Exceptional Times and Invariance for Dynamical Random Walks

Davar Khoshnevisan, David Asher Levin, & Pedro J. Méndez-Hernández Department of Mathematics, The University of Utah

http://www.math.utah.edu/~davar/e-prints.html

v := a probability distribution on $(-\infty,\infty)$

Assume: Mean(v) = 0 and SD(v) = 1

v-Random Walk: $X_1(0), X_2(0), \dots \stackrel{\text{i.i.d.}}{\sim} v$

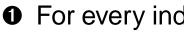
 $S_n(0) := X_1(0) + \cdots + X_n(0)$

Adding Dynamics: (Benjamini, Häggström, Peres, and Steif, Ann. Prob., 2003)

Want $t \mapsto \{S_n(t)\}_{n=1}^{\infty}$ to be stationary, strong Markov in $(-\infty,\infty)^{\mathbf{R}_+}$, and with invariant measure v.

Thus, in particular, for any $t \ge 0$, $\{S_1(t), S_2(t), \ldots\} \stackrel{(d)}{=} \{S_1(0), S_2(0), \ldots\}$; evolve in stationarity.

One Interesting Solution:



- For every index $i \ge 1$ run an indep't rate-one Poisson process
- **2** Every time the PP jumps replace $X_i(t-)$ by an indep't copy $[X_i(0-) := X_i(0)]$
- All PP's are independent of all X's

• Finally define
$$(n \ge 1, t \ge 0)$$

$$S_n(t) := X_1(t) + \cdots + X_n(t)$$

As *t* varies, $\{S_1(t), S_2(t), \ldots\}$ forms an infinite family of interacting random walks; interactions are "local."

An a.s.-property that holds for $S_1(t), S_2(t), ...$ simultaneously for all $t \ge 0$ is said to be "dynamically stable." Else, it is "dynamically sensitive."

Theorem 1 (Benjamini et al) 1 If v has only one moment (:= 0), then SLLN is dyn. stable; i.e.,

$$P\left\{\lim_{n\to\infty}\frac{S_n(t)}{n}=0 \text{ for all } t\geq 0\right\}=1.$$

• If Mean(v) = 0 and SD(v) = 1, then the LIL is dyn. stable; i.e.,

$$\mathsf{P}\left\{\limsup_{n\to\infty}\frac{S_n(t)}{\sqrt{2n\ln\ln n}}=1 \text{ for all } t\geq 0\right\}=1.$$

Define dyn. walks in \mathbb{Z}^d analogously. Then,

Theorem 2 (Benjamini et al, 2003) If v defines the simple walk on \mathbb{Z}^d then "Transience" is dyn. stable iff $d \ge 5$.

[Cf. Pólya: $\{S_1(0), S_2(0), S_3(0), ...\}$ is transient iff $d \ge 3.$]

Theorem 3 (Benjamini et al, 2003) If v lives on a finite subset of Z and Mean(v) = 0 then "Recurrence" is dyn. stable.

Benjamini et al (2003) conjectured that there probably exists a connection to the OU process in Wiener space. Answer: "Yes." Without having to define the latter process: **Invariance:** Suppose Mean(v) = 0 and SD(v) = 1.

Theorem 4 (Kh., Levin, Méndez, 2004) As $n \to \infty$, $\begin{cases} \frac{S_{[ns]}(t)}{\sqrt{n}} \\ s,t \in [0,1] \end{cases} \xrightarrow{\mathscr{D}([0,1]^2)} \{U_s(t)\}_{s,t \in [0,1]} \end{cases}$ where U is a centered, Gaussian process with $\operatorname{E}[U_s(t)U_u(v)] = \min(s,u) \times e^{-|t-v|}.$

For a related result for a related model see Rusakov (*Teor. Veroyatnost. i Primenen*, 1989).

An "explicit construction" of *U*: Set $U_s(t) = e^{-t}\beta(s, e^{2t})$ where β denotes the Brownian sheet:

 $E[\beta(s,t)\beta(u,v)] = \min(s,u) \times \min(t,v).$

Dyn. Instability of the LIL: Suppose v = N(0,1). Set $\Phi = N(0,1)$ -cdf, and $\overline{\Phi} = 1 - \Phi$.

Theorem 5 (Kh., Levin, Méndez, Ann. Prob., 2004+) The integral-test refinement to the LIL is dyn. unstable. In fact, for $H \uparrow$,

$$S_n(t) > H(n)\sqrt{n} \quad \forall t \ge 0 \text{ i.o. iff}$$
$$\int_1^\infty H^4(t) \frac{\overline{\Phi}(H(t)) dt}{t} < \infty.$$

Cf. Erdős: For $t \ge 0$ fixed, $S_n(t) > H(n)\sqrt{n}$ i.o. iff

$$\int_1^\infty H^2(t) \frac{\overline{\Phi}(H(t))\,dt}{t} < \infty.$$

Question: How big is the set of exceptional times *t*?

A Multifractal Analysis: Set v = N(0, 1). If $H \uparrow$ then $\Lambda_H := \{t \ge 0 : S_n(t) > H(n)\sqrt{n} \text{ i.o.}\}.$

Theorem 6 (Kh., Levin, Méndez, 2004) A.s.:

$$\dim_{\mathscr{H}} \Lambda_{H} = \min\left(1, \frac{4 - \delta(H)}{2}\right), \text{ where}$$
$$\delta(H) := \sup\left\{\zeta > 0: \int_{1}^{\infty} H^{\zeta}(t) \frac{\overline{\Phi}(t) dt}{t} < \infty\right\}.$$

 $(\dim_{\mathscr{H}} A < 0 \text{ means } A = \emptyset$.) The proof rests on several calculations, one of which is interesting in the present context:

Moderate Deviations: Let v = N(0,1). For any fixed compact set $E \subset [0,1]$ consider $K_E(\varepsilon)$ to be the *Kolmogorov* ε -entropy of E; i.e., the maximum n for which $\exists x_1, \ldots, x_n \in E$ such that $\min_{1 \le i \ne j \le n} |x_i - x_j| > \varepsilon$.

Theorem 7 (Kh., Levin, Méndez, 2004) Suppose $z_n \uparrow \infty$ while $z_n = o(n^{1/4})$. Then, there exists c > 1 such that for all compact $E \subseteq [0, 1]$ and all $n \ge 1$,

$$c^{-1} \leq \frac{\Pr\{\sup_{t \in E} S_n(t) \geq z_n \sqrt{n}\}}{K_E(1/z_n^2)\overline{\Phi}(z_n)} \leq c.$$

Corollary 8 (Kh., Levin, Méndez, 2004) Suppose *Z* is the OU process; i.e., it solves $dZ = -Z dt + \sqrt{2} dW$. Then, there exists c > 1 such that for all compact $E \subseteq [0, 1]$ and all $\lambda \ge 1$,

$$c^{-1} \leq \frac{\mathbb{P}\{\sup_{t \in E} Z(t) \geq \lambda\}}{\mathbb{K}_E(1/\lambda^2)\overline{\Phi}(\lambda)} \leq c.$$

Other Implications Exist: For instance, for all compact, non-random $E \subseteq [0, 1]$,

$$\sup_{t\in E}\limsup_{n\to\infty}\frac{(S_n(t))^2-2n\ln\ln n}{n\ln\ln\ln n}=3+2\dim_{\mathscr{P}}E,$$

where $\dim_{\mathscr{P}}$ denotes "packing dimension." When $E = \{0\}$ (any singleton will do) $\dim_{\mathscr{P}} E = 0$, and we obtain a classical result of Kolmogorov. On the other hand, $\dim_{\mathscr{P}}[0,1] = 1$, and this yields an earlier results of the authors (*Ann. Prob.*, 2004+). A Stability Result: If *v* denotes a distribution on **Z** that has finite support, then a theorem of Benjamini et al (2003) asserts that all $S_n(t)$'s are recurrent simultaneously. This holds for more general walks: Suppose Mean(v) = 0 and SD(v) = 1. Also assume that *v* has $(2+\varepsilon)$ finite moments for some $\varepsilon > 0$. Then,

Theorem 9 (Kh., Levin, Méndez, 2004) A.s.:

$$\sum_{n=1}^{\infty} \mathbf{1}_{\{S_n(t)=0\}} = \infty^{\forall} t \ge 0.$$

Not a "standard" extension

- We do not know what happens when $\varepsilon = 0$
- Requires a new "gambler's ruin" result of indep't interest:

Gambler's Ruin: Henceforth, $\{x_i\}_{i=1}^{\infty}$ are i.i.d. Z-valued, and define a random walk $s_n := x_1 + \cdots + x_n$. We assume that $E[x_1] = 0$ and $Var(x_1) = \sigma^2 < \infty$. Consider the first–passage times,

$$T(z) := \inf \{ n \ge 1 : s_n = z \}.$$

Gambler's ruin problem (Pascal, Fermat, \cdots) asks for an evaluation of $P\{T(z) \le T(0)\}$. If *x*'s are nice, then use martingales. In general, this idea does not seem to work.

Theorem 10 (Kh., Levin, Méndez, 2004) If *G* denotes the additive subgroup of **Z** generated by the possible values of $\{s_n\}_{n=1}^{\infty}$ then there exists $c = c(\sigma^2, G) > 1$ such that for all $z \in G$,

$$\frac{c^{-1}}{1+|z|} \le \mathbf{P}\{T(z) \le T(0)\} \le \frac{c}{1+|z|}.$$

An Outline: First prove that $P{T(0) > n} \approx n^{-1/2}$. [Half is easy: $P{T(0) > n} \ge P{\mathscr{T} > n}$ where \mathscr{T} denotes the first time s_n enters $(-\infty, 0)$. Then appeal to Feller's Tauberian estimates.]

Then go one more step and prove that $P_z\{T(0) > n\} \approx |z|/\sqrt{n}$ (lower bound OK if $|z| = O(\sqrt{n})$; upper bound generic.) Once again, half is easy: $P_z\{T(0) > n\} \ge P_z\{\mathscr{T} > n\}$, which is greater than $c|z|/\sqrt{n}$ (Pemantle and Peres, 1995).

One more easy half-proof: By the strong Markov property,

$$P\{T(0) > n\} \ge P\{T(z) \le T(0)\} \times P_z\{T(0) > n\}.$$

Assemble the preceding 2 estimates to obtain an upper bound for $P{T(0) < T(z)}$.