An Asymptotic Theory for Randomly-Forced Heat Equations

Davar Khoshnevisan with M. Foondun and E. Nualart

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

CIMAT Workshop on ID Processes March 17–20, 2009 Guanajuato, Mexico

Davar Khoshnevisan (Salt Lake City, Utah)

The heat equation

CIMAT, Guanajuato; 2009 1 / 19

→ ∃ → < ∃ →</p>

< 6 k

Outline

The heat equation with random forcing

Davar Khoshnevisan (Salt Lake City, Utah)

The heat equation

æ

・ロト ・聞 ト ・ ヨト ・ ヨト

Outline

- The heat equation with random forcing
- The linear equation and its connections with local times of LP's

• (10) • (10)

Outline

- The heat equation with random forcing
- The linear equation and its connections with local times of LP's
- The nonlinear equation & intermittency, and their connections with recurrence/transience of LP's

< 回 > < 三 > < 三 >

► Let *L* := generator of a Lévy process.

Davar Khoshnevisan (Salt Lake City, Utah)

- Let L := generator of a Lévy process.
- ► \dot{W} := space-time white noise [roughly speaking a GGRF with $E(\dot{W}(t,x)\dot{W}(s,y)) = \delta_0(t-s)\delta_0(y-x)$].

- Let L := generator of a Lévy process.
- ► \dot{W} := space-time white noise [roughly speaking a GGRF with $E(\dot{W}(t,x)\dot{W}(s,y)) = \delta_0(t-s)\delta_0(y-x)$].
- The nonlinear heat equation for *L* with forcing \hat{W} :

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + b(u(t,x)) + \sigma(u(t,x))\dot{W}(t,x),$$

< 回 > < 三 > < 三 >

- Let L := generator of a Lévy process.
- \dot{W} := space-time white noise [roughly speaking a GGRF with $E(\dot{W}(t,x)\dot{W}(s,y)) = \delta_0(t-s)\delta_0(y-x)$].
- The nonlinear heat equation for *L* with forcing \hat{W} :

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + b(u(t,x)) + \sigma(u(t,x))\dot{W}(t,x),$$

Some questions:

< 回 > < 三 > < 三 >

- Let L := generator of a Lévy process.
- ► \dot{W} := space-time white noise [roughly speaking a GGRF with $E(\dot{W}(t,x)\dot{W}(s,y)) = \delta_0(t-s)\delta_0(y-x)$].
- ► The nonlinear heat equation for *L* with forcing *W*:

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + b(u(t,x)) + \sigma(u(t,x))\dot{W}(t,x),$$

- Some questions:
 - Existence, uniqueness, and regularity [L versus W]?

- Let L := generator of a Lévy process.
- \dot{W} := space-time white noise [roughly speaking a GGRF with $E(\dot{W}(t,x)\dot{W}(s,y)) = \delta_0(t-s)\delta_0(y-x)$].
- ► The nonlinear heat equation for *L* with forcing *W*:

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + b(u(t,x)) + \sigma(u(t,x))\dot{W}(t,x),$$

- Some questions:
 - Existence, uniqueness, and regularity [L versus W]?
 - Structure of the solution [intermittence]?

< 同 ト < 三 ト < 三 ト

- Let L := generator of a Lévy process.
- ► \dot{W} := space-time white noise [roughly speaking a GGRF with $E(\dot{W}(t,x)\dot{W}(s,y)) = \delta_0(t-s)\delta_0(y-x)$].
- The nonlinear heat equation for *L* with forcing \hat{W} :

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + b(u(t,x)) + \sigma(u(t,x))\dot{W}(t,x),$$

- Some questions:
 - Existence, uniqueness, and regularity [L versus W]?
 - Structure of the solution [intermittence]?
 - What if W is replaced by spatially-colored noise?

Let L := generator of a Lévy process

Davar Khoshnevisan (Salt Lake City, Utah)

< 6 k

- Let L := generator of a Lévy process
- ► If {*P*_{*t*}}_{*t*>0} := the semigroup of a Lévy process *X*, then

$$L\phi:=\lim_{t\to 0}rac{P_t\phi-\phi}{t} \qquad ext{in } L^2(\mathbf{R}^d) \quad orall \phi\in L^2(\mathbf{R}^d).$$

4 A N

- Let L := generator of a Lévy process
- ► If {*P*_t}_{t>0} := the semigroup of a Lévy process *X*, then

$$L\phi := \lim_{t \to 0} \frac{P_t \phi - \phi}{t}$$
 in $L^2(\mathbf{R}^d) \quad \forall \phi \in L^2(\mathbf{R}^d).$

• $\hat{L} = -\Psi$, viz.: $\forall \phi \in \mathscr{S}(\mathbf{R}^d)$,

$$\widehat{L\phi} = \lim_{t \to 0} \frac{\widehat{P_t\phi} - \hat{\phi}}{t}$$

4 3 5 4 3

- Let L := generator of a Lévy process
- ► If {*P*_t}_{t>0} := the semigroup of a Lévy process *X*, then

$$L\phi := \lim_{t \to 0} \frac{P_t \phi - \phi}{t}$$
 in $L^2(\mathbf{R}^d)$ $\forall \phi \in L^2(\mathbf{R}^d)$.

•
$$\hat{L} = -\Psi$$
, viz.: $\forall \phi \in \mathscr{S}(\mathbf{R}^d)$,

$$\widehat{L\phi} = \lim_{t \to 0} \frac{\widehat{P_t\phi} - \hat{\phi}}{t}$$

< 🗇 🕨

- Let L := generator of a Lévy process
- ► If {*P*_t}_{t>0} := the semigroup of a Lévy process *X*, then

$$L\phi := \lim_{t \to 0} \frac{P_t \phi - \phi}{t}$$
 in $L^2(\mathbf{R}^d)$ $\forall \phi \in L^2(\mathbf{R}^d)$.

•
$$\hat{L} = -\Psi$$
, viz.: $\forall \phi \in \mathscr{S}(\mathbf{R}^d)$,

$$\widehat{L\phi} = \lim_{t \to 0} \frac{\widehat{P_t\phi} - \hat{\phi}}{t} = \lim_{t \to 0} \frac{e^{-t\Psi} - 1}{t} \cdot \hat{\phi}$$

- Let L := generator of a Lévy process
- ► If {*P*_t}_{t>0} := the semigroup of a Lévy process *X*, then

$$L\phi := \lim_{t \to 0} \frac{P_t \phi - \phi}{t}$$
 in $L^2(\mathbf{R}^d)$ $\forall \phi \in L^2(\mathbf{R}^d)$.

•
$$\hat{L} = -\Psi$$
, viz.: $\forall \phi \in \mathscr{S}(\mathbf{R}^d)$,

$$\widehat{L\phi} = \lim_{t \to 0} \frac{\widehat{P_t\phi} - \hat{\phi}}{t} = \lim_{t \to 0} \frac{e^{-t\Psi} - 1}{t} \cdot \hat{\phi} = -\Psi \cdot \hat{\phi}.$$

- Let L := generator of a Lévy process
- ► If {*P*_t}_{t>0} := the semigroup of a Lévy process *X*, then

$$L\phi := \lim_{t \to 0} \frac{P_t \phi - \phi}{t}$$
 in $L^2(\mathbf{R}^d)$ $\forall \phi \in L^2(\mathbf{R}^d)$.

•
$$\hat{L} = -\Psi$$
, viz.: $\forall \phi \in \mathscr{S}(\mathbf{R}^d)$,

$$\widehat{L\phi} = \lim_{t \to 0} \frac{\widehat{P_t\phi} - \hat{\phi}}{t} = \lim_{t \to 0} \frac{e^{-t\Psi} - 1}{t} \cdot \hat{\phi} = -\Psi \cdot \hat{\phi}.$$

The heat equation Kolmogorov's equation

Want the [fundamental] solution to the heat equation:

$$\frac{\partial}{\partial t}\mathbf{v}(t,x) = (L\mathbf{v})(t,x)$$
 s.t. $\mathbf{v}(0,x) = \delta_0(x)$.

Davar Khoshnevisan (Salt Lake City, Utah)

3 > 4 3

< 6 b

The heat equation Kolmogorov's equation

Want the [fundamental] solution to the heat equation:

$$\frac{\partial}{\partial t}v(t,x) = (Lv)(t,x)$$
 s.t. $v(0,x) = \delta_0(x)$.

► Take F.T. [in x]:

$$\frac{\partial}{\partial t}\hat{\mathbf{v}}(t,\xi) = -\Psi(\xi)\cdot\hat{\mathbf{v}}(t,\xi) \quad \text{s.t.} \quad \hat{\mathbf{v}}(\mathbf{0},\xi) = \mathbf{1}.$$

.

< 6 b

Want the [fundamental] solution to the heat equation:

$$\frac{\partial}{\partial t}v(t,x) = (Lv)(t,x)$$
 s.t. $v(0,x) = \delta_0(x)$.

Take F.T. [in x]:

$$\frac{\partial}{\partial t}\hat{\mathbf{v}}(t,\xi) = -\Psi(\xi)\cdot\hat{\mathbf{v}}(t,\xi) \quad \text{s.t.} \quad \hat{\mathbf{v}}(\mathbf{0},\xi) = \mathbf{1}.$$

• $\therefore \hat{v}(t,\xi) = e^{-t\Psi(\xi)}$, and the solution is measure-valued:

$$\boldsymbol{\nu}(t,\boldsymbol{A}):=\boldsymbol{P}\{\boldsymbol{X}_t\in\boldsymbol{A}\}:=\boldsymbol{P}_t(\boldsymbol{A}).$$

イヨト イモト イモト

If W(t,x) := external heat at (t,x), then the heat equation with forcing W [space-time white noise] is

$$\frac{\partial}{\partial t}v(t,x)=(Lv)(t,x)+\dot{W}(t,x).$$

< 同 ト < 三 ト < 三 ト

If W(t,x) := external heat at (t,x), then the heat equation with forcing W [space-time white noise] is

$$\frac{\partial}{\partial t}v(t,x)=(Lv)(t,x)+\dot{W}(t,x).$$

• $\dot{W}(t,x) := \partial^{d+1} W / \partial t \partial x_1 \cdots \partial x_d$, for a Br. sheet W.

If W(t,x) := external heat at (t,x), then the heat equation with forcing W [space-time white noise] is

$$\frac{\partial}{\partial t}\mathbf{v}(t,\mathbf{x}) = (L\mathbf{v})(t,\mathbf{x}) + \dot{W}(t,\mathbf{x}).$$

- $\dot{W}(t,x) := \partial^{d+1} W / \partial t \partial x_1 \cdots \partial x_d$, for a Br. sheet W.
- ► Interpretation: Multiply by $\phi \in \mathscr{S}(\mathbf{R}_+ \times \mathbf{R}^d)$:

$$-(\dot{\phi}, \mathbf{v}) = (L^*\phi, \mathbf{v}) + \underbrace{\iint \phi(t, x) \dot{W}(t, x) \, dt \, dx}_{\int \phi \, dW}.$$

< ロ > < 同 > < 回 > < 回 >

If W(t,x) := external heat at (t,x), then the heat equation with forcing W [space-time white noise] is

$$\frac{\partial}{\partial t}v(t,x)=(Lv)(t,x)+\dot{W}(t,x).$$

• $\dot{W}(t,x) := \partial^{d+1} W / \partial t \partial x_1 \cdots \partial x_d$, for a Br. sheet W.

► Interpretation: Multiply by $\phi \in \mathscr{S}(\mathbf{R}_+ \times \mathbf{R}^d)$:

$$-(\dot{\phi}, \mathbf{v}) = (L^*\phi, \mathbf{v}) + \underbrace{\iint \phi(t, x) \dot{W}(t, x) \, dt \, dx}_{\int \phi \, dW}.$$

Solve by variation of parameters [Duhamel's formula].

► Consider

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \dot{W}(t,x)$$
 a.s. $u(0,x) \equiv 0$.

Davar Khoshnevisan (Salt Lake City, Utah)

2

・ロト ・聞 ト ・ ヨト ・ ヨト

Consider

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \dot{W}(t,x)$$
 a.s. $u(0,x) \equiv 0$.

• The solution is $[f(t, \phi) := \int f(t, x)\phi(x) dx \Rightarrow f(t, x) = f(t, \delta_x)]$:

$$u(t,\phi) = \int_0^t \int_{\mathbf{R}^d} (P_{t-s}\phi)(y) \, W(dy \, ds).$$

Davar Khoshnevisan (Salt Lake City, Utah)

э

Consider

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \dot{W}(t,x)$$
 a.s. $u(0,x) \equiv 0$.

• The solution is $[f(t, \phi) := \int f(t, x)\phi(x) \, dx \Rightarrow f(t, x) = f(t, \delta_x)]$:

$$u(t,\phi) = \int_0^t \int_{\mathbf{R}^d} (\mathbf{P}_{t-s}\phi)(\mathbf{y}) \, W(d\mathbf{y} \, d\mathbf{s}).$$

By Wiener's isometry,

$$E\left(|u(t,\phi)|^2\right) = \int_0^t \int_{\mathbf{R}^d} |(P_{t-s}\phi)(y)|^2 \, dy \, ds.$$

By Wiener's isometry,

$$E\left(\left|u(t,\phi)\right|^{2}\right) = \int_{0}^{t} \int_{\mathbf{R}^{d}} \left|(P_{\boldsymbol{s}}\phi)(y)\right|^{2} dy ds.$$

Davar Khoshnevisan (Salt Lake City, Utah)

By Wiener's isometry,

$$E\left(|u(t,\phi)|^2\right) = \int_0^t \int_{\mathbf{R}^d} |(P_{\mathbf{s}}\phi)(y)|^2 \, dy \, ds.$$

► By Plancherel's theorem,

$$E\left(\left|u(t,\phi)\right|^{2}\right) = \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} \left|e^{-s\Psi(\xi)}\hat{\phi}(\xi)\right|^{2} d\xi \, ds$$

.

< 🗇 🕨

By Wiener's isometry,

$$E\left(|u(t,\phi)|^2\right) = \int_0^t \int_{\mathbf{R}^d} |(P_{\mathbf{s}}\phi)(y)|^2 \, dy \, ds.$$

By Plancherel's theorem,

$$E\left(\left|u(t,\phi)\right|^{2}\right) = \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} \left|e^{-s\Psi(\xi)}\hat{\phi}(\xi)\right|^{2} d\xi \, ds$$

< 同 ト < 三 ト < 三 ト

By Wiener's isometry,

$$E\left(|u(t,\phi)|^2\right) = \int_0^t \int_{\mathbf{R}^d} \left|(P_{\boldsymbol{s}}\phi)(\boldsymbol{y})\right|^2 \, d\boldsymbol{y} \, d\boldsymbol{s}.$$

By Plancherel's theorem,

$$E\left(\left|u(t,\phi)\right|^{2}\right) = \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} \left|e^{-s\Psi(\xi)}\hat{\phi}(\xi)\right|^{2} d\xi \, ds$$
$$= \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2s\operatorname{Re}\Psi(\xi)} |\hat{\phi}(\xi)|^{2} \, d\xi \, ds$$

→ ∃ → < ∃ →</p>

< 🗇 🕨

By Wiener's isometry,

$$E\left(|u(t,\phi)|^2\right) = \int_0^t \int_{\mathbf{R}^d} |(P_{\mathbf{s}}\phi)(y)|^2 \, dy \, ds.$$

By Plancherel's theorem,

$$\begin{split} E\left(\left|u(t,\phi)\right|^{2}\right) &= \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} \left|e^{-s\Psi(\xi)}\hat{\phi}(\xi)\right|^{2} d\xi \, ds \\ &= \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2s\operatorname{Re}\Psi(\xi)} \left|\hat{\phi}(\xi)\right|^{2} d\xi \, ds \\ &\asymp \int_{\mathbf{R}^{d}} \frac{\left|\hat{\phi}(\xi)\right|^{2}}{1+2\operatorname{Re}\Psi(\xi)} \, d\xi. \end{split}$$

< 同 ト < 三 ト < 三 ト

By Wiener's isometry,

$$E\left(|u(t,\phi)|^2\right) = \int_0^t \int_{\mathbf{R}^d} |(P_{\mathbf{s}}\phi)(y)|^2 \, dy \, ds.$$

By Plancherel's theorem,

$$\begin{split} E\left(\left|u(t,\phi)\right|^{2}\right) &= \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} \left|e^{-s\Psi(\xi)}\hat{\phi}(\xi)\right|^{2} d\xi \, ds \\ &= \frac{1}{(2\pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2s\operatorname{Re}\Psi(\xi)} |\hat{\phi}(\xi)|^{2} \, d\xi \, ds \\ &\asymp \int_{\mathbf{R}^{d}} \frac{|\hat{\phi}(\xi)|^{2}}{1+2\operatorname{Re}\Psi(\xi)} \, d\xi. \end{split}$$

► Therefore (Dalang, 1999): the heat equation has function solutions iff [1 + 2ReΨ]⁻¹ ∈ L¹(R^d).

8/19

Davar Khoshnevisan (Salt Lake City, Utah)

The heat equation

The linear heat equation $\partial_t u = Lu + \dot{W}$ u(0, x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff $[1 + 2Re\Psi]^{-1} \in L^1(\mathbf{R}^d)$.

Theorem (Foondun-K-Nualart, 2009+) Let $\bar{X}_t := X_t - X'_t$ by the symmetrization of X.

< 回 > < 三 > < 三 >

The linear heat equation $\partial_t u = Lu + \dot{W}$ u(0, x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff $[1 + 2Re\Psi]^{-1} \in L^1(\mathbf{R}^d)$.

Theorem (Foondun-K-Nualart, 2009+)

Let $\bar{X}_t := X_t - X'_t$ by the symmetrization of X.

The linear heat equation has function solutions iff X
 has local times.

< 回 > < 三 > < 三 >
The linear heat equation $\partial_t u = Lu + \dot{W}$ u(0, x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff $[1 + 2Re\Psi]^{-1} \in L^1(\mathbf{R}^d)$.

Theorem (Foondun-K-Nualart, 2009+)

Let $\bar{X}_t := X_t - X'_t$ by the symmetrization of X.

- The linear heat equation has function solutions iff X
 has local times.
- ► The solution to the linear heat equation is cont. in x iff the local times of X are.

< 回 > < 三 > < 三 >

The linear heat equation $\partial_t u = Lu + \dot{W}$ u(0, x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff $[1 + 2Re\Psi]^{-1} \in L^1(\mathbf{R}^d)$.

Theorem (Foondun-K-Nualart, 2009+)

Let $\bar{X}_t := X_t - X'_t$ by the symmetrization of X.

- The linear heat equation has function solutions iff X
 has local times.
- The solution to the linear heat equation is cont. in x iff the local times of X are.
- ► The solution to the linear heat equation is Hölder cont. in x iff the local times of X are. And the critical Hölder exponents are the same.

The linear heat equation $\partial_t u = Lu + \dot{W}$ u(0, x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff $[1 + 2Re\Psi]^{-1} \in L^1(\mathbf{R}^d)$.

Theorem (Foondun-K-Nualart, 2009+)

Let $\bar{X}_t := X_t - X'_t$ by the symmetrization of X.

- The linear heat equation has function solutions iff X
 has local times.
- The solution to the linear heat equation is cont. in x iff the local times of X are.
- The solution to the linear heat equation is Hölder cont. in x iff the local times of X are. And the critical Hölder exponents are the same.

. . .

э

Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with u(0,x) = 0. Consider

$$\frac{\partial}{\partial t}U(t,x) = (LU)(t,x) + b(U(t,x)) + \dot{W}(t,x), \tag{1}$$

subject to U(0, x) = 0. Then, u - U is locally-uniformly bounded and continuous.

Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with u(0, x) = 0. Consider

$$\frac{\partial}{\partial t}U(t,x) = (LU)(t,x) + b(U(t,x)) + \dot{W}(t,x), \tag{1}$$

subject to U(0, x) = 0. Then, u - U is locally-uniformly bounded and continuous.

• Using local-time theory, we can construct u with $Oscu \equiv \infty$.

4 3 5 4 3 5 5

Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with u(0, x) = 0. Consider

$$\frac{\partial}{\partial t}U(t,x) = (LU)(t,x) + b(U(t,x)) + \dot{W}(t,x), \tag{1}$$

subject to U(0, x) = 0. Then, u - U is locally-uniformly bounded and continuous.

- Using local-time theory, we can construct *u* with $Oscu \equiv \infty$.
- ► The blowup of *u* forces the blowup of *U*.

Suppose b is bounded and Lipschitz continuous, and the linear heat equation has a function solution u with u(0, x) = 0. Consider

$$\frac{\partial}{\partial t}U(t,x) = (LU)(t,x) + b(U(t,x)) + \dot{W}(t,x), \tag{1}$$

subject to U(0, x) = 0. Then, u - U is locally-uniformly bounded and continuous.

- Using local-time theory, we can construct *u* with $Oscu \equiv \infty$.
- ► The blowup of *u* forces the blowup of *U*.
- Everything holds if *b* is locally Lipschitz.

► The equation

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \sigma(u(t,x))\dot{W}(t,x),$$

where:

2

Davar Khoshnevisan (Salt Lake City, Utah)

The heat equation

CIMAT, Guanajuato; 2009 11 / 19

The equation

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \sigma(u(t,x))\dot{W}(t,x),$$

where:

• u(0, x) is bounded, measurable, and nonrandom;

A (10) A (10) A (10)

The equation

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \sigma(u(t,x))\dot{W}(t,x),$$

where:

- u(0, x) is bounded, measurable, and nonrandom;
- σ is Lipschitz continuous.

(4) (5) (4) (5)

< 6 b

The equation

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \sigma(u(t,x))\dot{W}(t,x),$$

where:

- u(0, x) is bounded, measurable, and nonrandom;
- σ is Lipschitz continuous.
- The most-studied case (parabolic Anderson model):

$$L = \kappa \Delta$$
 and $\sigma(u) = \lambda u$.

< 回 ト < 三 ト < 三

The equation

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \sigma(u(t,x))\dot{W}(t,x),$$

where:

- u(0, x) is bounded, measurable, and nonrandom;
- σ is Lipschitz continuous.
- The most-studied case (parabolic Anderson model):

$$L = \kappa \Delta$$
 and $\sigma(u) = \lambda u$.

► (Dalang, 1999): If the linear equation [σ ≡ 0] has a unique solution, then the nonlinear one does too.

11/19

 Aka separation of scales; noise on all levels; high peaks; localization; etc

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper L^p(P)-Liapounov exponent":

$$\overline{\gamma}(p) := \limsup_{t \to \infty} t^{-1} \ln E\left(|u(t,x)|^p
ight).$$

< ロ > < 同 > < 回 > < 回 >

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper L^p(P)-Liapounov exponent":

$$\overline{\gamma}(p) := \limsup_{t \to \infty} t^{-1} \ln E\left(\left| u(t,x) \right|^p \right).$$

• Convexity: $\overline{\gamma}(p)/p$ is increasing on $p \in [2, \infty)$.

< ロ > < 同 > < 回 > < 回 >

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper L^p(P)-Liapounov exponent":

$$\overline{\gamma}(p) := \limsup_{t \to \infty} t^{-1} \ln E\left(\left| u(t,x) \right|^p
ight).$$

• Convexity: $\overline{\gamma}(p)/p$ is increasing on $p \in [2, \infty)$.

Definition Intermittency: $\overline{\gamma}(\rho)/\rho$ is strictly increasing on [2, ∞).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Aka separation of scales; noise on all levels; high peaks; localization; etc
- Math definition (Mandelbrot '74; Zeldovitch et al '80's; Molchanov '91; Carmona-Molchanov '94; Bertini-Cancrini '95; Carmona-Viens '98; ...): Consider the "upper L^p(P)-Liapounov exponent":

$$\overline{\gamma}(\boldsymbol{\rho}) := \limsup_{t \to \infty} t^{-1} \ln E\left(\left| u(t, x) \right|^{\boldsymbol{\rho}}
ight).$$

• Convexity: $\overline{\gamma}(p)/p$ is increasing on $p \in [2,\infty)$.

Definition

Intermittency: $\overline{\gamma}(p)/p$ is strictly increasing on $[2,\infty)$.

Proposition (Carmona and Molchanov '94) Intermittency holds if $\overline{\gamma}(2) > 0$ and $\overline{\gamma}(p) < \infty$ for all $p \ge 2$.

Suppose the linear equation has a solution.

Davar Khoshnevisan (Salt Lake City, Utah)

- Suppose the linear equation has a solution.
- ► The nonlinear one does too.

Davar Khoshnevisan (Salt Lake City, Utah)

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- ▶ **R** = 1, necessarily.

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- R = 1, necessarily.

Theorem (Foondun-K, '09)

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- $\mathbf{R} = 1$, necessarily.

Theorem (Foondun-K, '09)

• Suppose $\bar{X}_t := X_t - X'_t$ is recurrent and $\lim_{|x|\to\infty} |\sigma(x)/x| > 0$. Then there exists $\eta_0 > 0$ such that if $u(0, x) \ge \eta_0$ for all x, then u is intermittent.

- Suppose the linear equation has a solution.
- The nonlinear one does too.
- $\mathbf{R} = 1$, necessarily.

Theorem (Foondun-K, '09)

- Suppose X
 _t := X_t − X'_t is recurrent and lim_{|x|→∞} |σ(x)/x| > 0. Then there exists η₀ > 0 such that if u(0, x) ≥ η₀ for all x, then u is intermittent.
- Suppose \overline{X} is transient. Then for all integers $p \ge 2$ there exists $\delta(p) > 0$ such that $\overline{\gamma}(p) = 0$ as soon as $Lip_{\sigma} < \delta(p)$.

< ロ > < 同 > < 回 > < 回 >

Proof implies coagulation; related to the replica method

▶ Best results when *u*⁰ is bounded below.

Davar Khoshnevisan (Salt Lake City, Utah)

The heat equation

< 6 b

Proof implies coagulation; related to the replica method

- Best results when u_0 is bounded below.
- ► Another physically-important case: *u*₀ has compact support.

Proof implies coagulation; related to the replica method

- Best results when u_0 is bounded below.
- Another physically-important case: u_0 has compact support.
- We know very little in this case.

Proof implies coagulation; related to the replica method

- Best results when u_0 is bounded below.
- ► Another physically-important case: *u*₀ has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

Then, $u(t, \cdot) \in L^2(\mathbf{R}^d)$ a.s. for all t > 0, and

$$\frac{L_{\sigma}^2}{8\kappa} \leq \limsup_{t \to \infty} t^{-1} \ln E \begin{pmatrix} \text{Could go out of "E"} \\ \sup_{x \in \mathbb{R}^d} |u(t,x)|^2 \end{pmatrix} \leq \frac{Lip_{\sigma}^2}{8\kappa}.$$

Davar Khoshnevisan (Salt Lake City, Utah)

The heat equation

Proof implies coagulation; related to the replica method

- Best results when u_0 is bounded below.
- Another physically-important case: *u*₀ has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

► $\dot{u}(t,x) = \kappa u''(t,x) + \sigma(u)\dot{W}(t,x)$ $[x \in \mathbf{R}, t > 0]'$

Then, $u(t, \cdot) \in L^2(\mathbf{R}^d)$ a.s. for all t > 0, and

Davar Khoshnevisan (Salt Lake City, Utah)

Proof implies coagulation; related to the replica method

- Best results when u_0 is bounded below.
- Another physically-important case: u_0 has compact support.
- We know very little in this case.

Theorem (Foondun-K, '09+)

$$\dot{u}(t,x) = \kappa u''(t,x) + \sigma(u) \dot{W}(t,x) \qquad [x \in \mathbf{R}, t > 0]'$$

• $\sigma := Lipschitz \ continuous, \ \sigma(0) = 0, \ and \ |\sigma(u)| \ge L_{\sigma}|u|;$

Then, $u(t, \cdot) \in L^2(\mathbf{R}^d)$ a.s. for all t > 0, and

Proof implies coagulation; related to the replica method

- Best results when u_0 is bounded below.
- Another physically-important case: *u*₀ has compact support.
- We know very little in this case.
- Theorem (Foondun-K, '09+)
 - $\flat \ \dot{u}(t,x) = \kappa u''(t,x) + \sigma(u) \dot{W}(t,x) \qquad [x \in \mathbf{R}, t > 0]'$
 - $\sigma := Lipschitz \ continuous, \ \sigma(0) = 0, \ and \ |\sigma(u)| \ge L_{\sigma}|u|;$
 - u₀ :≥_≠ 0; Hölder-continuous of order ≥ 1/2; and supported compactly.

Then, $u(t, \cdot) \in L^2(\mathbf{R}^d)$ a.s. for all t > 0, and

In stat. mech. one might want to replace white noise W with colored noise F

Davar Khoshnevisan (Salt Lake City, Utah)

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

< 6 b

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := μ̂ for a tempered measure μ [spectral measure]

不同 トイモトイモ

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

- Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := μ̂ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(dx) \ll dx$.

A D N A B N A B N A B N

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

- Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := μ̂ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(dx) \ll dx$.
- Examples of interest:

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

- Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := μ̂ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(dx) \ll dx$.
- Examples of interest:
 - [OU] $f(x) = c \exp(-c' \|x\|^{\alpha})$ for $\alpha \in (0, 2]$.

< ロ > < 同 > < 回 > < 回 >
Other related questions

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

- Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := μ̂ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(dx) \ll dx$.
- Examples of interest:
 - [OU] $f(x) = c \exp(-c' ||x||^{\alpha})$ for $\alpha \in (0, 2]$.
 - [Poisson] $f(x) = c\{||x||^2 + c'\}^{-(d+1)/2}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Other related questions

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

- Bochner–Minlos–Schwartz theorem: *f* is pos. semidef; *f* := μ̂ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(dx) \ll dx$.
- Examples of interest:
 - [OU] $f(x) = c \exp(-c' ||x||^{\alpha})$ for $\alpha \in (0, 2]$.
 - [Poisson] $f(x) = c\{||x||^2 + c'\}^{-(d+1)/2}$.
 - [Cauchy] $f(x) = c \prod_{j=1}^{d} \{1 + x_j^2\}^{-1}$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Other related questions

- In stat. mech. one might want to replace white noise W with colored noise F
- Roughly speaking, we want \dot{F} to be a GGRF with

$$E\left(\dot{F}(t,x)\dot{F}(s,y)\right) = \delta_0(t-s)f(y-x).$$

- Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := μ̂ for a tempered measure μ [spectral measure]
- We will say a few things about the case that $\mu(dx) \ll dx$.
- Examples of interest:
 - [OU] $f(x) = c \exp(-c' ||x||^{\alpha})$ for $\alpha \in (0, 2]$.
 - [Poisson] $f(x) = c\{||x||^2 + c'\}^{-(d+1)/2}$.
 - [Cauchy] $f(x) = c \prod_{j=1}^{d} \{1 + x_j^2\}^{-1}$.
 - [Riesz] $f(x) = c/||x||^{\alpha}$ for $\alpha \in (0, d)$.

15/19

• $\hat{f} := a$ function [spectral density].

Davar Khoshnevisan (Salt Lake City, Utah)

- $\hat{f} :=$ a function [spectral density].
- $f : \mathbf{R}^d \to \overline{\mathbf{R}}$ is continuous.

A (10) A (10) A (10)

- $\hat{f} := a$ function [spectral density].
- $f : \mathbf{R}^d \to \bar{\mathbf{R}}$ is continuous.
- One of the following holds:

- $\hat{f} := a$ function [spectral density].
- $f : \mathbf{R}^d \to \bar{\mathbf{R}}$ is continuous.
- One of the following holds:
 - $f(x) < \infty$ iff $x \neq 0$;

- $\hat{f} := a$ function [spectral density].
- $f : \mathbf{R}^d \to \bar{\mathbf{R}}$ is continuous.
- One of the following holds:
 - $f(x) < \infty$ iff $x \neq 0$;
 - $\hat{f} \in L^{\infty}(\mathbf{R}^d)$ and $f(x) < \infty$ if $x \neq 0$.

- $\hat{f} := a$ function [spectral density].
- $f : \mathbf{R}^d \to \bar{\mathbf{R}}$ is continuous.
- One of the following holds:
 - $f(x) < \infty$ iff $x \neq 0$;
 - $\hat{f} \in L^{\infty}(\mathbf{R}^d)$ and $f(x) < \infty$ if $x \neq 0$.

Theorem (Dalang, '99; Nualart & Quer-Sardanyons, '06; Foondun-K, '10+)

If σ is Lipschitz and $u(0\,,\cdot)$ is nonrandom and bounded, then

$$\frac{\partial}{\partial t}u(t,x) = (Lu)(t,x) + \sigma(u(t,x))\dot{F}(t,x)$$

has a unique solution provided that

$$\int_{\mathbf{R}^d} \frac{\hat{f}(\xi)}{1+2Re\Psi(\xi)} \, d\xi < \infty$$

[*iff, when* $\sigma := const$].

16/19

Theorem (Foondun-K, '10+) Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1+2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

If ∫_{||ξ||<1} f(ξ)/ReΨ(ξ) dξ = ∞ and inf u₀ is sufficiently large, then intermittency.

< 回 > < 三 > < 三 >

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

- If $\int_{\|\xi\| < 1} \hat{f}(\xi) / Re\Psi(\xi) d\xi = \infty$ and $\inf u_0$ is sufficiently large, then intermittency.
- If ∫_{||ξ||<1} f(ξ) < ReΨ(ξ) dξ < ∞ and Lip_σ sufficiently small, then non-intermittency.

< 回 > < 三 > < 三 >

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

- If $\int_{\|\xi\| < 1} \hat{f}(\xi) / Re\Psi(\xi) d\xi = \infty$ and $\inf u_0$ is sufficiently large, then intermittency.
- If ∫_{||ξ||<1} f(ξ) < ReΨ(ξ) dξ < ∞ and Lip_σ sufficiently small, then non-intermittency.
- ► The technical conditions are:

< 回 > < 三 > < 三 >

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

- If $\int_{\|\xi\| < 1} \hat{f}(\xi) / Re\Psi(\xi) d\xi = \infty$ and $\inf u_0$ is sufficiently large, then intermittency.
- If ∫_{||ξ||<1} f(ξ) < ReΨ(ξ) dξ < ∞ and Lip_σ sufficiently small, then non-intermittency.
- The technical conditions are:
 - P_t(dx) ≪ dx [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64–65; ...]

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

- If $\int_{\|\xi\| < 1} \hat{f}(\xi) / Re\Psi(\xi) d\xi = \infty$ and $\inf u_0$ is sufficiently large, then intermittency.
- If ∫_{||ξ||<1} f(ξ) < ReΨ(ξ) dξ < ∞ and Lip_σ sufficiently small, then non-intermittency.
- The technical conditions are:
 - P_t(dx) ≪ dx [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64–65; ...]
 - f and Ψ are symmetric in all variables;

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

- If $\int_{\|\xi\| < 1} \hat{f}(\xi) / Re\Psi(\xi) d\xi = \infty$ and $\inf u_0$ is sufficiently large, then intermittency.
- If ∫_{||ξ||<1} f(ξ) < ReΨ(ξ) dξ < ∞ and Lip_σ sufficiently small, then non-intermittency.

The technical conditions are:

- P_t(dx) ≪ dx [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64–65; ...]
- f and Ψ are symmetric in all variables;
- f is coordinatewise decreasing; and

Theorem (Foondun-K, '10+)

Suppose $\liminf_{|x|\to\infty} \sigma(x)/|x| > 0$ and $\int_{\mathbf{R}^d} \hat{f}(\xi)/(1 + 2Re\Psi(\xi)) d\xi < \infty$. Under technical conditions on Ψ and f:

- If $\int_{\|\xi\| < 1} \hat{f}(\xi) / Re\Psi(\xi) d\xi = \infty$ and $\inf u_0$ is sufficiently large, then intermittency.
- If ∫_{||ξ||<1} f(ξ) < ReΨ(ξ) dξ < ∞ and Lip_σ sufficiently small, then non-intermittency.

The technical conditions are:

- P_t(dx) ≪ dx [Open problem: Hartman-Wintner, '42; Blum-Rosenblatt, '59; Tucker, '64–65; ...]
- f and Ψ are symmetric in all variables;
- f is coordinatewise decreasing; and
- u(0, ·) > 0 pointwise and P{u(t, ·) > 0} = 1 [Kotelenez, '92; Manthey-Zausinger, '99; Manthey, '01].

17/19

• Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:

э

Davar Khoshnevisan (Salt Lake City, Utah)

Lemma. *p*_t(*x*) = *P*_t(*dx*)/*dx*; TFAE:

 *p*_t∃ and is in *L*²(**R**^d) for all *t* > 0;

Davar Khoshnevisan (Salt Lake City, Utah)

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;

Davar Khoshnevisan (Salt Lake City, Utah)

• Lemma.
$$p_t(x) = P_t(dx)/dx$$
; TFAE:

- 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
- 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
- 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{\mathbf{R}}^{d})$ for all t > 0.

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
 - 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{R}^{d})$ for all t > 0.
- Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2) \Rightarrow (1).

• Lemma.
$$p_t(x) = P_t(dx)/dx$$
; TFAE:

- 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
- 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
- 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\mathbf{R}^{d})$ for all t > 0.
- Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2) \Rightarrow (1).

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
 - 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{\mathbf{R}}^{d})$ for all t > 0.
- ▶ Proof: Since $||p_t||_2^2 \le ||p_t||_\infty$, (2)⇒(1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $||p_t||_\infty \le ||p_{t/2}||_2^2$; therefore, (1)⇔(2).

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
 - 3. $\exp(-t\operatorname{Re}\Psi) \in L^1(\mathbf{R}^d)$ for all t > 0.
- ▶ Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2)⇒(1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $\|p_t\|_{\infty} \le \|p_{t/2}\|_2^2$; therefore, (1)⇔(2). By the inversion theorem, (3)⇒(1)+(2).

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
 - 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{\mathbf{R}}^{d})$ for all t > 0.
- ▶ Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2)⇒(1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $\|p_t\|_{\infty} \le \|p_{t/2}\|_2^2$; therefore, (1)⇔(2). By the inversion theorem, (3)⇒(1)+(2). Suppose (1)+(2).

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
 - 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{\mathbf{R}}^{d})$ for all t > 0.
- ▶ Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2)⇒(1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $\|p_t\|_{\infty} \le \|p_{t/2}\|_2^2$; therefore, (1)⇔(2). By the inversion theorem, (3)⇒(1)+(2). Suppose (1)+(2). Let $\check{f}(x) := f(-x)$.

- Lemma. $p_t(x) = P_t(dx)/dx$; TFAE:
 - 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
 - 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
 - 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{\mathbf{R}}^{d})$ for all t > 0.
- ► Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2) \Rightarrow (1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $\|p_t\|_{\infty} \le \|p_{t/2}\|_2^2$; therefore, (1) \Leftrightarrow (2). By the inversion theorem, (3) \Rightarrow (1)+(2). Suppose (1)+(2). Let $\check{f}(x) := f(-x)$. The F.T. of $p_{t/4} * \check{p}_{t/4}$ is $\exp(-(t/2) \operatorname{Re} \Psi)$.

• Lemma.
$$p_t(x) = P_t(dx)/dx$$
; TFAE:

- 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
- 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
- 3. $\exp(-t\operatorname{Re}\Psi) \in L^{1}(\operatorname{\mathbf{R}}^{d})$ for all t > 0.
- ► Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2) \Rightarrow (1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $\|p_t\|_{\infty} \le \|p_{t/2}\|_2^2$; therefore, (1) \Leftrightarrow (2). By the inversion theorem, (3) \Rightarrow (1)+(2). Suppose (1)+(2). Let $\check{f}(x) := f(-x)$. The F.T. of $p_{t/4} * \check{p}_{t/4}$ is $\exp(-(t/2) \text{Re}\Psi)$. By Plancherel,

$$\|\exp(-(t/2)\operatorname{Re}\Psi)\|_2^2 = (2\pi)^d \|p_{t/4} * \breve{p}_{t/4}\|_2^2$$

• Lemma.
$$p_t(x) = P_t(dx)/dx$$
; TFAE:

- 1. $p_t \exists$ and is in $L^2(\mathbf{R}^d)$ for all t > 0;
- 2. $p_t \exists$ and is in $L^{\infty}(\mathbf{R}^d)$ for all t > 0;
- 3. $\exp(-t\operatorname{Re}\Psi) \in L^1(\mathbf{R}^d)$ for all t > 0.
- Proof: Since $\|p_t\|_2^2 \le \|p_t\|_{\infty}$, (2) \Rightarrow (1). Since $p_t = p_{t/2} * p_{t/2}$, Young's inequality: $\|p_t\|_{\infty} \le \|p_{t/2}\|_2^2$; therefore, (1) \Leftrightarrow (2). By the inversion theorem, $(3) \Rightarrow (1)+(2)$. Suppose (1)+(2). Let $\check{f}(x) := f(-x)$. The F.T. of $p_{t/4} * \check{p}_{t/4}$ is $\exp(-(t/2) \text{Re}\Psi)$. By Plancherel.

$$\|\exp(-(t/2) {\sf Re} \Psi)\|_2^2 = (2\pi)^d \| {m
ho}_{t/4} st m{\check{
ho}}_{t/4} \|_2^2 \le (2\pi)^d \| {m
ho}_{t/4} st m{\check{
ho}}_{t/4} \|_\infty.$$

... by Young's inequality,

$$\|\exp(-t\operatorname{Re}\Psi)\|_1 = \|\exp(-(t/2)\operatorname{Re}\Psi)\|_2^2 \le (2\pi)^d \|p_{t/4}\|_2^2$$

18/19

 $(1)+(2) \Rightarrow (3).$

Lemma (Zabczyk, '70) Suppose X is a radial Lévy process in $d \ge 2$. Then, $P_t(dx) \ll dx$ if and only if $\Psi(\xi) \to \infty$ as $\|\xi\| \to \infty$.

Lemma (Zabczyk, '70)

Suppose X is a radial Lévy process in $d \ge 2$. Then, $P_t(dx) \ll dx$ if and only if $\Psi(\xi) \to \infty$ as $\|\xi\| \to \infty$.

If P_t(dx)/dx = p_t(x), then Ψ(ξ) → ∞ by the Riemann–Lebesgue lemma. Thus, in this case, the RL lemma is sharp!

Lemma (Zabczyk, '70)

Suppose X is a radial Lévy process in $d \ge 2$. Then, $P_t(dx) \ll dx$ if and only if $\Psi(\xi) \to \infty$ as $\|\xi\| \to \infty$.

- If P_t(dx)/dx = p_t(x), then Ψ(ξ) → ∞ by the Riemann–Lebesgue lemma. Thus, in this case, the RL lemma is sharp!
- False if d = 1.

Lemma (Zabczyk, '70)

Suppose X is a radial Lévy process in $d \ge 2$. Then, $P_t(dx) \ll dx$ if and only if $\Psi(\xi) \to \infty$ as $\|\xi\| \to \infty$.

- If P_t(dx)/dx = p_t(x), then Ψ(ξ) → ∞ by the Riemann–Lebesgue lemma. Thus, in this case, the RL lemma is sharp!
- False if d = 1.
- What are good NASC conditions for $P_t(dx) \ll dx$ in terms of Ψ ?

・ロン ・四 ・ ・ ヨン ・ ヨン