Additive Lévy Processes, II: A Proof, and More Recent Results

Davar Khoshnevisan
University of Utah, USA
davar@math.utah.edu
http://www.math.utah.edu~davar

Workshop on Probabilistic Analysis Taipei, June 2006

Outline of Lecture 2:

- Intersections of Brownian Motions
- Proof in the critical case $d=4$
- Proof in the subcritical case $d \leq 3$
- A problem on images

Intersections of Brownian Motions

In order to see how one can use multiparameter processes, let us isolate a concrete problem:

Theorem. [Dvoretzky et al (1950)] Let B and B^{\prime} be two independent $B M$'s in \mathbf{R}^{d} with $B(0)=B^{\prime}(0)=0$. Then $B((0, \infty)) \cap B^{\prime}((0, \infty)) \neq \varnothing$ iff $d \leq 3$.

The "usual" proof: By Kakutani (1944) [see also Dvoretzky et al (1950)]: For all nonrandom $G \subset \mathbf{R}^{d}$,

$$
\mathrm{P}\{B((0, \infty)) \cap G \neq \varnothing\}>0 \Leftrightarrow \operatorname{Cap}_{d-2}(G)>0
$$

Therefore, it suffices to prove that

$$
\mathrm{E}[\overbrace{\operatorname{Cap}_{d-2}\left(B^{\prime}((0, \infty))\right.}^{:=\operatorname{Cap}_{d-2}(G)}]>0 \Leftrightarrow d \leq 3 .
$$

And this is what most proofs do, after some fashion.

Alternatively, define A to be the additive Brownian motion,

$$
A(s, t):=B(s)-B^{\prime}(t) .
$$

And note that

$$
B((0, \infty)) \cap B^{\prime}((0, \infty)) \neq \varnothing \Leftrightarrow 0 \in A\left((0, \infty)^{2}\right) .
$$

So the problem is to prove that

```
\(A\) hits zero iff \(d \leq 3\).
```

There is now a simple proof of this fact (Kh. 2003). The hardest part is $d=4$ which I start with. [This proves also the case that $d \geq 5$, by projection.]

Proof in the Critical Case $d=4$

Let $d=4$, and $A(s, t):=B(s)-B^{\prime}(t)$ be additive BM.

Step 1. $\mathrm{E}\left|A\left([0,1]^{2}\right)\right|=0$.
Step 2. $0 \notin A\left([1,2]^{2}\right)$.
Step 3. $0 \notin A\left((0, \infty)^{2}\right)$ a.s.
Step 3 follows fairly easily from Steps 1 and 2, and scaling. Step 2 is also easy: Let

$$
F(x):=\mathrm{P}\left\{x \in A\left([0,1]^{2}\right)\right\} \quad \forall x \in \mathbf{R}^{4} .
$$

Step $1 \Rightarrow F=0$ a.e. \Rightarrow because $A(1,1) \sim N(\mathbf{0}, 4 \mathbf{I})$,

$$
\mathrm{P}\left\{0 \in A\left([1,2]^{2}\right)\right\}=(4 \pi)^{-2} \int_{\mathbf{R}^{4}} F(x) e^{-\|x\|^{2} / 4} d x=0,
$$

\Rightarrow Step 2. Suffices to prove Step 1.

Recall $A(s, t)=B(s)-B^{\prime}(t)$. We wish to show that $\mathrm{E}\left|A\left([0,1]^{2}\right)\right|=0$ when $d=4$

Observation:
$\mathrm{E}\left|A\left([0,2]^{2}\right)\right| \leq \mathrm{E}|A([0,1] \times[0,2])|+\mathrm{E}|A([1,2] \times[0,2])|$.
By scaling, the left-hand side $=4 \mathrm{E}\left|A\left([0,1]^{2}\right)\right|$. The right-hand side terms are equal (stationarity of inc's). Thus,

$$
2 \mathrm{E}\left|A\left([0,1]^{2}\right)\right| \leq \mathrm{E}|A([0,1] \times[0,2])| .
$$

$2 \mathrm{E}\left|A\left([0,1]^{2}\right)\right| \leq \mathrm{E}|A([0,1] \times[0,2])|$.

But RHS =

$\mathrm{E}\left|A\left([0,1]^{2}\right)\right|+\mathrm{E}|A([0,1] \times[1,2])|$

$$
\begin{aligned}
& -\mathrm{E}\left|A\left([0,1]^{2}\right) \cap A([0,1] \times[1,2])\right| \\
= & 2 \mathrm{E}\left|A\left([0,1]^{2}\right)\right|-\mathrm{E}\left|A\left([0,1]^{2}\right) \cap A([0,1] \times[1,2])\right| .
\end{aligned}
$$

Compare with the previous display:

$$
\mathrm{E}\left|A\left([0,1]^{2}\right) \cap A([0,1] \times[1,2])\right|=0 .
$$

$$
\mathrm{E}\left|A\left([0,1]^{2}\right) \cap A([0,1] \times[1,2])\right|=0
$$

is the same as

$$
\mathrm{E}(\underbrace{\left|\left(B[0,1]-B^{\prime}[0,1]\right) \cap\left(B[0,1]-B^{\prime}[1,2]\right)\right|}_{:=Z})=0
$$

Thus for almost all $w \in \mathbf{R}^{4}$,

$$
\mathrm{E}\left[Z \mid B^{\prime}(1)=w\right]=0
$$

Given $\left\{B^{\prime}(1)=w\right\}, B^{\prime}[0,1]$ and $B^{\prime}[1,2]$ are conditionally independent, both with the same law as the range of BM started at w. Because "Leb" is translation invariant,

$$
\mathrm{E}\left|\left(B[0,1]-B^{\prime}[0,1]\right) \cap\left(B[0,1]-B^{\prime \prime}[0,1]\right)\right|=0 .
$$

Recall:

$$
\mathrm{E}\left|\left(B[0,1]-B^{\prime}[0,1]\right) \cap\left(B[0,1]-B^{\prime \prime}[0,1]\right)\right|=0 .
$$

Conditionally on $B[0,1]$, the two sets in (\cdots) are i.i.d. copies of $A\left([0,1]^{2}\right)$. Therefore,

$$
\mathrm{E}\left[\int_{\mathbf{R}^{4}}\left(\mathrm{P}\left\{x \in A\left([0,1]^{2}\right) \mid B[0,1]\right\}\right)^{2} d x\right]=0 .
$$

\Rightarrow For almost-all $x \in \mathbf{R}^{4}, \mathrm{P}\left\{x \in A\left([0,1]^{2}\right)\right\}=0$
$\Rightarrow \mathrm{E}\left|A\left([0,1]^{2}\right)\right|=0$
\Rightarrow Step 1.

Proof in the Subcritical Case $d \leq 3$

Proof á la Kahane (1983): Define

$$
\sigma(F):=\iint_{\mathbf{R}_{+}^{2}} e^{-s-t} \mathbf{1}_{F}(A(s, t)) d s d t .
$$

Then $\sigma \in \mathscr{P}\left(A\left(\mathbf{R}_{+}^{2}\right)\right)$ a.s., and

$$
\hat{\sigma}(\xi)=\iint_{\mathbf{R}_{+}^{2}} e^{-s-t} e^{i \xi \cdot A(s, t)} d s d t .
$$

Easy computation:

$$
\mathrm{E}\left(|\hat{\sigma}(\xi)|^{2}\right)=\left(1+\frac{\|\xi\|^{2}}{2}\right)^{-2}
$$

Therefore, when $d \leq 3, \mathrm{E}\|\hat{\sigma}\|_{L^{2}\left(\mathbf{R}^{d}\right)}^{2}<\infty$.
By Plancherel, σ is a.s. absolutely continuous.

A Problem on Images

Let $\{X(t)\}_{t \geq 0}$ be a Lévy process in \mathbf{R}^{d}, and $F \subset$ \mathbf{R}_{+}a nonrandom compact set. Blumenthal and Getoor (1961) asked: (i) Is $\operatorname{dim}_{\mathrm{H}} X(F)$ a constant a.s.; and (ii) can one represent it in terms of the Lévy exponent Ψ ? Kh. and Xiao (2005) proved, "Yes."

Define

$$
\chi_{\xi}(x):=e^{-|x| \Psi(\operatorname{sgn}(x) \xi)} \quad x \in \mathbf{R}, \xi \in \mathbf{R}^{d} .
$$

Also,

$$
\mathscr{E}_{\xi}(\mu):=\iint \chi_{\xi}(x-y) \mu(d x) \mu(d y) .
$$

Then we have

Theorem. [Kh. and Xiao (2005)] For all nonrandon Borel sets $F \subset \mathbf{R}_{+}, \operatorname{dim}_{\mathrm{H}} X(F)$ is a.s. equal to

$$
\sup \left\{\beta \in(0, d): \inf _{\mu \in \mathscr{P}(F)} \int_{\mathbf{R}^{d}} \mathscr{E}_{\xi}(\mu) \frac{d \xi}{\|\xi\|^{d-\beta}}<\infty\right\} .
$$

In the symmetric case this simplifies further. Define

$$
f_{\gamma}(x):=\int_{\mathbf{R}^{d}} e^{-|x| \Psi(\xi)} \frac{d \xi}{\|\xi\|^{\gamma}} \quad \forall \gamma \in(0, d), x \in \mathbf{R} .
$$

And

$$
J_{\gamma}(\mu):=\iint f_{\gamma}(x-y) \mu(d x) \mu(d y) .
$$

Theorem. [Kh. and Xiao (2005)] Suppose X is symmetric. For all nonrandom Borel sets $F \subset \mathbf{R}_{+}$, $\operatorname{dim}_{H} X(F)$ is a.s. equal to

$$
\sup \left\{\beta \in(0, d): \inf _{\mu \in \mathscr{P}(F)} J_{d-\beta}(\mu)<\infty\right\} .
$$

Useful Bounds

Recall

$$
f_{\gamma}(x):=\int_{\mathbf{R}^{d}} e^{-|x| \Psi(\xi)} \frac{d \xi}{\|\xi\|^{\gamma}} \quad \forall \gamma \in(0, d), x \in \mathbf{R} .
$$

Define
$I(F):=\sup \left\{\beta \in(0, d): \limsup _{r \rightarrow 0} \frac{\log f_{d-\beta}(r)}{\log (1 / r)}<\operatorname{dim}_{\mathrm{H}} F\right\}$,
$J(F):=\inf \left\{\beta \in(0, d): \limsup _{r \rightarrow 0} \frac{\log f_{d-\beta}(r)}{\log (1 / r)}>\operatorname{dim}_{\mathrm{H}} F\right\}$.

Corollary. [Kh. and Xiao (2005)] Suppose X is symmetric. For all nonrandom Borel sets $F \subset \mathbf{R}_{+}$,

$$
I(F) \leq \operatorname{dim}_{\mathrm{H}} X(F) \leq J(F) .
$$

Contours of ALPs

Now suppose X_{1}, \ldots, X_{N} are independent symmetric Lévy processes in \mathbf{R}^{d}. Assume $\mathscr{X}:=X_{1} \oplus \cdots \oplus X_{N}$ is absolutely continuous:

$$
\int_{\mathbf{R}^{d}} e^{-u \Sigma_{j=1}^{N} \Psi_{j}(\xi)} d \xi<\infty \quad{ }^{\forall} u>0 .
$$

Define the gauge function

$$
\Phi(\boldsymbol{t}):=\int_{\mathbf{R}^{d}} e^{-\sum_{j=1}^{N}\left|t_{j}\right| \Psi_{j}(\xi)} d \xi \quad{ }^{\forall} \boldsymbol{t} \in \mathbf{R}_{+}^{N} .
$$

Kh. and Xiao (2005) proved that

$$
\mathrm{P}\left\{\mathscr{X}^{-1}(\{0\}) \neq \varnothing\right\}>0 \Leftrightarrow \Phi \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) .
$$

In fact, we know exactly when $\mathscr{X}^{-1}(\{0\}) \cap F \neq \varnothing$. There are also bounds on $\operatorname{dim}_{\mathrm{H}} \mathscr{X}^{-1}(\{0\})$ that held with positive probability(!).

Recall that

$$
\Phi(\boldsymbol{t}):=\int_{\mathbf{R}^{d}} e^{-\sum_{j=1}^{N}\left|t_{j}\right| \Psi_{j}(\xi)} d \xi \quad{ }^{\forall} \boldsymbol{t} \in \mathbf{R}_{+}^{N}
$$

Theorem. [Kh., Xiao, and Shieh, 2006] Almost surely on $\left\{\mathscr{X}^{-1}(\{0\}) \neq \varnothing\right\}$,
$\operatorname{dim}_{\mathrm{H}} \mathscr{X}^{-1}(\{0\})=\sup \left\{q>0: \int_{[0,1]^{d}} \Phi(\boldsymbol{t}) \frac{d \boldsymbol{t}}{\|\boldsymbol{t}\|^{q}}<\infty\right\}$.

There is a fairly explicit formula for $\operatorname{dim}_{\mathrm{H}} \mathscr{X}^{-1}(\{0\}) \cap$ F, in fact.

Example 1

If $X_{j}=$ i.i.d. symmetric stable- $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$. Then,

$$
\Phi(\boldsymbol{t}) \asymp\|\boldsymbol{t}\|^{-\sum_{j=1}^{d}\left(1 / \alpha_{j}\right)} .
$$

Hence, $\Phi \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \Leftrightarrow \sum_{j=1}^{d}\left(1 / \alpha_{j}\right)<N$. Therefore,

$$
\mathrm{P}\left\{\mathscr{X}^{-1}(\{0\}) \neq \varnothing\right\}>0 \Leftrightarrow \sum_{j=1}^{d} \frac{1}{\alpha_{j}}<N .
$$

And a.s. on $\left\{\mathscr{X}^{-1}(\{0\}) \neq \varnothing\right\}$,

$$
\operatorname{dim}_{\mathrm{H}} \mathscr{X}^{-1}(\{0\})=\left(1-\sum_{j=1}^{d} \frac{1}{\alpha_{j}}\right)_{+} .
$$

Example 2

Suppose $X_{j}=$ iso. stable- α_{j} for $1 \leq j \leq N$. Without loss of generality, we may assume that

$$
2 \geq \alpha_{1} \geq \cdots \geq \alpha_{N}>0
$$

Define

$$
\kappa(\boldsymbol{\alpha}):=\min \left\{1 \leq \ell \leq N: \sum_{j=1}^{\ell} \alpha_{j}>d\right\},
$$

where $\min \varnothing:=\infty .\left[\kappa(\boldsymbol{\alpha})=\infty\right.$ iff $\left.\sum_{j=1}^{N} \alpha_{j} \leq d.\right]$ Then:

$$
\mathrm{P}\left\{\mathscr{X}^{-1}(\{0\}) \neq \varnothing\right\}>0 \Leftrightarrow \kappa(\boldsymbol{\alpha})<\infty .
$$

If $\kappa(\boldsymbol{\alpha})<\infty$, then a.s. on $\left\{\mathscr{X}^{-1}(\{0\}) \neq \varnothing\right\}$,

$$
\operatorname{dim}_{\mathrm{H}} \mathscr{X}^{-1}(\{0\})=N-\kappa(\boldsymbol{\alpha})+\frac{1}{\alpha_{\kappa(\boldsymbol{\alpha})}}\left[\sum_{j=1}^{N} \alpha_{j}-d\right] .
$$

