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Outline of Lecture 2:

• Intersections of Brownian Motions

– Proof in the critical case d = 4
– Proof in the subcritical case d ≤ 3

• A problem on images
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Intersections of Brownian Motions

In order to see how one can use multiparameter
processes, let us isolate a concrete problem:

Theorem. [Dvoretzky et al (1950)] Let B and B′

be two independent BM’s in Rd with B(0) = B′(0) = 0.
Then B((0 ,∞))∩B′((0 ,∞)) 6= ∅ iff d ≤ 3.

The “usual” proof: By Kakutani (1944) [see also
Dvoretzky et al (1950)]: For all nonrandom G⊂ Rd,

P
{

B((0 ,∞))∩G 6= ∅
}

> 0 ⇔ Capd−2(G) > 0.

Therefore, it suffices to prove that

E
[ :=Capd−2(G)︷ ︸︸ ︷
Capd−2(B

′((0 ,∞)))
]

> 0 ⇔ d ≤ 3.

And this is what most proofs do, after some fashion.
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Alternatively, define A to be the additive Brownian
motion,

A(s , t) := B(s)−B′(t).

And note that

B((0 ,∞))∩B′((0 ,∞)) 6= ∅ ⇔ 0 ∈ A((0 ,∞)2).

So the problem is to prove that

A hits zero iff d ≤ 3.

There is now a simple proof of this fact (Kh. 2003).
The hardest part is d = 4 which I start with. [This
proves also the case that d ≥ 5, by projection.]
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Proof in the Critical Case d = 4

Let d = 4, and A(s , t) := B(s)−B′(t) be additive BM.

Step 1. E|A([0 ,1]2)|= 0.

Step 2. 0 6∈ A([1 ,2]2).

Step 3. 0 6∈ A((0 ,∞)2) a.s.

Step 3 follows fairly easily from Steps 1 and 2, and
scaling. Step 2 is also easy: Let

F(x) := P{x ∈ A([0 ,1]2)} ∀x ∈ R4.

Step 1 ⇒ F = 0 a.e. ⇒ because A(1 ,1)∼ N(0 ,4I),

P
{

0 ∈ A([1 ,2]2)
}

= (4π)−2
∫

R4
F(x)e−‖x‖2/4 dx = 0,

⇒ Step 2. Suffices to prove Step 1.
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Recall A(s , t) = B(s)−B′(t). We wish to show that
E|A([0 ,1]2)|= 0 when

�
�

�
d = 4 .

Observation:

E|A([0 ,2]2)| ≤E|A([0 ,1]×[0 ,2])|+E|A([1 ,2]×[0 ,2])|.

By scaling, the left-hand side = 4E|A([0 ,1]2)|. The
right-hand side terms are equal (stationarity of
inc’s). Thus,

2E|A([0 ,1]2)| ≤ E|A([0 ,1]× [0 ,2])|.
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2E|A([0 ,1]2)| ≤ E|A([0 ,1]× [0 ,2])|.

But RHS =

E|A([0 ,1]2)|+E|A([0 ,1]× [1 ,2])|

−E
∣∣∣A([0 ,1]2

)
∩A
(
[0 ,1]× [1 ,2]

)∣∣∣
= 2E|A([0 ,1]2)|−E

∣∣∣A([0 ,1]2
)
∩A
(
[0 ,1]× [1 ,2]

)∣∣∣ .
Compare with the previous display:

E
∣∣∣A([0 ,1]2

)
∩A
(
[0 ,1]× [1 ,2]

)∣∣∣= 0.
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E
∣∣∣A([0 ,1]2

)
∩A
(
[0 ,1]× [1 ,2]

)∣∣∣= 0

is the same as

E

∣∣∣(B[0 ,1]−B′[0 ,1]
)
∩
(

B[0 ,1]−B′[1 ,2]
)∣∣∣︸ ︷︷ ︸

:=Z

= 0

Thus for almost all w ∈ R4,

E
[
Z
∣∣∣ B′(1) = w

]
= 0.

Given {B′(1)= w}, B′[0 ,1] and B′[1 ,2] are conditionally
independent, both with the same law as the range
of BM started at w. Because “Leb” is translation
invariant,

E
∣∣∣(B[0 ,1]−B′[0 ,1]

)
∩
(

B[0 ,1]−B′′[0 ,1]
)∣∣∣= 0.
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Recall:

E
∣∣∣(B[0 ,1]−B′[0 ,1]

)
∩
(

B[0 ,1]−B′′[0 ,1]
)∣∣∣= 0.

Conditionally on B[0 ,1], the two sets in (· · ·) are i.i.d.
copies of A([0 ,1]2). Therefore,

E
[∫

R4

(
P
{

x ∈ A
(
[0 ,1]2

) ∣∣∣ B[0 ,1]
})2

dx
]

= 0.

⇒ For almost-all x ∈ R4, P{x ∈ A([0 ,1]2)}= 0

⇒ E|A([0 ,1]2)|= 0

⇒ Step 1.
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Proof in the Subcritical Case d ≤ 3

Proof á la Kahane (1983): Define

σ(F) :=
∫∫
R2

+

e−s−t1F(A(s, t))dsdt.

Then σ ∈P(A(R2
+)) a.s., and

σ̂(ξ ) =
∫∫
R2

+

e−s−teiξ ·A(s, t) dsdt.

Easy computation:

E
(∣∣∣σ̂(ξ )

∣∣∣2)=
(

1+
‖ξ‖2

2

)−2

.

Therefore, when d ≤ 3, E‖σ̂‖2
L2(Rd) < ∞. By

Plancherel, σ is a.s. absolutely continuous.
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A Problem on Images

Let {X(t)}t≥0 be a Lévy process in Rd, and F ⊂
R+ a nonrandom compact set. Blumenthal and
Getoor (1961) asked: (i) Is dimH X(F) a constant
a.s.; and (ii) can one represent it in terms of the
Lévy exponent Ψ? Kh. and Xiao (2005) proved,
“Yes.”
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Define

χξ(x) := e−|x|Ψ(sgn(x)ξ ) x ∈ R, ξ ∈ Rd.

Also,

Eξ(µ) :=
∫∫

χξ(x− y)µ(dx)µ(dy).

Then we have

Theorem. [Kh. and Xiao (2005)] For all nonrandom
Borel sets F ⊂ R+, dimH X(F) is a.s. equal to

sup
{

β ∈ (0 ,d) : inf
µ∈P(F)

∫
Rd

Eξ(µ)
dξ

‖ξ‖d−β
< ∞

}
.
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In the symmetric case this simplifies further. Define

fγ(x) :=
∫

Rd
e−|x|Ψ(ξ ) dξ

‖ξ‖γ

∀
γ ∈ (0 ,d), x ∈ R.

And
Jγ(µ) :=

∫∫
fγ(x− y)µ(dx)µ(dy).

Theorem. [Kh. and Xiao (2005)] Suppose X is
symmetric. For all nonrandom Borel sets F ⊂ R+,
dimH X(F) is a.s. equal to

sup
{

β ∈ (0 ,d) : inf
µ∈P(F)

Jd−β(µ) < ∞

}
.
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Useful Bounds

Recall

fγ(x) :=
∫

Rd
e−|x|Ψ(ξ ) dξ

‖ξ‖γ

∀
γ ∈ (0 ,d), x ∈ R.

Define

I(F) := sup
{

β ∈ (0 ,d) : limsup
r→0

log fd−β(r)
log(1/r)

< dimH F
}

,

J(F) := inf
{

β ∈ (0 ,d) : limsup
r→0

log fd−β(r)
log(1/r)

> dimH F
}

.

Corollary. [Kh. and Xiao (2005)] Suppose X is
symmetric. For all nonrandom Borel sets F ⊂ R+,

I(F)≤ dimH X(F)≤ J(F).
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Contours of ALPs

Now suppose X1, . . . ,XN are independent
�
�

�
�symmetric

Lévy processes in Rd. Assume X := X1⊕·· ·⊕XN is
absolutely continuous:

∫
Rd

e−u∑
N
j=1 Ψ j(ξ ) dξ < ∞

∀u > 0.

Define the gauge function

Φ(t) :=
∫

Rd
e−∑

N
j=1 |t j|Ψ j(ξ ) dξ

∀t ∈ RN
+.

Kh. and Xiao (2005) proved that

P
{
X −1({0}) 6= ∅

}
> 0 ⇔ Φ ∈ L1

loc(R
N).

In fact, we know exactly when X −1({0})∩F 6= ∅.
There are also bounds on dimH X −1({0}) that held
with positive probability(!).

– Typeset by FoilTEX – 14



Recall that

Φ(t) :=
∫

Rd
e−∑

N
j=1 |t j|Ψ j(ξ ) dξ

∀t ∈ RN
+.

Theorem. [Kh., Xiao, and Shieh, 2006] Almost
surely on {X −1({0}) 6= ∅},

dimH X −1({0}) = sup

q > 0 :
∫

[0,1]d

Φ(t)
dt

‖t‖q < ∞

 .

There is a fairly explicit formula for dimH X −1({0})∩
F , in fact.
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Example 1

If X j = i.i.d. symmetric stable-(α1 , . . . ,αd). Then,

Φ(t)� ‖t‖−∑
d
j=1(1/α j).

Hence, Φ ∈ L1
loc(RN) ⇔ ∑

d
j=1(1/α j) < N. Therefore,

P
{
X −1({0}) 6= ∅

}
> 0 ⇔

d

∑
j=1

1
α j

< N.

And a.s. on {X −1({0}) 6= ∅},

dimH X −1({0}) =

(
1−

d

∑
j=1

1
α j

)
+

.
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Example 2

Suppose X j = iso. stable-α j for 1 ≤ j ≤ N. Without
loss of generality, we may assume that

2≥ α1 ≥ ·· · ≥ αN > 0.

Define

κ(α) := min

{
1≤ `≤ N :

`

∑
j=1

α j > d

}
,

where min∅ := ∞. [κ(α) = ∞ iff ∑
N
j=1 α j ≤ d.] Then:

P
{
X −1({0}) 6= ∅

}
> 0 ⇔ κ(α) < ∞.

If κ(α) < ∞, then a.s. on {X −1({0}) 6= ∅},

dimH X −1({0}) = N−κ(α)+
1

ακ(α)

[
N

∑
j=1

α j−d

]
.
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