On the chaotic character of some parabolic SPDEs

Davar Khoshnevisan
(joint with Daniel Conus, Mathew Joseph, and Shang-Yuan Shiu)

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

A simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$

A simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$
- Then

$$
u_{n}:=\prod_{j=1}^{n} \xi_{j}= \begin{cases}2^{n} & \text { with probab. } 2^{-n} \\ 0 & \text { with probab. } 1-2^{-n}\end{cases}
$$

A simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$
- Then

$$
u_{n}:=\prod_{j=1}^{n} \xi_{j}= \begin{cases}2^{n} & \text { with probab. } 2^{-n} \\ 0 & \text { with probab. } 1-2^{-n}\end{cases}
$$

- Conclusions:

A simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$
- Then

$$
u_{n}:=\prod_{j=1}^{n} \xi_{j}= \begin{cases}2^{n} & \text { with probab. } 2^{-n} \\ 0 & \text { with probab. } 1-2^{-n}\end{cases}
$$

- Conclusions:
- $u_{n}=0$ for all n large a.s.; in particular, $u_{n} \rightarrow 0$ a.s.

A simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$
- Then

$$
u_{n}:=\prod_{j=1}^{n} \xi_{j}= \begin{cases}2^{n} & \text { with probab. } 2^{-n} \\ 0 & \text { with probab. } 1-2^{-n}\end{cases}
$$

- Conclusions:
- $u_{n}=0$ for all n large a.s.; in particular, $u_{n} \rightarrow 0$ a.s.
- $n^{-1} \log E\left(u_{n}^{k}\right) \rightarrow \gamma_{k}:=(k-1) \log 2$ for all $k>1$

A simple model for intermittency
 (Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$
- Then

$$
u_{n}:=\prod_{j=1}^{n} \xi_{j}= \begin{cases}2^{n} & \text { with probab. } 2^{-n} \\ 0 & \text { with probab. } 1-2^{-n}\end{cases}
$$

- Conclusions:
- $u_{n}=0$ for all n large a.s.; in particular, $u_{n} \rightarrow 0$ a.s.
- $n^{-1} \log E\left(u_{n}^{k}\right) \rightarrow \gamma_{k}:=(k-1) \log 2$ for all $k>1$
- Now replicate this experiment

A simple model for intermittency
 (Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Intermittency occurs when we multiply many roughly-independent r.v.'s ; e.g., ξ_{1}, ξ_{2}, \ldots i.i.d. with $P\left\{\xi_{1}=2\right\}=P\left\{\xi_{1}=0\right\}=1 / 2$
- Then

$$
u_{n}:=\prod_{j=1}^{n} \xi_{j}= \begin{cases}2^{n} & \text { with probab. } 2^{-n} \\ 0 & \text { with probab. } 1-2^{-n}\end{cases}
$$

- Conclusions:
- $u_{n}=0$ for all n large a.s.; in particular, $u_{n} \rightarrow 0$ a.s.
- $n^{-1} \log E\left(u_{n}^{k}\right) \rightarrow \gamma_{k}:=(k-1) \log 2$ for all $k>1$
- Now replicate this experiment
- Is this degeneracy because of the many zeros? No

A second simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$

A second simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $t \rightarrow \infty$ [strong law]

A second simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $t \rightarrow \infty$ [strong law]
- $t^{-1} \log E\left(u_{t}^{k}\right)=\lambda^{2}\binom{k}{2} \rightarrow \gamma_{k}:=\lambda^{2}\binom{k}{2}$ for $k>1$

A second simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $t \rightarrow \infty$ [strong law]
- $t^{-1} \log E\left(u_{t}^{k}\right)=\lambda^{2}\binom{k}{2} \rightarrow \gamma_{k}:=\lambda^{2}\binom{k}{2}$ for $k>1$
- In the first example, $\gamma_{k} \approx k \log 2$; in the second, $\gamma_{k} \approx \frac{1}{2} \lambda^{2} k^{2}$

A second simple model for intermittency

(Zeldovich-Ruzmaikin-Sokoloff, 1990)

- Let b denote 1-D Brownian motion and consider the exponential martingale $u_{t}:=e^{\lambda b_{t}-\left(\lambda^{2} t / 2\right)}$
- $u_{t} \rightarrow 0$ as $t \rightarrow \infty$ [strong law]
- $t^{-1} \log E\left(u_{t}^{k}\right)=\lambda^{2}\binom{k}{2} \rightarrow \gamma_{k}:=\lambda^{2}\binom{k}{2}$ for $k>1$
- In the first example, $\gamma_{k} \approx k \log 2$; in the second, $\gamma_{k} \approx \frac{1}{2} \lambda^{2} k^{2}$
- The examples are "similar,"

$$
e^{b_{t}-(t / 2)} \approx \prod_{j}\left(1-(\Delta b)_{j}-\frac{1}{2}(\Delta t)_{j}\right)
$$

A simulation $\left[\dot{u}_{t}(x)=(\varkappa / 2) u_{t}^{\prime \prime}(x)+\lambda u_{t}(x) \eta_{t}, u_{0} \equiv 1\right]$ $u_{t}=\exp \left\{\lambda b_{t}-(\lambda t / 2)\right\}$ with $\lambda=0.5$ (left) and $\lambda=5$ (right)

Intermittency in cosmology

S. F. Shandarin and Ya. B. Zeldovitch, Rev. Modern Physics 61(2) (1989) 185-220

The model (for today)

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\varkappa}{2} \frac{\partial^{2}}{\partial x^{2}} u_{t}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

where:

1. $\varkappa>0$;

The model (for today)

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\varkappa}{2} \frac{\partial^{2}}{\partial x^{2}} u_{t}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

where:

1. $\varkappa>0$;
2. $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ is Lipschitz continuous;

The model (for today)

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\varkappa}{2} \frac{\partial^{2}}{\partial x^{2}} u_{t}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

where:

1. $\varkappa>0$;
2. $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ is Lipschitz continuous;
3. η is space-time white noise; i.e., a centered GGRF with

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \delta_{0}(x-y)
$$

The model (for today)

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\varkappa}{2} \frac{\partial^{2}}{\partial x^{2}} u_{t}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

where:

1. $\varkappa>0$;
2. $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ is Lipschitz continuous;
3. η is space-time white noise; i.e., a centered GGRF with

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \delta_{0}(x-y)
$$

4. $u_{0}: \mathbf{R} \rightarrow \mathbf{R}_{+}$nonrandom, bounded, and measurable;

The model (for today)

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\varkappa}{2} \frac{\partial^{2}}{\partial x^{2}} u_{t}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

where:

1. $\varkappa>0$;
2. $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ is Lipschitz continuous;
3. η is space-time white noise; i.e., a centered GGRF with

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \delta_{0}(x-y)
$$

4. $u_{0}: \mathbf{R} \rightarrow \mathbf{R}_{+}$nonrandom, bounded, and measurable;
5. u exists, is unique and continuous (Walsh, 1986);

The model (for today)

$$
\frac{\partial}{\partial t} u_{t}(x)=\frac{\varkappa}{2} \frac{\partial^{2}}{\partial x^{2}} u_{t}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

where:

1. $\varkappa>0$;
2. $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ is Lipschitz continuous;
3. η is space-time white noise; i.e., a centered GGRF with

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \delta_{0}(x-y)
$$

4. $u_{0}: \mathbf{R} \rightarrow \mathbf{R}_{+}$nonrandom, bounded, and measurable;
5. u exists, is unique and continuous (Walsh, 1986);
6. Either $0<\inf \sigma \leq \sup \sigma<\infty$, or $\sigma(u) \propto u$ [random media].

Weak intermittency

$\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- (weak) intermittency [Bertini-Cancrini, 1994; Carmona-Molchanov, 1994; Molchanov, 1991; Foondun-K., 2010; Zel'dovitch et al, 1985, 1988, 1990; ...]:

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} \log E\left(\left|u_{t}(x)\right|^{k}\right)<\infty \quad(k \geq 2, x \in \mathbf{R})
$$

Weak intermittency

$\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- (weak) intermittency [Bertini-Cancrini, 1994; Carmona-Molchanov, 1994; Molchanov, 1991; Foondun-K., 2010; Zel'dovitch et al, 1985, 1988, 1990; ...]:

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} \log E\left(\left|u_{t}(x)\right|^{k}\right)<\infty \quad(k \geq 2, x \in \mathbf{R})
$$

- Weak intermittency implies "localization" on large time scales.

Weak intermittency

$\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- (weak) intermittency [Bertini-Cancrini, 1994; Carmona-Molchanov, 1994; Molchanov, 1991; Foondun-K., 2010; Zel'dovitch et al, 1985, 1988, 1990; ...]:

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} \log E\left(\left|u_{t}(x)\right|^{k}\right)<\infty \quad(k \geq 2, x \in \mathbf{R})
$$

- Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ :

Weak intermittency

$\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- (weak) intermittency [Bertini-Cancrini, 1994; Carmona-Molchanov, 1994; Molchanov, 1991; Foondun-K., 2010; Zel'dovitch et al, 1985, 1988, 1990; ...]:

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} \log E\left(\left|u_{t}(x)\right|^{k}\right)<\infty \quad(k \geq 2, x \in \mathbf{R})
$$

- Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ :
- For all $t>0$; and

Weak intermittency

$\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- (weak) intermittency [Bertini-Cancrini, 1994; Carmona-Molchanov, 1994; Molchanov, 1991; Foondun-K., 2010; Zel'dovitch et al, 1985, 1988, 1990; ...]:

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} \log E\left(\left|u_{t}(x)\right|^{k}\right)<\infty \quad(k \geq 2, x \in \mathbf{R})
$$

- Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ :
- For all $t>0$; and
- both in time, and space

Weak intermittency

$\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- (weak) intermittency [Bertini-Cancrini, 1994; Carmona-Molchanov, 1994; Molchanov, 1991; Foondun-K., 2010; Zel'dovitch et al, 1985, 1988, 1990; ...]:

$$
0<\limsup _{t \rightarrow \infty} \frac{1}{t} \log E\left(\left|u_{t}(x)\right|^{k}\right)<\infty \quad(k \geq 2, x \in \mathbf{R})
$$

- Weak intermittency implies "localization" on large time scales.
- Physical intermittency is expected to hold because the SPDE is typically "chaotic," and for many choices of σ :
- For all $t>0$; and
- both in time, and space
- Today: What happens before the onset of localization?

Optimal regularity
 $\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, . . .]

Optimal regularity
 $\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, . . .]
- If $\sigma(0)=0$, then the fact that $u_{0}(x) \geq 0$ implies that $u_{t}(x) \geq 0$ [Mueller's comparison principle]

Optimal regularity $\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, . . .]
- If $\sigma(0)=0$, then the fact that $u_{0}(x) \geq 0$ implies that $u_{t}(x) \geq 0$ [Mueller's comparison principle]
- If $\sigma(0)=0$ and $u_{0} \in L^{2}(\mathbf{R})$ then $u_{t} \in L^{2}(\mathbf{R})$ a.s. (Dalang-Mueller, 2003)

Optimal regularity $\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, . . .]
- If $\sigma(0)=0$, then the fact that $u_{0}(x) \geq 0$ implies that $u_{t}(x) \geq 0$ [Mueller's comparison principle]
- If $\sigma(0)=0$ and $u_{0} \in L^{2}(\mathbf{R})$ then $u_{t} \in L^{2}(\mathbf{R})$ a.s. (Dalang-Mueller, 2003)
- If $u_{0} \in C^{\alpha}(\mathbf{R})$ for some $\alpha>\frac{1}{2}$ and has compact support, and if $\sigma(0)=0$, then $\sup _{x \in \mathbf{R}} u_{t}(x)<\infty$ a.s. for all $t>0$ (Foondun-Kh, 2010)

Optimal regularity $\partial_{t} u=(\varkappa / 2) \partial_{x x} u+\sigma(u) \eta$

- Can frequently understand parabolic equations via optimal regularity [Lunardi, 1995, and older works by Pazy, Kato, . . .]
- If $\sigma(0)=0$, then the fact that $u_{0}(x) \geq 0$ implies that $u_{t}(x) \geq 0$ [Mueller's comparison principle]
- If $\sigma(0)=0$ and $u_{0} \in L^{2}(\mathbf{R})$ then $u_{t} \in L^{2}(\mathbf{R})$ a.s. (Dalang-Mueller, 2003)
- If $u_{0} \in C^{\alpha}(\mathbf{R})$ for some $\alpha>\frac{1}{2}$ and has compact support, and if $\sigma(0)=0$, then $\sup _{x \in \mathbf{R}} u_{t}(x)<\infty$ a.s. for all $t>0$ (Foondun-Kh, 2010)
- Today's goal: The solution can be sensitive to the choice of u_{0} (we study cases where u_{t} is unbounded for all $t>0$)

Theorem (Conus-Joseph-Kh)
A moderately-noisy model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\sigma(u) \eta$

Theorem (Conus-Joseph-Kh)

A moderately-noisy model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\sigma(u) \eta$
- If $0<\inf _{x \geq 0} \sigma(x) \leq \sup _{x>0} \sigma(x)<\infty$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{u_{t}(x)}{(\log |x|)^{1 / 2}} \asymp \varkappa^{-1 / 4} \quad \text { a.s. for all } t>0
$$

Theorem (Conus-Joseph-Kh)

A moderately-noisy model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\sigma(u) \eta$
- If $0<\inf _{x \geq 0} \sigma(x) \leq \sup _{x \geq 0} \sigma(x)<\infty$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{u_{t}(x)}{(\log |x|)^{1 / 2}} \asymp \varkappa^{-1 / 4} \quad \text { a.s. for all } t>0
$$

- Power of \varkappa suggests the universality class of random walks in weak interactions with their random environment

Theorem (Conus-Joseph-Kh)

The parabolic Anderson model

$$
\text { - } \dot{u}=(\varkappa / 2) u^{\prime \prime}+\lambda u \eta \quad[\sigma(x)=\lambda x]
$$

Theorem (Conus-Joseph-Kh)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{2 / 3}} \asymp \frac{1}{\varkappa^{1 / 3}}
$$

a.s. for all $t>0$

Theorem (Conus-Joseph-Kh)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{2 / 3}} \asymp \frac{1}{\varkappa^{1 / 3}}
$$

a.s. for all $t>0$

- $u_{t}(x) \approx \exp \left\{\right.$ const $\left.\cdot(\log |x| / \sqrt{\varkappa})^{2 / 3}\right\}$

Theorem (Conus-Joseph-Kh)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{2 / 3}} \asymp \frac{1}{\varkappa^{1 / 3}}
$$

a.s. for all $t>0$

- $u_{t}(x) \approx \exp \left\{\right.$ const $\left.\cdot(\log |x| / \sqrt{\varkappa})^{2 / 3}\right\}$
- Power of \varkappa suggests the universality class of random-matrix models (GUE)

Theorem (Conus-Joseph-Kh)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) u^{\prime \prime}+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{2 / 3}} \asymp \frac{1}{\varkappa^{1 / 3}}
$$

a.s. for all $t>0$

- $u_{t}(x) \approx \exp \left\{\right.$ const $\left.\cdot(\log |x| / \sqrt{\varkappa})^{2 / 3}\right\}$
- Power of \varkappa suggests the universality class of random-matrix models (GUE)
- "KPZ fluctuation exponents" ($1 / 3,2 / 3$)

Ideas used in proofs

- Coupling. If x_{1}, \ldots, x_{N} are sufficiently far apart, then $u_{t}\left(x_{1}\right), \ldots, u_{t}\left(x_{N}\right)$ are "approximately independent"

Ideas used in proofs

- Coupling. If x_{1}, \ldots, x_{N} are sufficiently far apart, then $u_{t}\left(x_{1}\right), \ldots, u_{t}\left(x_{N}\right)$ are "approximately independent"
- Obtain good tail estimates:

Ideas used in proofs

- Coupling. If x_{1}, \ldots, x_{N} are sufficiently far apart, then $u_{t}\left(x_{1}\right), \ldots, u_{t}\left(x_{N}\right)$ are "approximately independent"
- Obtain good tail estimates:
- $\log P\left\{u_{t}(x) \geq \lambda\right\} \asymp-\varkappa^{1 / 2} \lambda^{2}$ if σ bounded above and below

Ideas used in proofs

- Coupling. If x_{1}, \ldots, x_{N} are sufficiently far apart, then $u_{t}\left(x_{1}\right), \ldots, u_{t}\left(x_{N}\right)$ are "approximately independent"
- Obtain good tail estimates:
- $\log P\left\{u_{t}(x) \geq \lambda\right\} \asymp-\varkappa^{1 / 2} \lambda^{2}$ if σ bounded above and below
- $\log P\left\{u_{t}(x) \geq \lambda\right\} \asymp-\varkappa^{1 / 2}(\log \lambda)^{3 / 2}$ for parabolic Anderson model

Ideas used in proofs

- Coupling. If x_{1}, \ldots, x_{N} are sufficiently far apart, then $u_{t}\left(x_{1}\right), \ldots, u_{t}\left(x_{N}\right)$ are "approximately independent"
- Obtain good tail estimates:
- $\log P\left\{u_{t}(x) \geq \lambda\right\} \asymp-\varkappa^{1 / 2} \lambda^{2}$ if σ bounded above and below
- $\log P\left\{u_{t}(x) \geq \lambda\right\} \asymp-\varkappa^{1 / 2}(\log \lambda)^{3 / 2}$ for parabolic Anderson model
- Similar results for Majda's passive-scalar model [stretched exponential tails, but on a non-log scale] by Bronski-McLaughlin (2000)

Colored noise

$\dot{u}_{t}(x)=(\varkappa / 2)\left(\Delta u_{t}\right)(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x) \quad\left(t>0, x \in \mathbf{R}^{d}\right)$

- Now

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(s-t) f(x-y)
$$

(Dalang, 1999; Hu-Nualart, 2009, ...)

Colored noise

$$
\dot{u}_{t}(x)=(\varkappa / 2)\left(\Delta u_{t}\right)(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x) \quad\left(t>0, x \in \mathbf{R}^{d}\right)
$$

- Now

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(s-t) f(x-y)
$$

(Dalang, 1999; Hu-Nualart, 2009, ...)

- Suppose $f=h * \tilde{h}$ for some $h \in L^{2}\left(\mathbf{R}^{d}\right)$, so \exists ! solution $\forall d \geq 1$

Colored noise

$$
\dot{u}_{t}(x)=(\varkappa / 2)\left(\Delta u_{t}\right)(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x) \quad\left(t>0, x \in \mathbf{R}^{d}\right)
$$

- Now

$$
\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(s-t) f(x-y)
$$

(Dalang, 1999; Hu-Nualart, 2009, ...)

- Suppose $f=h * \tilde{h}$ for some $h \in L^{2}\left(\mathbf{R}^{d}\right)$, so \exists ! solution $\forall d \geq 1$
- \exists KPZ version also (Medina-Hwa-Kardar-Zhang, 1989)

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$ and h is "nice," then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{1 / 2}} \asymp 1
$$

a.s. for all $t>0$ and \varkappa small

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$ and h is "nice," then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{1 / 2}} \asymp 1
$$

a.s. for all $t>0$ and \varkappa small

- There are other variations as well

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$ and h is "nice," then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{1 / 2}} \asymp 1 \quad \text { a.s. for all } t>0 \text { and } \varkappa \text { small }
$$

- There are other variations as well
- "fluctuation exponent" ($0,1 / 2$)

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- If $\lambda>0$ and h is "nice," then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log |x|)^{1 / 2}} \asymp 1 \quad \text { a.s. for all } t>0 \text { and } \varkappa \text { small }
$$

- There are other variations as well
- "fluctuation exponent" $(0,1 / 2)$
- Are there in-between models? Yes.

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

$$
\text { - } \dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]
$$

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- $\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \cdot\|x-y\|^{-\alpha}$

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- $\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \cdot\|x-y\|^{-\alpha}$
- The solution \exists ! when $\alpha<\min (d, 2)$ [Dalang, 1999]

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- $\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \cdot\|x-y\|^{-\alpha}$
- The solution \exists ! when $\alpha<\min (d, 2)$ [Dalang, 1999]
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log \|x\|)^{2 /(4-\alpha)}} \asymp \varkappa^{-\alpha /(4-\alpha)}
$$

a.s. for all $t>0$

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- $\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \cdot\|x-y\|^{-\alpha}$
- The solution \exists ! when $\alpha<\min (d, 2)$ [Dalang, 1999]
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log \|x\|)^{2 /(4-\alpha)}} \asymp \varkappa^{-\alpha /(4-\alpha)}
$$

$$
\text { a.s. for all } t>0
$$

- "fluctuation exponent" $(2 \psi-1, \psi)=(\alpha /(4-\alpha), 2 /(4-\alpha))$

Theorem (Conus-Joseph-Kh-Shiu)

The parabolic Anderson model

- $\dot{u}=(\varkappa / 2) \Delta u+\lambda u \eta \quad[\sigma(x)=\lambda x]$
- $\operatorname{Cov}\left(\eta_{t}(x), \eta_{s}(y)\right)=\delta_{0}(t-s) \cdot\|x-y\|^{-\alpha}$
- The solution \exists ! when $\alpha<\min (d, 2)$ [Dalang, 1999]
- If $\lambda>0$, then

$$
\limsup _{|x| \rightarrow \infty} \frac{\log u_{t}(x)}{(\log \|x\|)^{2 /(4-\alpha)}} \asymp \varkappa^{-\alpha /(4-\alpha)}
$$

$$
\text { a.s. for all } t>0
$$

- "fluctuation exponent" $(2 \psi-1, \psi)=(\alpha /(4-\alpha), 2 /(4-\alpha))$
- $f=h * \tilde{h} \Leftrightarrow \alpha=0$, and $f=\delta_{0} \Leftrightarrow \alpha=1=\min (d, 2)$
[spectral analogies]

Initial point mass

- In all of the preceding, we assumed that

$$
0<\inf u_{0} \leq \sup u_{0}<\infty .
$$

Initial point mass

- In all of the preceding, we assumed that

$$
0<\inf u_{0} \leq \sup u_{0}<\infty .
$$

- Question: (Ben Arous, Quastel, 2011) What if $u_{0}=\delta_{0}$?

Initial point mass

- In all of the preceding, we assumed that

$$
0<\inf u_{0} \leq \sup u_{0}<\infty .
$$

- Question: (Ben Arous, Quastel, 2011) What if $u_{0}=\delta_{0}$?
- Theorem. (Conus-Joseph-Kh-Shiu, 2011 [?]) Consider

$$
\partial_{t} u_{t}(x)=\frac{\varkappa}{2} u_{t}^{\prime \prime}(x)+\sigma\left(u_{t}(x)\right) \eta_{t}(x)
$$

subject to $u_{0}:=$ a finite Borel measure of bounded support, and $\sigma(0)=0$. Then $\sup _{x}\left|u_{t}(x)\right|<\infty$ a.s. for all $t>0$.

