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ν := a probability distribution on (−∞,∞)

Assume: Mean(ν) = 0 and SD(ν) = 1

ν-Random Walk: X1(0),X2(0), . . . i.i.d.∼ ν

Sn(0) := X1(0)+ · · ·+Xn(0)

Adding Dynamics: (Benjamini, Häggström, Peres,
and Steif, Ann. Prob., 2003)

Want t 7→ {Sn(t)}∞
n=1 to be stationary, strong Markov in

(−∞,∞)R+, and with invariant measure ν .

Thus, in particular, for any t ≥ 0, {S1(t),S2(t), . . .}
(d)
=

{S1(0),S2(0), . . .}; evolve in stationarity.



One Interesting Solution:

➊ For every index i ≥ 1 run an indep’t rate-one Pois-
son process

➋ Every time the PP jumps replace Xi(t−) by an in-
dep’t copy [Xi(0−) := Xi(0)]

➌ All PP’s are independent of all X’s

➍ Finally define (n≥ 1, t ≥ 0)

Sn(t) := X1(t)+ · · ·+Xn(t)

As t varies, {S1(t),S2(t), . . .} forms an infinite family of
interacting random walks; interactions are “local.”



An a.s.-property that holds for S1(t),S2(t), . . . simulta-
neously for all t ≥ 0 is said to be “dynamically stable.”
Else, it is “dynamically sensitive.”

Theorem 1 (Benjamini et al) ➊ If ν has only one
moment ( := 0), then SLLN is dyn. stable; i.e.,

P

{
lim

n→∞
Sn(t)

n
= 0 for all t ≥ 0

}
= 1.

➋ If Mean(ν) = 0 and SD(ν) = 1, then the LIL is dyn.
stable; i.e.,

P

{
limsup

n→∞

Sn(t)√
2nln lnn

= 1 for all t ≥ 0

}
= 1.



Define dyn. walks in Zd analogously. Then,

Theorem 2 (Benjamini et al, 2003) If ν defines the
simple walk on Zd then “Transience” is dyn. stable iff
d≥ 5.

[Cf. Pólya: {S1(0),S2(0),S3(0), . . .} is transient iff d ≥
3.]

Theorem 3 (Benjamini et al, 2003) If ν lives on a fi-
nite subset of Z and Mean(ν) = 0 then “Recurrence”
is dyn. stable.

Benjamini et al (2003) conjectured that there proba-
bly exists a connection to the OU process in Wiener
space. Answer: “Yes.” Without having to define the
latter process:



Invariance: Suppose Mean(ν) = 0 and SD(ν) = 1.

Theorem 4 (Kh., Levin, M éndez, 2004) As n→ ∞,{
S[ns](t)√

n

}
s,t∈[0,1]

D([0,1]2)
−−−−−−→ {Us(t)}s,t∈[0,1]

where U is a centered, Gaussian process with

E[Us(t)Uu(v)] = min(s,u)×e−|t−v|.

For a related result for a related model see Rusakov
(Teor. Veroyatnost. i Primenen, 1989).

An “explicit construction” of U : Set Us(t) = e−tβ (s,e2t)
where β denotes the Brownian sheet:

E[β (s, t)β (u,v)] = min(s,u)×min(t,v).



Dyn. Instability of the LIL: Suppose ν = N(0,1). Set
Φ = N(0,1)-cdf, and Φ = 1−Φ.

Theorem 5 (Kh., Levin, M éndez, Ann. Prob. , 2004+)
The integral-test refinement to the LIL is dyn. unsta-
ble. In fact, for H ↑,

Sn(t) > H(n)
√

n ∀t ≥ 0 i.o. iff∫ ∞

1
H4(t)

Φ(H(t))dt
t

< ∞.

Cf. Erdős: For t ≥ 0 fixed, Sn(t) > H(n)
√

n i.o. iff∫ ∞

1
H2(t)

Φ(H(t))dt
t

< ∞.

Question: How big is the set of exceptional times t?



A Multifractal Analysis: Set ν = N(0,1). If H ↑ then

ΛH :=
{

t ≥ 0 : Sn(t) > H(n)
√

n i.o.
}

.

Theorem 6 (Kh., Levin, M éndez, 2004) A.s.:

dimH ΛH = min

(
1 ,

4−δ (H)
2

)
, where

δ (H) := sup

{
ζ > 0 :

∫ ∞

1
Hζ (t)

Φ(t)dt
t

< ∞
}

.

(dimH A< 0 means A= ∅.) The proof rests on several
calculations, one of which is interesting in the present
context:



Moderate Deviations: Let ν = N(0,1). For any fixed
compact set E ⊂ [0,1] consider KE(ε) to be the Kol-
mogorov ε-entropy of E; i.e., the maximum n for which
∃ x1, . . . ,xn ∈ E such that min1≤i 6= j≤n |xi−x j |> ε.

Theorem 7 (Kh., Levin, M éndez, 2004) Suppose zn↑
∞ while zn = o(n1/4). Then, there exists c> 1 such that
for all compact E ⊆ [0,1] and all n≥ 1,

c−1≤ P{supt∈E Sn(t)≥ zn
√

n}
KE(1/z2

n)Φ(zn)
≤ c.

Corollary 8 (Kh., Levin, M éndez, 2004) Suppose Z is
the OU process; i.e., it solves dZ = −Z dt+

√
2dW.

Then, there exists c > 1 such that for all compact E ⊆
[0,1] and all λ ≥ 1,

c−1≤ P{supt∈E Z(t)≥ λ}
KE(1/λ 2)Φ(λ )

≤ c.



Other Implications Exist: For instance, for all com-
pact, non-random E ⊆ [0,1],

sup
t∈E

limsup
n→∞

(Sn(t))2−2nln lnn
nln ln lnn

= 3+2dimP E,

where dimP denotes “packing dimension.” When E =
{0} (any singleton will do) dimP E = 0, and we obtain
a classical result of Kolmogorov. On the other hand,
dimP [0,1] = 1, and this yields an earlier results of the
authors (Ann. Prob., 2004+).



A Stability Result: If ν denotes a distribution on Z
that has finite support, then a theorem of Benjamini et
al (2003) asserts that all Sn(t)’s are recurrent simulta-
neously. This holds for more general walks: Suppose
Mean(ν) = 0 and SD(ν) = 1. Also assume that ν has
(2+ ε) finite moments for some ε > 0. Then,

Theorem 9 (Kh., Levin, M éndez, 2004) A.s.:

∞
∑
n=1

1{Sn(t)=0} = ∞ ∀t ≥ 0.

✥ Not a “standard” extension

✥ We do not know what happens when ε = 0

✥ Requires a new “gambler’s ruin” result of indep’t
interest:



Gambler’s Ruin: Henceforth, {xi}∞
i=1 are i.i.d. Z-valued,

and define a random walk sn := x1 + · · ·+ xn. We as-
sume that E[x1] = 0 and Var(x1) = σ2 < ∞. Consider
the first–passage times,

T(z) := inf {n≥ 1 : sn = z} .

Gambler’s ruin problem (Pascal, Fermat, · · · ) asks for
an evaluation of P{T(z) ≤ T(0)}. If x’s are nice, then
use martingales. In general, this idea does not seem
to work.

Theorem 10 (Kh., Levin, M éndez, 2004) If G denotes
the additive subgroup of Z generated by the possible
values of {sn}∞

n=1 then there exists c = c(σ2,G) > 1

such that for all z∈G,

c−1

1+ |z|
≤ P{T(z)≤ T(0)} ≤ c

1+ |z|
.



An Outline: First prove that P{T(0)> n}�n−1/2. [Half
is easy: P{T(0) > n} ≥ P{T > n} where T denotes
the first time sn enters (−∞,0). Then appeal to Feller’s
Tauberian estimates.]

Then go one more step and prove that Pz{T(0) > n} �
|z|/

√
n (lower bound OK if |z| = O(

√
n); upper bound

generic.) Once again, half is easy: Pz{T(0) > n} ≥
Pz{T > n}, which is greater than c|z|/

√
n (Pemantle

and Peres, 1995).

One more easy half-proof: By the strong Markov prop-
erty,

P{T(0) > n} ≥ P{T(z)≤ T(0)}×Pz{T(0) > n}.

Assemble the preceding 2 estimates to obtain an up-
per bound for P{T(0) < T(z)}.


