On the chaotic character of some parabolic SPDEs

Davar Khoshnevisan

(joint with Daniel Conus, Mathew Joseph, and Shang-Yuan Shiu)

Department of Mathematics University of Utah http://www.math.utah.edu/~davar

Image: Image:

A E > A E >

► Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P{\xi_1 = 2} = P{\xi_1 = 0} = \frac{1}{2}$

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$
- Then

$$u_n := \prod_{j=1}^n \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

イロト イポト イヨト イヨト

OF UTAH

- ► Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P{\xi_1 = 2} = P{\xi_1 = 0} = \frac{1}{2}$
- Then

$$u_n := \prod_{j=1}^n \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

Conclusions:

イロト イポト イヨト イヨト

of UTAH

- ► Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P{\xi_1 = 2} = P{\xi_1 = 0} = \frac{1}{2}$
- Then

$$u_n := \prod_{j=1}^n \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
 - $u_n = 0$ for all *n* large a.s.; in particular, $u_n \rightarrow 0$ a.s.

- ► Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P{\xi_1 = 2} = P{\xi_1 = 0} = \frac{1}{2}$
- Then

$$u_n := \prod_{j=1}^n \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
 - $u_n = 0$ for all *n* large a.s.; in particular, $u_n \rightarrow 0$ a.s.
 - $n^{-1}\log E(u_n^k) \rightarrow \gamma_k := (k-1)\log 2$ for all k > 1

- ► Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P{\xi_1 = 2} = P{\xi_1 = 0} = \frac{1}{2}$
- Then

$$u_n := \prod_{j=1}^n \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
 - $u_n = 0$ for all *n* large a.s.; in particular, $u_n \rightarrow 0$ a.s.
 - $n^{-1}\log E(u_n^k) \rightarrow \gamma_k := (k-1)\log 2$ for all k > 1
- Now replicate this experiment

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_1, ξ_2, \ldots i.i.d. with $P\{\xi_1 = 2\} = P\{\xi_1 = 0\} = 1/2$
- Then

$$u_n := \prod_{j=1}^n \xi_j = \begin{cases} 2^n & \text{with probab. } 2^{-n}, \\ 0 & \text{with probab. } 1 - 2^{-n}. \end{cases}$$

- Conclusions:
 - $u_n = 0$ for all *n* large a.s.; in particular, $u_n \rightarrow 0$ a.s.
 - $n^{-1}\log E(u_n^k) \rightarrow \gamma_k := (k-1)\log 2$ for all k > 1
- Now replicate this experiment
- Is this degeneracy because of the many zeros? No

Let b denote 1-D Brownian motion and consider the exponential martingale u_t := e^{λbt−(λ²t/2)}

- ► Let b denote 1-D Brownian motion and consider the exponential martingale u_t := e^{λbt-(λ²t/2)}
- $u_t \rightarrow 0$ as $t \rightarrow \infty$ [strong law]

- ► Let b denote 1-D Brownian motion and consider the exponential martingale u_t := e^{λbt-(λ²t/2)}
- $u_t \rightarrow 0$ as $t \rightarrow \infty$ [strong law]
- ► $t^{-1}\log E(u_t^k) = \lambda^2 {k \choose 2} \rightarrow \gamma_k := \lambda^2 {k \choose 2}$ for k > 1

イロト イヨト イヨト

- ► Let b denote 1-D Brownian motion and consider the exponential martingale u_t := e^{λbt-(λ²t/2)}
- $u_t
 ightarrow 0$ as $t
 ightarrow \infty$ [strong law]
- ► $t^{-1}\log E(u_t^k) = \lambda^2 {k \choose 2} \rightarrow \gamma_k := \lambda^2 {k \choose 2}$ for k > 1
- ► In the first example, $\gamma_k \approx k \log 2$; in the second, $\gamma_k \approx \frac{1}{2}\lambda^2 k^2$

・ロト ・聞ト ・ ヨト

Let b denote 1-D Brownian motion and consider the exponential martingale u_t := e^{λbt−(λ²t/2)}

•
$$u_t
ightarrow 0$$
 as $t
ightarrow \infty$ [strong law]

►
$$t^{-1}\log E(u_t^k) = \lambda^2 {k \choose 2} \rightarrow \gamma_k := \lambda^2 {k \choose 2}$$
 for $k > 1$

- ► In the first example, $\gamma_k \approx k \log 2$; in the second, $\gamma_k \approx \frac{1}{2}\lambda^2 k^2$
- The examples are "similar,"

$$e^{b_t-(t/2)} pprox \prod_j \left(1-(\Delta b)_j - rac{1}{2}(\Delta t)_j
ight)$$

- - ≣ →

A simulation $[\dot{u}_t(x) = (\varkappa/2)u_t''(x) + \lambda u_t(x)\eta_t, u_0 \equiv 1]$ $u_t = \exp\{\lambda b_t - (\lambda t/2)\}$ with $\lambda = 0.5$ (left) and $\lambda = 5$ (right)

Intermittency in cosmology

S. F. Shandarin and Ya. B. Zeldovitch, Rev. Modern Physics 61(2) (1989) 185-220

$$rac{\partial}{\partial t}u_t(x) = rac{arkappa}{2}rac{\partial^2}{\partial x^2}u_t(x) + \sigma(u_t(x))\eta_t(x),$$

where:

1. $\varkappa > 0;$

$$\frac{\partial}{\partial t}u_t(x) = \frac{\varkappa}{2}\frac{\partial^2}{\partial x^2}u_t(x) + \sigma(u_t(x))\eta_t(x),$$

where:

- 1. $\varkappa > 0;$
- 2. $\sigma : \mathbf{R} \to \mathbf{R}$ is Lipschitz continuous;

$$\frac{\partial}{\partial t}u_t(x) = rac{\varkappa}{2}rac{\partial^2}{\partial x^2}u_t(x) + \sigma(u_t(x))\eta_t(x),$$

where:

- 1. $\varkappa > 0;$
- 2. $\sigma : \mathbf{R} \to \mathbf{R}$ is Lipschitz continuous;
- 3. η is space-time white noise; i.e., a centered GGRF with

 $\operatorname{Cov}(\eta_t(x),\eta_s(y)) = \delta_0(t-s)\delta_0(x-y)$

D. Khoshnevisan (Univ of Utah)

イロト イポト イヨト イヨト

OF UTAH

$$\frac{\partial}{\partial t}u_t(x) = \frac{\varkappa}{2}\frac{\partial^2}{\partial x^2}u_t(x) + \sigma(u_t(x))\eta_t(x),$$

where:

- 1. $\varkappa > 0;$
- 2. $\sigma: \mathbf{R} \to \mathbf{R}$ is Lipschitz continuous;
- 3. η is space-time white noise; i.e., a centered GGRF with

$$\operatorname{Cov}\left(\eta_t(x),\eta_s(y)\right) = \delta_0(t-s)\delta_0(x-y)$$

4. $u_0 : \mathbf{R} \to \mathbf{R}_+$ nonrandom, bounded, and measurable;

Image: A matrix A

$$\frac{\partial}{\partial t}u_t(x) = \frac{\varkappa}{2}\frac{\partial^2}{\partial x^2}u_t(x) + \sigma(u_t(x))\eta_t(x),$$

where:

- 1. $\varkappa > 0;$
- 2. $\sigma: \mathbf{R} \to \mathbf{R}$ is Lipschitz continuous;
- 3. η is space-time white noise; i.e., a centered GGRF with

$$\operatorname{Cov}(\eta_t(x),\eta_s(y)) = \delta_0(t-s)\delta_0(x-y)$$

- 4. $u_0: \mathbf{R} \to \mathbf{R}_+$ nonrandom, bounded, and measurable;
- 5. *u* exists, is unique and continuous (Walsh, 1986);

$$\frac{\partial}{\partial t}u_t(x) = \frac{\varkappa}{2}\frac{\partial^2}{\partial x^2}u_t(x) + \sigma(u_t(x))\eta_t(x),$$

where:

- 1. $\varkappa > 0;$
- 2. $\sigma: \mathbf{R} \to \mathbf{R}$ is Lipschitz continuous;
- 3. η is space-time white noise; i.e., a centered GGRF with

$$\operatorname{Cov}(\eta_t(x),\eta_s(y)) = \delta_0(t-s)\delta_0(x-y)$$

- 4. $u_0: \mathbf{R} \to \mathbf{R}_+$ nonrandom, bounded, and measurable;
- 5. *u* exists, is unique and continuous (Walsh, 1986);
- 6. Either $0 < \inf \sigma \le \sup \sigma < \infty$, or $\sigma(u) \propto u$ [random media].

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E\left(|u_t(x)|^k\right) < \infty \quad (k \ge 2, x \in \mathbf{R})$$

Image: A matrix of the second seco

OF UTAH

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E\left(|u_t(x)|^k\right) < \infty \quad (k \ge 2, x \in \mathbf{R})$$

► Weak intermittency implies "localization" on large time scales.

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E\left(|u_t(x)|^k\right) < \infty \quad (k \ge 2, x \in \mathbf{R})$$

- ► Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ:

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E\left(|u_t(x)|^k\right) < \infty \quad (k \ge 2, x \in \mathbf{R})$$

- ► Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ:
 - ▶ For all t > 0; and

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E\left(|u_t(x)|^k\right) < \infty \quad (k \ge 2, x \in \mathbf{R})$$

- ► Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ:
 - ▶ For all *t* > 0; and
 - both in time, and space

$$0 < \limsup_{t \to \infty} \frac{1}{t} \log E\left(|u_t(x)|^k \right) < \infty \quad (k \ge 2, x \in \mathbf{R})$$

- ► Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ:
 - ▶ For all *t* > 0; and
 - both in time, and space
- ► Today: What happens before the onset of localization?

 Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If σ(0) = 0, then the fact that u₀(x) ≥ 0 implies that u_t(x) ≥ 0 [Mueller's comparison principle]

イロト イポト イヨト イヨト

OF UTAH

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If σ(0) = 0, then the fact that u₀(x) ≥ 0 implies that u_t(x) ≥ 0 [Mueller's comparison principle]
- ▶ If $\sigma(0) = 0$ and $u_0 \in L^2(\mathbb{R})$ then $u_t \in L^2(\mathbb{R})$ a.s. (Dalang-Mueller, 2003)

イロト イポト イヨト イヨト

of UTAH

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If σ(0) = 0, then the fact that u₀(x) ≥ 0 implies that u_t(x) ≥ 0 [Mueller's comparison principle]
- ▶ If $\sigma(0) = 0$ and $u_0 \in L^2(\mathbf{R})$ then $u_t \in L^2(\mathbf{R})$ a.s. (Dalang-Mueller, 2003)
- ▶ If $u_0 \in C^{\alpha}(\mathbf{R})$ for some $\alpha > \frac{1}{2}$ and has compact support, and if $\sigma(0) = 0$, then $\sup_{x \in \mathbf{R}} u_t(x) < \infty$ a.s. for all t > 0 (Foondun–Kh, 2010)

イロト 不得下 イヨト イヨト

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, ...]
- If σ(0) = 0, then the fact that u₀(x) ≥ 0 implies that u_t(x) ≥ 0 [Mueller's comparison principle]
- ▶ If $\sigma(0) = 0$ and $u_0 \in L^2(\mathbf{R})$ then $u_t \in L^2(\mathbf{R})$ a.s. (Dalang-Mueller, 2003)
- ▶ If $u_0 \in C^{\alpha}(\mathbf{R})$ for some $\alpha > \frac{1}{2}$ and has compact support, and if $\sigma(0) = 0$, then $\sup_{x \in \mathbf{R}} u_t(x) < \infty$ a.s. for all t > 0 (Foondun–Kh, 2010)
- ► Today's goal: The solution can be sensitive to the choice of u₀ (we study cases where u_t is unbounded for all t > 0)

Theorem (Conus–Joseph–Kh)

A moderately-noisy model

• $\dot{u} = (\varkappa/2)u'' + \sigma(u)\eta$

D. Khoshnevisan (Univ of Utah)

Theorem (Conus–Joseph–Kh)

A moderately-noisy model

•
$$\dot{u} = (\varkappa/2)u'' + \sigma(u)\eta$$

► If $0 < \inf_{x \ge 0} \sigma(x) \le \sup_{x \ge 0} \sigma(x) < \infty$, then

$$\limsup_{|x|\to\infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \asymp \varkappa^{-1/4} \qquad \text{a.s. for all } t>0$$

UNIVERSITY OF UTAH

イロト イヨト イヨト

Theorem (Conus–Joseph–Kh)

A moderately-noisy model

•
$$\dot{u} = (\varkappa/2)u'' + \sigma(u)\eta$$

▶ If $0 < \inf_{x \ge 0} \sigma(x) \le \sup_{x \ge 0} \sigma(x) < \infty$, then

$$\limsup_{|x|\to\infty} \frac{u_t(x)}{(\log |x|)^{1/2}} \asymp \varkappa^{-1/4} \qquad \text{a.s. for all } t>0$$

▶ Power of ≈ suggests the universality class of random walks in weak interactions with their random environment

D. Khoshnevisan (Univ of Utah)

Theorem (Conus–Joseph–Kh) The parabolic Anderson model

• $\dot{u} = (\varkappa/2)u'' + \lambda u\eta$ $[\sigma(x) = \lambda x]$

THE UNIVERSITY * UNIVERSITY * UTAH * ロ > 《 문 > 《 문 > 《 문 > 문 · 의 Q (~ September 22, 2011 10 / 15

• $\dot{u} = (\varkappa/2)u'' + \lambda u\eta$ $[\sigma(x) = \lambda x]$

• If $\lambda > 0$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \frac{1}{\varkappa^{1/3}} \qquad \text{a.s. for all } t > 0$$

・ロト ・四ト ・ヨト・

• $\dot{u} = (\varkappa/2)u'' + \lambda u\eta$ $[\sigma(x) = \lambda x]$

• If $\lambda > 0$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \frac{1}{\varkappa^{1/3}} \qquad \text{a.s. for all } t>0$$

• $u_t(x) \approx \exp\left\{ \operatorname{const} \cdot \left(\log |x| / \sqrt{\varkappa} \right)^{2/3} \right\}$

D. Khoshnevisan (Univ of Utah)

September 22, 2011 10 / 15

3

・ロト ・四ト ・ヨト・

UNIVERSITY of UTAH

Sac

• $\dot{u} = (\varkappa/2)u'' + \lambda u\eta$ $[\sigma(x) = \lambda x]$

• If $\lambda > 0$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \frac{1}{\varkappa^{1/3}} \qquad \text{a.s. for all } t > 0$$

•
$$u_t(x) \approx \exp\left\{ \operatorname{const} \cdot \left(\log |x| / \sqrt{\varkappa} \right)^{2/3} \right\}$$

 Power of *×* suggests the universality class of random-matrix models (GUE)

A E F A E F

Image: Image:

• $\dot{u} = (\varkappa/2)u'' + \lambda u\eta$ $[\sigma(x) = \lambda x]$

• If $\lambda > 0$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log |x|)^{2/3}} \asymp \frac{1}{\varkappa^{1/3}} \qquad \text{a.s. for all } t > 0$$

•
$$u_t(x) \approx \exp\left\{ \operatorname{const} \cdot \left(\log |x| / \sqrt{\varkappa} \right)^{2/3} \right\}$$

- Power of z suggests the universality class of random-matrix models (GUE)
- ▶ "KPZ fluctuation exponents" (1/3, 2/3)

イロト 不得下 イヨト イヨト

► Coupling. If x₁,..., x_N are sufficiently far apart, then u_t(x₁),..., u_t(x_N) are "approximately independent"

- ► Coupling. If x₁,..., x_N are sufficiently far apart, then u_t(x₁),..., u_t(x_N) are "approximately independent"
- Obtain good tail estimates:

- ► Coupling. If x₁,..., x_N are sufficiently far apart, then u_t(x₁),..., u_t(x_N) are "approximately independent"
- Obtain good tail estimates:
 - log $P\{u_t(x) \ge \lambda\} \asymp -\varkappa^{1/2}\lambda^2$ if σ bounded above and below

イロト 不得下 イヨト イヨト

- ► Coupling. If x₁,..., x_N are sufficiently far apart, then u_t(x₁),..., u_t(x_N) are "approximately independent"
- Obtain good tail estimates:
 - log $P\{u_t(x) \ge \lambda\} \asymp -\varkappa^{1/2} \lambda^2$ if σ bounded above and below
 - ► log $P\{u_t(x) \ge \lambda\} \asymp -\varkappa^{1/2} (\log \lambda)^{3/2}$ for parabolic Anderson model

イロト 不得下 イヨト イヨト

- ► Coupling. If x₁,..., x_N are sufficiently far apart, then u_t(x₁),..., u_t(x_N) are "approximately independent"
- Obtain good tail estimates:
 - log $P\{u_t(x) \ge \lambda\} \asymp -\varkappa^{1/2} \lambda^2$ if σ bounded above and below
 - ► log $P\{u_t(x) \ge \lambda\} \asymp -\varkappa^{1/2} (\log \lambda)^{3/2}$ for parabolic Anderson model
 - Similar results for Majda's passive-scalar model [stretched exponential tails, but on a non-log scale] by Bronski-McLaughlin (2000)

イロト イポト イヨト イヨト

Colored noise $\dot{u}_t(x) = (\varkappa/2)(\Delta u_t)(x) + \sigma(u_t(x))\eta_t(x)$ $(t > 0, x \in \mathbf{R}^d)$

Now

$\operatorname{Cov}\left(\eta_t(x),\eta_s(y)\right) = \delta_0(s-t)f(x-y)$

(Dalang, 1999; Hu–Nualart, 2009, ...)

THE UNIVERSITY 아UTAH 아UTAH 아이지AH September 22, 2011 12 / 15 Colored noise $\dot{u}_t(x) = (\varkappa/2)(\Delta u_t)(x) + \sigma(u_t(x))\eta_t(x)$ $(t > 0, x \in \mathbf{R}^d)$

Now

$$\operatorname{Cov}\left(\eta_t(x),\eta_s(y)\right) = \delta_0(s-t)f(x-y)$$

(Dalang, 1999; Hu–Nualart, 2009, ...)

▶ Suppose $f = h * \tilde{h}$ for some $h \in L^2(\mathbb{R}^d)$, so $\exists!$ solution $\forall d \ge 1$

イロト イポト イヨト イヨト

OF UTAH

Colored noise $\dot{u}_t(x) = (\varkappa/2)(\Delta u_t)(x) + \sigma(u_t(x))\eta_t(x)$ $(t > 0, x \in \mathbf{R}^d)$

Now

$$\operatorname{Cov}\left(\eta_t(x),\eta_s(y)\right) = \delta_0(s-t)f(x-y)$$

(Dalang, 1999; Hu–Nualart, 2009, ...)

- ▶ Suppose $f = h * \tilde{h}$ for some $h \in L^2(\mathbb{R}^d)$, so $\exists!$ solution $\forall d \ge 1$
- ► ∃ KPZ version also (Medina–Hwa–Kardar–Zhang, 1989)

イロト イポト イヨト イヨト

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

• If $\lambda > 0$ and h is "nice," then

$$\limsup_{|x|\to\infty}\frac{\log u_t(x)}{(\log |x|)^{1/2}}\asymp 1$$

a.s. for all t > 0 and \varkappa small

Image: Image:

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

• If $\lambda > 0$ and h is "nice," then

$$\limsup_{|x| o \infty} rac{\log u_t(x)}{(\log |x|)^{1/2}} symp 1$$

a.s. for all t > 0 and \varkappa small

Image: Image:

There are other variations as well

프 문 문 프 문

OF UTAH

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

• If $\lambda > 0$ and h is "nice," then

$$\limsup_{|x| o \infty} rac{\log u_t(x)}{(\log |x|)^{1/2}} symp 1$$

a.s. for all t > 0 and \varkappa small

Image: Image:

- There are other variations as well
- "fluctuation exponent" (0, 1/2)

A E F A E F

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

• If $\lambda > 0$ and h is "nice," then

$$\limsup_{|x| o \infty} rac{\log u_t(x)}{(\log |x|)^{1/2}} symp 1$$

a.s. for all t > 0 and \varkappa small

Image: Image:

- There are other variations as well
- ▶ "fluctuation exponent" (0, 1/2)
- ► Are there in-between models? Yes.

글 돈 옷 글 돈

• $\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$ $[\sigma(x) = \lambda x]$

• $\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$ $[\sigma(x) = \lambda x]$

• $\operatorname{Cov}(\eta_t(x),\eta_s(y)) = \delta_0(t-s) \cdot ||x-y||^{-\alpha}$

Ξ.

・ロト ・ 四ト ・ ヨト ・ ヨト …

UNIVERSITY of UTAH

Sac

The parabolic Anderson model

- $\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$ $[\sigma(x) = \lambda x]$
- $\operatorname{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t-s) \cdot ||x-y||^{-\alpha}$
- ▶ The solution \exists ! when $\alpha < \min(d, 2)$ [Dalang, 1999]

OF UTAH

The parabolic Anderson model

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

- $\operatorname{Cov}(\eta_t(x),\eta_s(y)) = \delta_0(t-s) \cdot ||x-y||^{-\alpha}$
- ▶ The solution $\exists!$ when $\alpha < \min(d, 2)$ [Dalang, 1999]
- If $\lambda > 0$, then

 $\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log \|x\|)^{2/(4-\alpha)}} \asymp \varkappa^{-\alpha/(4-\alpha)} \qquad \text{a.s. for all } t>0$

The parabolic Anderson model

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

•
$$\operatorname{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t-s) \cdot ||x-y||^{-\alpha}$$

- ▶ The solution \exists ! when $\alpha < \min(d, 2)$ [Dalang, 1999]
- If $\lambda > 0$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log \|x\|)^{2/(4-\alpha)}} \asymp \varkappa^{-\alpha/(4-\alpha)} \qquad \text{a.s. for all } t>0$$

• "fluctuation exponent" $(2\psi - 1, \psi) = (\alpha/(4-\alpha), 2/(4-\alpha))$

D. Khoshnevisan (Univ of Utah)

September 22, 2011 14 / 15

イロト 不得下 イヨト イヨト

OF UTAH

The parabolic Anderson model

•
$$\dot{u} = (\varkappa/2)\Delta u + \lambda u\eta$$
 $[\sigma(x) = \lambda x]$

•
$$\operatorname{Cov}(\eta_t(x), \eta_s(y)) = \delta_0(t-s) \cdot ||x-y||^{-\alpha}$$

- ▶ The solution \exists ! when $\alpha < \min(d, 2)$ [Dalang, 1999]
- If $\lambda > 0$, then

$$\limsup_{|x|\to\infty} \frac{\log u_t(x)}{(\log \|x\|)^{2/(4-\alpha)}} \asymp \varkappa^{-\alpha/(4-\alpha)} \qquad \text{a.s. for all } t>0$$

- "fluctuation exponent" $(2\psi 1, \psi) = (\alpha/(4-\alpha), 2/(4-\alpha))$
- ► $f = h * \tilde{h} \iff \alpha = 0$, and $f = \delta_0 \iff \alpha = 1 = \min(d, 2)$ [spectral analogies]

イロト イポト イヨト イヨト

of UTAH

Initial point mass

► In all of the preceding, we assumed that

 $0 < \inf u_0 \leq \sup u_0 < \infty.$

Initial point mass

In all of the preceding, we assumed that

 $0 < \inf u_0 \leq \sup u_0 < \infty$.

Question: (Ben Arous, Quastel, 2011) What if $u_0 = \delta_0$?

э

글 돈 옷 글 돈

Image: Image:

UNIVERSITY OF UTAH DQC ► In all of the preceding, we assumed that

 $0 < \inf u_0 \leq \sup u_0 < \infty.$

- **Question:** (Ben Arous, Quastel, 2011) What if $u_0 = \delta_0$?
- ► Theorem. (Conus–Joseph–Kh–Shiu, 2011 [?]) Consider

$$\partial_t u_t(x) = \frac{\varkappa}{2} u_t''(x) + \sigma(u_t(x))\eta_t(x),$$

subject to $u_0 :=$ a finite Borel measure of bounded support, and $\sigma(0) = 0$. Then $\sup_x |u_t(x)| < \infty$ a.s. for all t > 0.

イロト イポト イヨト イヨト