few things about the case that u(dx) < dx.
Examples of interest:

» [OU] f(x) = cexp(—¢/||x||*) for a € (0,2].

» [Poisson] f(x) = c{||x||? + ¢/}~ (d+1/2,

> [Cauchy] f(x) = cTTL {1+ x2}~".

» [Riesz] f(x) = c¢/||x||* for « € (0, d).

v

v

\4

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 15/19



I
Assumptions on the noise

» f:= a function [spectral density].
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fo=
f:RY — Ris continuous.
One of the following holds:

>
>
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Assumptions on the noise

f := a function [spectral density].
f:RY9 — R is continuous.
One of the following holds:

» f(X) < coiff x £0;

» fe L~(RY) and f(x) < coif x # 0.

>
»
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Assumptions on the noise

» f:= afunction [spectral density].
» f:RY9 — Ris continuous.
» One of the following holds:
» f(X) < c0iff X #0;
» fe L~(RY and f(x) < coif x # 0.

Theorem (Dalang, '99; Nualart & Quer-Sardanyons, ’06;

Foondun-K, '10+)
If o is Lipschitz and u(0,-) is nonrandom and bounded, then

gtu(t x) = (Lu)(t,x) + o(u(t,x))F(t,x)

has a unique solution provided that

/Rd 1+2fl(?£e)\u(§) d§ < oo [iff, when o := const.
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Intermittency

Theorem (Foondun-K, ’10+)

Suppose liminf|y| .., o(x)/|x| > 0 and [ga f(€)/(1 + 2ReW(¢)) d¢ < .
Under technical conditions on V and f:
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Suppose liminfjy| ., o(x)/|x| > 0 and [gs F(€)/(1 + 2ReW(€)) d¢ < cc.
Under technical conditions on W and f:

> If [HfH -1 f(§)/ReV (&) d€ = oo and inf g is sufficiently large, then
intermittency.
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Suppose liminfjy| ., o(x)/|x| > 0 and [gs F(€)/(1 + 2ReW(€)) d¢ < cc.
Under technical conditions on V and f:
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» The technical conditions are:
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Under technical conditions on V and f:

> f [ey<1 1(6)/ReW(&) d€ = oo andinf ug is sufficiently large, then
intermittency.

> If fIISH < f(¢) < ReW(¢) d¢ < oo and Lip,, sufficiently small, then
non-intermittency.
» The technical conditions are:

» Pi(dx) < dx [Open problem: Hartman-Wintner, '42;
Blum-Rosenblatt, '59; Tucker, '64-65; ...]
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Intermittency

Theorem (Foondun-K, ’10+)

Suppose liminfjy| ., o(x)/|x| > 0 and [gs F(€)/(1 + 2ReW(€)) d¢ < cc.
Under technical conditions on V and f:

> f [ey<1 1(6)/ReW(&) d€ = oo andinf ug is sufficiently large, then
intermittency.

> If f”ﬂ‘ < f(¢) < ReV(¢) d¢ < oo and Lip, sufficiently small, then
non-intermittency.
» The technical conditions are:
» P:(dx) < dx [Open problem: Hartman-Wintner, 42;
Blum-Rosenblatt, '59; Tucker, '64—-65; ...]
» fandV are symmetric in all variables;
» f is coordinatewise decreasing; and
» u(0,-) > 0 pointwise and P{u(t,-) > 0} = 1 [Kotelenez, '92;
Manthey-Zausinger, '99; Manthey, '01].
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Hawkes’ Lemma (early half of ’80’s)
When is P;(dx) < dx?

» Lemma. pi(x) = P:(dx)/dx; TFAE:
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> Proof: Since [|pt[13 < [|pt]leo, (2)=(1). Since pr = py/z * py/2,
Young’s inequality: ||pt||co < ||pt/2H§; therefore, (1)<(2). By the

inversion theorem, (3)=-(1)+(2).
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Hawkes’ Lemma (early half of ’80’s)
When is P;(dx) < dx?

» Lemma. pi(x) = Pi(dx)/dx; TFAE:
1. p3 andis in L2(RY) for all t > 0;
2. pi3andis in L>(RY) for all t > 0;
3. exp(—tReV¥) € L'(RY) for all t > 0.

> Proof: Since [|pt[13 < [|ptlloo (2)=(1). Since pt = py/2 * Py,
Young’s inequality: ||pt||co < ||pt/2H§; therefore, (1)<(2). By the

inversion theorem, (3)=(1)+(2). Suppose (1)+(2). Let

v}

F(x) := f(—x).
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Hawkes’ Lemma (early half of ’80’s)
When is P;(dx) < dx?

» Lemma. pi(x) = Pi(dx)/dx; TFAE:
1. p3 andis in L2(RY) for all t > 0;
2. pi3andis in L>(RY) for all t > 0;
3. exp(—tReV¥) € L'(RY) for all t > 0.

> Proof: Since [|pt[13 < [|ptlloo (2)=(1). Since pt = py/2 * Py,
Young’s inequality: ||pt||co < ||pt/2H§; therefore, (1)<(2). By the

inversion theorem, (3)=(1)+(2). Suppose (1)+(2). Let

v}

f(x) := f(—x). The FT. of p;/4 * Py/4 is exp(—(t/2)ReV).
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3. exp(—tReV¥) € L'(RY) for all t > 0.
> Proof: Since [|pt[13 < [|pt]leo, (2)=(1). Since pr = py/z * py/2,
Young’s inequality: ||pt||co < ||pt/2H§; therefore, (1)<(2). By the

inversion theorem, (3)=-(1)+(2). Suppose (1)+(2). Let

f(x) := f(—x). The FT. of p;/4 * Py/4 is exp(—(t/2)ReV). By
Plancherel,

lexp(—(t/2)ReW) |13 = (21)7||pr/a * ryall3
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Hawkes’ Lemma (early half of ’80’s)
When is P;(dx) < dx?

» Lemma. pi(x) = Pi(dx)/dx; TFAE:
1. p3 andis in L2(RY) for all t > 0;
2. pi3andis in L>(RY) for all t > 0;
3. exp(—tReV¥) € L'(RY) forall t > 0.
> Proof: Since [|pt[13 < [|pt]leo, (2)=(1). Since pr = py/z * py/2,
Young’s inequality: ||pt||co < ||pt/2H§; therefore, (1)<(2). By the
inversion theorem, (3)=(1)+(2). Suppose (1)+(2). Let
f(x) := f(—x). The F.T. of py/q * P/ is exp(—(t/2)ReV). By
Plancherel,

lexp(—(t/2)ReW)|[5 = (27)°||pt/a * Pr/all3 < (27)[10¢/a * Bryallco-
.. by Young’s inequality,

lexp(—tRew)||1 = || exp(—(t/2)ReW)||5 < (27)7||py/a3.
- (M+@)=@3). O
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I
Concluding remarks

Lemma (Zabczyk, '70)

Suppose X is a radial Lévy process ind > 2. Then, Pi(dx) < dx if and
only if W(§) — oo as ||&]| — oc.
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only if W(§) — oo as ||§]| — oo.

» If Pi(dx)/dx = pi(x), then ¥(¢) — oo by the Riemann—-Lebesgue
lemma. Thus, in this case, the RL lemma is sharp!
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I
Concluding remarks

Lemma (Zabczyk, '70)

Suppose X is a radial Lévy process ind > 2. Then, P(dx) < dx if and
only if W(§) — oo as ||§]| — oo.

» If Pi(dx)/dx = pi(x), then V(&) — oo by the Riemann—Lebesgue
lemma. Thus, in this case, the RL lemma is sharp!

» Falseif d =1.

» What are good NASC conditions for P;(dx) < dx in terms of W?
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