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A simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

I Intermittency occurs when we multiply many roughly-independent
r.v.’s ; e.g., ξ1, ξ2, . . . i.i.d. with P{ξ1 = 2} = P{ξ1 = 0} = 1/2

I Then

un :=
n∏

j=1

ξj =

{
2n with probab. 2−n,

0 with probab. 1− 2−n.

I Conclusions:

I un = 0 for all n large a.s.; in particular, un → 0 a.s.
I n−1 log E (ukn )→ γk := (k − 1) log 2 for all k > 1

I Now replicate this experiment

I Is this degeneracy because of the many zeros? No
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A second simple model for intermittency
(Zeldovich–Ruzmaikin–Sokoloff, 1990)

I Let b denote 1-D Brownian motion and consider the exponential
martingale ut := eλbt−(λ

2t/2)

I ut → 0 as t →∞ [strong law]

I t−1 log E (ukt ) = λ2
(k
2

)
→ γk := λ2

(k
2

)
for k > 1

I In the first example, γk ≈ k log 2; in the second, γk ≈ 1
2λ

2k2

I The examples are “similar,”

ebt−(
t/2) ≈

∏
j

(
1− (∆b)j −

1

2
(∆t)j

)
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A simulation [u̇t(x) = (κ/2)u′′t (x) + λut(x)ηt , u0 ≡ 1]
ut = exp{λbt − (λt/2)} with λ = 0.5 (left) and λ = 5 (right)
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Intermittency in cosmology
S. F. Shandarin and Ya. B. Zeldovitch, Rev. Modern Physics 61(2) (1989) 185–220
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The model (for today)

∂

∂t
ut(x) =

κ
2

∂2

∂x2
ut(x) + σ(ut(x))ηt(x),

where:

1. κ > 0;

2. σ : R→ R is Lipschitz continuous;

3. η is space-time white noise; i.e., a centered GGRF with

Cov (ηt(x) , ηs(y)) = δ0(t − s)δ0(x − y)

4. u0 : R→ R+ nonrandom, bounded, and measurable;

5. u exists, is unique and continuous (Walsh, 1986);

6. Either 0 < inf σ ≤ supσ <∞, or σ(u) ∝ u [random media].
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Weak intermittency
∂tu = (κ/2)∂xxu + σ(u)η

I (weak) intermittency [Bertini–Cancrini, 1994; Carmona–Molchanov,
1994; Molchanov, 1991; Foondun–K., 2010; Zel’dovitch et al, 1985,
1988, 1990; . . . ]:

0 < lim sup
t→∞

1

t
log E

(
|ut(x)|k

)
<∞ (k ≥ 2, x ∈ R)

I Weak intermittency implies “localization” on large time scales.
I Physical intermittency is expected to hold because the SPDE is

typically “chaotic,” and for many choices of σ:

I For all t > 0; and
I both in time, and space

I Today: What happens before the onset of localization?
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Optimal regularity
∂tu = (κ/2)∂xxu + σ(u)η

I Can frequently understand parabolic equations via optimal regularity
[Lunardi, 1995, and older works by Pazy, Kato, . . . ]

I If σ(0) = 0, then the fact that u0(x) ≥ 0 implies that ut(x) ≥ 0
[Mueller’s comparison principle]

I If σ(0) = 0 and u0 ∈ L2(R) then ut ∈ L2(R) a.s. (Dalang–Mueller,
2003)

I If u0 ∈ Cα(R) for some α > 1
2 and has compact support, and if

σ(0) = 0, then supx∈R ut(x) <∞ a.s. for all t > 0 (Foondun–Kh,
2010)

I Today’s goal: The solution can be sensitive to the choice of u0 (we
study cases where ut is unbounded for all t > 0)
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Theorem (Conus–Joseph–Kh)
A moderately-noisy model

I u̇ = (κ/2)u′′ + σ(u)η

I If 0 < infx≥0 σ(x) ≤ supx≥0 σ(x) <∞, then

lim sup
|x |→∞

ut(x)

(log |x |)1/2
� κ−1/4 a.s. for all t > 0

I Power of κ suggests the universality class of random walks in weak
interactions with their random environment
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Theorem (Conus–Joseph–Kh)
The parabolic Anderson model

I u̇ = (κ/2)u′′ + λuη [σ(x) = λx ]

I If λ > 0, then

lim sup
|x |→∞

log ut(x)

(log |x |)2/3
� 1

κ1/3
a.s. for all t > 0

I ut(x) ≈ exp
{

const · (log |x |/
√
κ)

2/3
}

I Power of κ suggests the universality class of random-matrix models
(GUE)

I “KPZ fluctuation exponents” (1/3 , 2/3)
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}

I Power of κ suggests the universality class of random-matrix models
(GUE)

I “KPZ fluctuation exponents” (1/3 , 2/3)
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Ideas used in proofs

I Coupling. If x1, . . . , xN are sufficiently far apart, then
ut(x1), . . . , ut(xN) are “approximately independent”

I Obtain good tail estimates:

I logP{ut(x) ≥ λ} � −κ1/2λ2 if σ bounded above and below
I logP{ut(x) ≥ λ} � −κ1/2(log λ)3/2 for parabolic Anderson model
I Similar results for Majda’s passive–scalar model [stretched exponential

tails, but on a non-log scale] by Bronski–McLaughlin (2000)
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Colored noise
u̇t(x) = (κ/2)(∆ut)(x) + σ(ut(x))ηt(x) (t > 0, x ∈ Rd)

I Now
Cov (ηt(x) , ηs(y)) = δ0(s − t)f (x − y)

(Dalang, 1999; Hu–Nualart, 2009, . . . )

I Suppose f = h ∗ h̃ for some h ∈ L2(Rd), so ∃! solution ∀d ≥ 1

I ∃ KPZ version also (Medina–Hwa–Kardar–Zhang, 1989)
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Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

I u̇ = (κ/2)∆u + λuη [σ(x) = λx ]

I If λ > 0 and h is “nice,” then

lim sup
|x |→∞

log ut(x)

(log |x |)1/2
� 1 a.s. for all t > 0 and κ small

I There are other variations as well

I “fluctuation exponent” (0 , 1/2)

I Are there in-between models? Yes.
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Theorem (Conus–Joseph–Kh–Shiu)
The parabolic Anderson model

I u̇ = (κ/2)∆u + λuη [σ(x) = λx ]

I Cov(ηt(x) , ηs(y)) = δ0(t − s) · ‖x − y‖−α

I The solution ∃! when α < min(d , 2) [Dalang, 1999]

I If λ > 0, then

lim sup
|x |→∞

log ut(x)

(log ‖x‖)2/(4−α)
� κ−α/(4−α) a.s. for all t > 0

I “fluctuation exponent” (2ψ − 1 , ψ) = (α/(4−α) , 2/(4−α))

I f = h ∗ h̃ ⇔ α = 0, and f = δ0 ⇔ α = 1 = min(d , 2)
[spectral analogies]
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Initial point mass

I In all of the preceding, we assumed that

0 < inf u0 ≤ sup u0 <∞.

I Question: (Ben Arous, Quastel, 2011) What if u0 = δ0?

I Theorem. (Conus–Joseph–Kh–Shiu, 2011 [?]) Consider

∂tut(x) =
κ
2
u′′t (x) + σ(ut(x))ηt(x),

subject to u0 := a finite Borel measure of bounded support, and
σ(0) = 0. Then supx |ut(x)| <∞ a.s. for all t > 0.
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