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Outline

I The heat equation with random forcing
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The basic problem

I Let L := generator of a Lévy process.

I Ẇ := space-time white noise [roughly speaking a GGRF with
E(Ẇ (t ,x)Ẇ (s ,y)) = δ0(t − s)δ0(y − x)].

I The nonlinear heat equation for L with forcing Ẇ :

∂

∂t
u(t ,x) = (Lu)(t ,x) + b(u(t ,x)) + σ(u(t ,x))Ẇ (t ,x),

I Some questions:

I Existence, uniqueness, and regularity [L versus Ẇ ]?
I Structure of the solution [intermittence]?
I What if Ẇ is replaced by spatially-colored noise?
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I Ẇ := space-time white noise [roughly speaking a GGRF with

E(Ẇ (t ,x)Ẇ (s ,y)) = δ0(t − s)δ0(y − x)].
I The nonlinear heat equation for L with forcing Ẇ :
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The generator of a Lévy process

I Let L := generator of a Lévy process

I If {Pt}t>0 := the semigroup of a Lévy process X , then

Lφ := lim
t→0

Ptφ− φ
t

in L2(Rd ) ∀φ ∈ L2(Rd ).

I L̂ = −Ψ, viz.: ∀φ ∈S (Rd ),

L̂φ = lim
t→0

P̂tφ− φ̂
t

= lim
t→0

e−tΨ − 1
t

· φ̂ = −Ψ · φ̂.
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I Let L := generator of a Lévy process
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The heat equation
Kolmogorov’s equation

I Want the [fundamental] solution to the heat equation:

∂

∂t
v(t ,x) = (Lv)(t ,x) s.t. v(0 ,x) = δ0(x).

I Take F.T. [in x ]:

∂

∂t
v̂(t , ξ) = −Ψ(ξ) · v̂(t , ξ) s.t. v̂(0 , ξ) = 1.

I ∴ v̂(t , ξ) = e−tΨ(ξ), and the solution is measure-valued:

v(t ,A) := P{Xt ∈ A} := Pt (A).
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The heat equation with forcing

I If Ẇ (t ,x) := external heat at (t ,x), then the heat equation with
forcing Ẇ [space-time white noise] is

∂

∂t
v(t ,x) = (Lv)(t ,x) + Ẇ (t ,x).

I Ẇ (t ,x) := ∂d+1W/∂t∂x1 · · ·∂xd , for a Br. sheet W .
I Interpretation: Multiply by φ ∈S (R+ ×Rd ):

−(φ̇ ,v) = (L∗φ,v) +

∫∫
φ(t ,x)Ẇ (t ,x) dt dx︸ ︷︷ ︸R

φdW

.

I Solve by variation of parameters [Duhamel’s formula].
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The linear heat equation

I Consider

∂

∂t
u(t ,x) = (Lu)(t ,x) + Ẇ (t ,x) a.s. u(0 ,x) ≡ 0.

I The solution is [f (t , φ) :=
∫

f (t ,x)φ(x) dx ⇒ f (t ,x) = f (t , δx )]:

u(t , φ) =

∫ t

0

∫
Rd

(Pt−sφ)(y) W (dy ds).

I By Wiener’s isometry,

E
(
|u(t , φ)|2

)
=

∫ t

0

∫
Rd
|(Pt−sφ)(y)|2 dy ds.

Davar Khoshnevisan (Salt Lake City, Utah) The heat equation CIMAT, Guanajuato; 2009 7 / 19



The linear heat equation

I Consider

∂

∂t
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The linear heat equation

I By Wiener’s isometry,

E
(
|u(t , φ)|2

)
=

∫ t

0

∫
Rd
|(Psφ)(y)|2 dy ds.

I By Plancherel’s theorem,

E
(
|u(t , φ)|2

)
=

1
(2π)d

∫ t

0

∫
Rd

∣∣∣e−sΨ(ξ)φ̂(ξ)
∣∣∣2 dξ ds

=
1

(2π)d

∫ t

0

∫
Rd

e−2sReΨ(ξ)|φ̂(ξ)|2 dξ ds

�
∫

Rd

|φ̂(ξ)|2

1 + 2ReΨ(ξ)
dξ.

I Therefore (Dalang, 1999): the heat equation has function
solutions iff [1 + 2ReΨ]−1 ∈ L1(Rd ).
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The linear heat equation
∂t u = Lu + Ẇ u(0 ,x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff
[1 + 2ReΨ]−1 ∈ L1(Rd ).

Theorem (Foondun-K-Nualart, 2009+)
Let X̄t := Xt −X ′t by the symmetrization of X .

I The linear heat equation has function solutions iff X̄ has local
times.

I The solution to the linear heat equation is cont. in x iff the local
times of X̄ are.

I The solution to the linear heat equation is Hölder cont. in x iff the
local times of X̄ are. And the critical Hölder exponents are the
same.

I . . .
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∂t u = Lu + Ẇ u(0 ,x) = 0

(Dalang, 1999): The linear heat equation has function solutions iff
[1 + 2ReΨ]−1 ∈ L1(Rd ).

Theorem (Foondun-K-Nualart, 2009+)
Let X̄t := Xt −X ′t by the symmetrization of X .
I The linear heat equation has function solutions iff X̄ has local

times.

I The solution to the linear heat equation is cont. in x iff the local
times of X̄ are.

I The solution to the linear heat equation is Hölder cont. in x iff the
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local times of X̄ are. And the critical Hölder exponents are the
same.
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Additive nonlinearities

Theorem (Foondun-K-Nualart, 2009+)
Suppose b is bounded and Lipschitz continuous, and the linear heat
equation has a function solution u with u(0 ,x) = 0. Consider

∂

∂t
U(t ,x) = (LU)(t ,x) + b(U(t ,x)) + Ẇ (t ,x), (1)

subject to U(0 ,x) = 0. Then, u −U is locally-uniformly bounded and
continuous.

I Using local-time theory, we can construct u with Oscu ≡∞.
I The blowup of u forces the blowup of U.
I Everything holds if b is locally Lipschitz.
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Multiplicative nonlinearities

I The equation

∂

∂t
u(t ,x) = (Lu)(t ,x) + σ(u(t ,x))Ẇ (t ,x),

where:

I u(0 ,x) is bounded, measurable, and nonrandom;
I σ is Lipschitz continuous.

I The most-studied case (parabolic Anderson model):

L = κ∆ and σ(u) = λu.

I (Dalang, 1999): If the linear equation [σ ≡ 0] has a unique
solution, then the nonlinear one does too.
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[Weak] Intermittency
∂t u = Lu + σ(u)Ẇ

I Aka separation of scales; noise on all levels; high peaks;
localization; etc

I Math definition (Mandelbrot ’74; Zeldovitch et al ’80’s; Molchanov
’91; Carmona-Molchanov ’94; Bertini-Cancrini ’95;
Carmona-Viens ’98; . . . ): Consider the “upper Lp(P)-Liapounov
exponent”:

γ(p) := limsup
t→∞

t−1 lnE
(
|u(t ,x)|p

)
.

I Convexity: γ(p)/p is increasing on p ∈ [2 ,∞).

Definition
Intermittency: γ(p)/p is strictly increasing on [2 ,∞).

Proposition (Carmona and Molchanov ’94)
Intermittency holds if γ(2) > 0 and γ(p) <∞ for all p ≥ 2.
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[Weak] Intermittency
∂t u = Lu + σ(u)Ẇ

I Suppose the linear equation has a solution.

I The nonlinear one does too.
I R = 1, necessarily.

Theorem (Foondun-K, ’09)

I Suppose X̄t := Xt −X ′t is recurrent and lim|x |→∞ |σ(x)/x | > 0.
Then there exists η0 > 0 such that if u(0 ,x) ≥ η0 for all x, then u is
intermittent.

I Suppose X̄ is transient. Then for all integers p ≥ 2 there exists
δ(p) > 0 such that γ(p) = 0 as soon as Lipσ < δ(p).
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A related question
Proof implies coagulation; related to the replica method

I Best results when u0 is bounded below.

I Another physically-important case: u0 has compact support.
I We know very little in this case.

Theorem (Foondun-K, ’09+)

I u̇(t ,x) = κu′′(t ,x) + σ(u)Ẇ (t ,x) [x ∈ R, t > 0]’
I σ := Lipschitz continuous, σ(0) = 0, and |σ(u)| ≥ Lσ|u|;
I u0 :≥6= 0; Hölder-continuous of order ≥ 1/2; and supported

compactly.

Then, u(t , ·) ∈ L2(Rd ) a.s. for all t > 0, and

L2
σ

8κ
≤ limsup

t→∞
t−1 lnE

Could go out of “E”︷︸︸︷
sup
x∈Rd

|u(t ,x)|2
 ≤ Lip2

σ

8κ
.
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Other related questions

I In stat. mech. one might want to replace white noise Ẇ with
colored noise Ḟ

I Roughly speaking, we want Ḟ to be a GGRF with

E
(

Ḟ (t ,x)Ḟ (s ,y)
)

= δ0(t − s)f (y − x).

I Bochner–Minlos–Schwartz theorem: f is pos. semidef; f := µ̂ for a
tempered measure µ [spectral measure]

I We will say a few things about the case that µ(dx)� dx .
I Examples of interest:

I [OU] f (x) = c exp(−c′‖x‖α) for α ∈ (0 ,2].
I [Poisson] f (x) = c{‖x‖2 + c′}−(d+1)/2.
I [Cauchy] f (x) = c

∏d
j=1{1 + x2

j }
−1.

I [Riesz] f (x) = c/‖x‖α for α ∈ (0 ,d).
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E
(
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Ḟ (t ,x)Ḟ (s ,y)
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Assumptions on the noise

I f̂ := a function [spectral density].

I f : Rd → R̄ is continuous.
I One of the following holds:

I f (x) <∞ iff x 6= 0;
I f̂ ∈ L∞(Rd ) and f (x) <∞ if x 6= 0.

Theorem (Dalang, ’99; Nualart & Quer-Sardanyons, ’06;
Foondun-K, ’10+)
If σ is Lipschitz and u(0 , ·) is nonrandom and bounded, then

∂

∂t
u(t ,x) = (Lu)(t ,x) + σ(u(t ,x))Ḟ (t ,x)

has a unique solution provided that∫
Rd

f̂ (ξ)

1 + 2ReΨ(ξ)
dξ <∞ [iff, when σ := const].
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Intermittency

Theorem (Foondun-K, ’10+)
Suppose lim inf|x |→∞ σ(x)/|x | > 0 and

∫
Rd f̂ (ξ)/(1 + 2ReΨ(ξ)) dξ <∞.

Under technical conditions on Ψ and f :

I If
∫
‖ξ‖<1 f̂ (ξ)/ReΨ(ξ) dξ =∞ and infu0 is sufficiently large, then

intermittency.
I If

∫
‖ξ‖<1 f̂ (ξ) < ReΨ(ξ) dξ <∞ and Lipσ sufficiently small, then

non-intermittency.
I The technical conditions are:

I Pt (dx)� dx [Open problem: Hartman-Wintner, ’42;
Blum-Rosenblatt, ’59; Tucker, ’64–65; . . . ]

I f and Ψ are symmetric in all variables;
I f is coordinatewise decreasing; and
I u(0 , ·) > 0 pointwise and P{u(t , ·) > 0} = 1 [Kotelenez, ’92;

Manthey-Zausinger, ’99; Manthey, ’01].
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Hawkes’ Lemma (early half of ’80’s)
When is Pt (dx)� dx?

I Lemma. pt (x) = Pt (dx)/dx ; TFAE:

1. pt∃ and is in L2(Rd ) for all t > 0;
2. pt∃ and is in L∞(Rd ) for all t > 0;
3. exp(−tReΨ) ∈ L1(Rd ) for all t > 0.

I Proof: Since ‖pt‖22 ≤ ‖pt‖∞, (2)⇒(1).

Since pt = pt/2 ∗ pt/2,
Young’s inequality: ‖pt‖∞ ≤ ‖pt/2‖22; therefore, (1)⇔(2). By the
inversion theorem, (3)⇒(1)+(2). Suppose (1)+(2). Let
f̆ (x) := f (−x). The F.T. of pt/4 ∗ p̆t/4 is exp(−(t/2)ReΨ). By
Plancherel,

‖exp(−(t/2)ReΨ)‖22 = (2π)d‖pt/4 ∗ p̆t/4‖22 ≤ (2π)d‖pt/4 ∗ p̆t/4‖∞.

∴ by Young’s inequality,

‖exp(−tReΨ)‖1 = ‖exp(−(t/2)ReΨ)‖22 ≤ (2π)d‖pt/4‖22.

∴ (1)+(2)⇒(3). �
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Concluding remarks

Lemma (Zabczyk, ’70)
Suppose X is a radial Lévy process in d ≥ 2. Then, Pt (dx)� dx if and
only if Ψ(ξ)→∞ as ‖ξ‖ →∞.

I If Pt (dx)/dx = pt (x), then Ψ(ξ)→∞ by the Riemann–Lebesgue
lemma. Thus, in this case, the RL lemma is sharp!

I False if d = 1.
I What are good NASC conditions for Pt (dx)� dx in terms of Ψ?
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