Additive Lévy Processes, I: Background and Motivation

Davar Khoshnevisan University of Utah, USA davar@math.utah.edu
http://www.math.utah.edu~davar

Workshop on Probabilistic Analysis
 Taipei, June 2006

Outline of Lecture 1:

- Definition of LPs.
- Examples of LPs.
- Definition of ALPs.
- Do ALPs arise naturally?
- An application of ALPs to Lévy processes.
- Additive Brownian Motion and the Brownian Sheet [time permitting].

Definition of LPs

Let $X:=\{X(t)\}_{t \geq 0}$ be a stoch. process [i.e., a sequence of rv's indexed by \mathbf{R}_{+}]. Suppose it takes values in \mathbf{R}^{d}; i.e., $X(t) \in \mathbf{R}^{d}$ with probab. one.
X is a Lévy process if:

- For all $t, s \geq 0,\{X(t+s)-X(s)\}_{t \geq 0}$ is [totally] independent of $\{X(u)\}_{0 \leq u \leq s} ;$ ["indep. incs"]
- for all $t, s \geq 0,\{X(t+s)-X(s)\}_{t \geq 0}$ has the same [fi-di] distributions as $\{X(t)\}_{t \geq 0}$; ["stat. inc's"]
- $X(0)=0$ and X is continuous in $L^{0}(\Omega, \mathscr{F}, \mathrm{P})$.

The distribution of the entire process X depends on the distribution of $X(t)$ which we realize via the Lévy-Khintchine formula for

$$
\mathrm{E} e^{i \xi \cdot X(t)}=e^{-t \Psi(\xi)} \quad \forall \xi \in \mathbf{R}^{d}, t \geq 0
$$

$\Psi:=$ Lévy exponent of X.

A Connection to Semigroups

Define for all $f: \mathbf{R}^{d} \rightarrow \mathbf{R}_{+}$[Borel meas.], $x \in \mathbf{R}^{d}$, and $t \geq 0$,

$$
\left(T_{t} f\right)(x):=\mathrm{E}[f(x+X(t))] .
$$

Let $\hat{f}(\xi):=\int_{\mathbf{R}^{d}}{ }^{i \xi \cdot x} f(x) d x$ and note that if $f, \hat{f} \in$ $L^{1}\left(\mathbf{R}^{d}\right)$, then $f(x)=(2 \pi)^{-d} \int_{\mathbf{R}^{d}} e^{i \xi \cdot x} \hat{f}(\xi) d \xi$. Thus,

$$
\begin{aligned}
\left(T_{t} f\right)(x) & =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}} \mathrm{E}\left[e^{i \xi \cdot X(t)}\right] e^{i \xi \cdot x} \overline{\hat{f}(\xi)} d \xi \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}} e^{-t \Psi(\xi)} e^{i \xi \cdot x} \overline{\hat{f}(\xi)} d \xi .
\end{aligned}
$$

Thus, T_{t} is a convolution kernel with multiplier $\widehat{T}_{t}(\xi)=e^{-i \Psi(\xi)}$.

$\left\{T_{t}\right\}_{t \geq 0}$ is a convolution semigroup.

Example: Brownian Motion

Think of $X: \mathbf{R}_{+} \rightarrow \mathbf{R}^{d}$ as a "random function."

- (Bachelier, 1900; Einstein, 1905) $\Psi(\xi)=\|\xi\|^{2}$.
- (Wiener, 1910) X is continuous a.s.
- (Paley, Wiener, Zygmund, 1933) X is nowheredifferentiable a.s.
- (Taylor, 1952/53) The random image-set $X\left(\mathbf{R}_{+}\right)$ a.s. has Hausdorff dimension $\min (d, 2)$.
- The Hille-Yosida generator of $\left\{T_{t}\right\}_{t \geq 0}$ is Δ [distribution sense]; i.e., $T_{t}=e^{t \Delta}$.

Recall on Hausdorff Dimension

Let $s, \varepsilon>0$ be fixed; $A \subset \mathbf{R}^{d}$ a set.

$$
\mathscr{H}_{\varepsilon}^{s}(A):=\inf \sum_{j=1}^{\infty}\left(2 r_{j}\right)^{s},
$$

where the infimum is taken over all balls B_{1}, B_{2}, \ldots of respective radii $r_{1}, r_{2}, \ldots \in(0, \varepsilon)$ such that $\cup_{j=1}^{\infty} B_{j} \supset$ A. The s-dimensional Hausdorff measure of A is

$$
\mathscr{H}^{s}(A):=\lim _{\varepsilon \rightarrow 0^{+}} \mathscr{H}_{\varepsilon}^{s}(A) .
$$

\mathscr{H}^{s} is an outer measure; measure on Borel sets.

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{H}} A & :=\sup \left\{s>0: \mathscr{H}^{s}(A)>0\right\} \\
& =\inf \left\{s>0: \mathscr{H}^{s}(A)<\infty\right\} .
\end{aligned}
$$

(Hausdorff, ≤ 1927)

A Relation to [Bessel-] Riesz Capacities

$$
\begin{aligned}
I_{s}(\mu) & := \begin{cases}\iint\|x-y\|^{-s} \mu(d x) \mu(d y), & \text { if } s>0, \\
\iint \log _{+}\|x-y\|^{-1} \mu(d x) \mu(d y), & \text { if } s=0, \\
1, & \text { if } s<0 .\end{cases} \\
\operatorname{Cap}_{s}(A) & :=\left[\inf _{\mu \in \mathscr{P}(A)} I_{s}(\mu)\right]^{-1}, \quad[\inf \varnothing:=\infty, 1 / \infty:=0] .
\end{aligned}
$$

Theorem. [Frostman, 1935] For all Borel sets $A \subset$ \mathbf{R}^{d},

$$
\begin{aligned}
\operatorname{dim}_{\mathrm{H}} A & =\sup \left\{s>0: \operatorname{Cap}_{s}(A)>0\right\} \\
& =\inf \left\{s>0: \operatorname{Cap}_{s}(A)=0\right\}
\end{aligned}
$$

Example: Isotropic Stable Processes

- (Lévy, 1937) $\Psi(\xi)=\|\xi\|^{\alpha} ; \alpha \in(0,2]$.
- $T_{t}=\exp \left(t \Delta^{\alpha / 2}\right)$.
- (Lévy, 1937) When $\alpha<2, X$ is pure-jump a.s.
- (McKean, 1955) The random image-set $X\left(\mathbf{R}_{+}\right)$ a.s. has Hausdorff dimension $\min (d, \alpha)$.
- (Kakutani, 1944; Dvoretzky, Erdős, and Kakutani, 1950; McKean, 1955) For all Borel sets $A \subset \mathbf{R}^{d}$,

$$
\mathrm{P}\left\{X\left(\mathbf{R}_{+}\right) \cap A \neq \varnothing\right\}>0 \leftrightarrow \operatorname{Cap}_{d-\alpha}(A)>0 .
$$

- (Nevanlinna, 1936; Noshiro, 1948; Ninomiya, 1953) Connections to the Dirichlet problem for $\Delta^{\alpha / 2}$ with removable singularities.

Codimension and a Drawback

Recall that if X_{α} is iso. stable- α in \mathbf{R}^{d} then

$$
\mathrm{P}\left\{X_{\alpha}\left(\mathbf{R}_{+}\right) \cap A \neq \varnothing\right\}>0 \leftrightarrow \operatorname{Cap}_{d-\alpha}(A)>0 .
$$

Also recall (Frostman, 1935) that

$$
\inf \left\{s \in(0, d): \operatorname{Cap}_{d-s}(A)>0\right\}+\operatorname{dim}_{\mathrm{H}} A=d .
$$

Thus,

Proposition. [Taylor, 1966] For all Borel sets $A \subset$ \mathbf{R}^{d} with $\operatorname{dim}_{\mathrm{H}} A \geq d-2$, $\inf \left\{\alpha \in(0,2] \mid \mathrm{P}\left\{X_{\alpha}\left(\mathbf{R}_{+}\right) \cap A \neq \varnothing\right\}>0\right\}+\operatorname{dim}_{\mathrm{H}} A=d$.

What if $\operatorname{dim}_{\mathrm{H}} A<d-2$? An answer is given by Peres (1996; 1998), but this answer does not involve Lévy processes.

Additive Stable Processes

Let X_{1}, \ldots, X_{N} denote independent iso. stable- α processes in \mathbf{R}^{d}. Define the (N, d)-random field
$\mathscr{X}_{N, \alpha}(\boldsymbol{t}):=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right), \quad \boldsymbol{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}$.
["additive stable process"]

Theorem. [Hirsch-Song, 1995; Kh. 2002] For all Borel sets $A \subset \mathbf{R}^{d}$,

$$
\mathrm{P}\left\{\mathscr{X}_{N, \alpha}\left(\mathbf{R}_{+}^{N}\right) \cap A \neq \varnothing\right\}>0 \leftrightarrow \operatorname{Cap}_{d-\alpha N}(A)>0 .
$$

So now we can characterize $\operatorname{dim}_{\mathrm{H}} A$ by seeing for which pairs (N, α) the range of $\mathscr{X}_{N, \alpha}$ can hit A.

Definition of ALPs

- $X_{1}, \ldots, X_{N}=$ independent Lévy in \mathbf{R}^{d};
- ALP [additive Lévy process]:

$$
\mathscr{X}(\boldsymbol{t}):=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right),
$$

for $\boldsymbol{t}:=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}$.

- Law is characterized by

$$
\mathrm{E} e^{i \xi \cdot \mathscr{X}(\boldsymbol{t})}=\exp \left(-\sum_{j=1}^{N} t_{j} \Psi_{j}(\xi)\right)=e^{-\boldsymbol{t} \cdot \boldsymbol{\Psi}(\xi)}
$$

where $\Psi(\xi):=\left(\Psi_{1}(\xi), \ldots, \Psi_{N}(\xi)\right)$ and Ψ_{j} is the Lévy exponent of X_{j} :

$$
\mathrm{E} e^{i \xi \cdot X_{j}(s)}=e^{-s \Psi \Psi_{j}(\xi)}
$$

Do ALPs Arise Naturally?

Yes. Here are 4 ways; there are others as well.

1. Double Points

2. Triple Points, etc.
3. Arithmetic properties ["Kahane's Problem"]
4. Brownian sheet [time permitting]

Reason1: Intersections of Paths ["Double Points"]

Let Y be a Lévy process in \mathbf{R}^{d}. An old question:

$$
\text { When is } \mathscr{P}:=\mathrm{P}\left\{{ }^{\exists} s \neq t: Y(s)=Y(t)\right\}>0 \text { ? }
$$

- $Y=\mathrm{BM}: \mathscr{P}>0$ iff $d \leq 3$
(Dvoretzky, Erdős, and Kakutani, 1950; Aizenmann, 1985; Peres, 1996; Kh. 2003).
- Dvoretzky, Erdős, Kakutani, and Taylor (1957); Hendricks (1973/74); Hawkes (1977, 1978); Hendricks (1979); Kahane (1983, 1985); Evans (1987); Tongring (1988); Rogers (1989); Le Gall, Rosen, and Shieh (1989); Fitzsimmons and Salisbury (1989); Ren (1990); Hirsch and Song (1995); Shieh (1998); Peres (1999); Kh. (2002).

Connection to Additive Lévy Processes

$$
\text { When is } \mathscr{P}:=\mathrm{P}\left\{{ }^{\exists} s \neq t: Y(s)=Y(t)\right\}>0 \text { ? }
$$

Let Y_{1} and Y_{2} be i.i.d. copies. The above is equivalent to:

$$
\text { When is } \mathrm{P}\left\{{ }^{\exists} s, t>0: Y_{1}(s)=Y_{2}(t)\right\}>0 \text { ? }
$$

Consider the additive Lévy process

$$
\mathscr{Y}(\boldsymbol{t}):=Y_{1}\left(t_{1}\right)-Y_{2}\left(t_{2}\right) .
$$

We wish to know

When does \mathscr{Y} hit zero?

Reason 2: Variants ["Triple Points"]

$\mathrm{P}\left\{{ }^{\exists}\right.$ distinct $\left.s, t, u: Y(s)=Y(t)=Y(u)\right\}>0$ 。
 When is

If $Y=\mathrm{BM}$ then the answer is "iff $d \leq 2$ " (Dvoretzky, Erdős, Kakutani, and Taylor, 1957).

Equivalently, if Y_{1}, Y_{2}, Y_{3} are i.i.d. Lévy processes then we wish to know when

$$
\mathrm{P}\left\{\exists_{\left.s, t, u>0: Y_{1}(s)=Y_{2}(t)=Y_{3}(u)\right\}>0 ? ~}^{\text {? }}\right.
$$

Define $\mathscr{Y}(\boldsymbol{t}):=\left[\begin{array}{c}Y_{1}\left(t_{1}\right) \\ \mathbf{0}_{d} \\ \mathbf{0}_{d}\end{array}\right]+\left[\begin{array}{c}\mathbf{0}_{d} \\ Y_{2}\left(t_{2}\right) \\ \mathbf{0}_{d}\end{array}\right]+\left[\begin{array}{c}\mathbf{0}_{d} \\ \mathbf{0}_{d} \\ Y_{3}\left(t_{3}\right)\end{array}\right]$. Then we wish to know when \mathscr{Y} hits the diagonal of $\mathbf{R}^{3 d}$; i.e., the collection of all points of the form $\boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}$ where $\boldsymbol{x} \in \mathbf{R}^{d}$.

Reason 3: Arithmetic Properties

- B, B_{1}, and $B_{2}=$ indent. Br. motions in \mathbf{R}^{d};
- $E, F \subset[0, \infty)$ compact, nonrandom, disjoint.

Then the following are equivalent (Kahane, 1985):

- $|B(E) \oplus B(F)|>0$ with pos. probab.;
- $\left|B_{1}(E) \oplus B_{2}(F)\right|>0$ with pos. probab. [does not require that $E \cap F=\varnothing$].

Kahane also provided a necessary as well as a sufficient condition, and asked for a precise condition on $E \times F$ to ensure $|B(E) \oplus B(F)|>0$.

Answer: (Kh. 1999):

$$
\operatorname{Cap}_{d / 2}(E \times F)>0
$$

Define

$$
\mathscr{B}(\boldsymbol{t}):=B_{1}\left(t_{1}\right)+B_{2}\left(t_{2}\right)
$$

"Additive Brownian motion."
Then the following are equivalent:

- $\left|B_{1}(E) \oplus B_{2}(F)\right|>0$ with pos. probab.
- $\mathscr{B}(E \times F)$ has positive Leb. meas. with pos. probab.

This problem is now very well understood for very general Lévy processes (Kh. and Xiao, 2005).

An Application of ALPs to LPs

Let Y be an arbitrary Lévy process in \mathbf{R}^{d} with Lévy exponent $\Psi_{Y}: \mathrm{E}\left[e^{i \xi \cdot Y(s)}\right]=\exp \left(-s \Psi_{Y}(\xi)\right)$. Our immediate goal is to derive the following:

Theorem. [Kh., Xiao, and Zhong, 2003] With probability one, $\operatorname{dim}_{\mathrm{H}} Y\left(\mathbf{R}_{+}\right)$is equal to

$$
\sup \left\{s>0: \int_{\mathbf{R}^{d}} \operatorname{Re}\left(\frac{1}{1+\Psi_{Y}(\xi)}\right) \frac{d \xi}{\|\xi\|^{d-s}}<\infty\right\} .
$$

This solved a relatively old problem (Taylor, 1952/53; McKean, 1955; Blumenthal and Getoor, 1960, 1961; Pruitt 1969; Fristedt, 1974).
\Rightarrow If $\bar{Y}:=$ symmetrization of Y [i.e., $\bar{Y}(t)=Y(t)-Y^{\prime}(t)$ for an indep. copy $\left.Y^{\prime}\right]$ then $\operatorname{dim}_{\mathrm{H}} Y\left(\mathbf{R}_{+}\right) \geq \operatorname{dim}_{\mathrm{H}} \bar{Y}\left(\mathbf{R}_{+}\right)$ a.s. Completes the observation of Kesten (1969).

Let X_{1}, \ldots, X_{N} be indept. Lévy processes in $\mathbf{R}^{d} ; \Psi_{j}=$ Lévy exponent of X_{j}.

$$
\mathscr{X}(\boldsymbol{t}):=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right) .
$$

Theorem. [Kh. and Xiao 2006+] Let $F \subset \mathbf{R}^{d}=$ nonrandom Borel. Then, we have $\left|\mathscr{X}\left(\mathbf{R}_{+}^{N}\right) \oplus F\right|>0$ with pos. probab. iff ${ }^{\exists} \mu \in \mathscr{P}(F)$:

$$
\int_{\mathbf{R}^{d}} \prod_{j=1}^{N} \operatorname{Re}\left(\frac{1}{1+\Psi_{j}(\xi)}\right)|\hat{\mu}(\xi)|^{2} d \xi<\infty .
$$

This improves on Kh., Xiao, and Zhong (2003).
When $N=1$ this is well known (Orey, 1967; Kesten, 1969; Port and Stone, 1971; Hawkes, 1979, 1986; \ldots... For $N>1$ we need different ideas.

For instance, suppose X_{1}, \ldots, X_{N} are i.i.d., isotropic α-stable Lévy processes in \mathbf{R}^{d}. The "additive stable process" $\mathscr{X}_{N, \alpha}(\boldsymbol{t}):=\sum_{j=1}^{N} X_{j}\left(t_{j}\right)$ has the property that for all non-random analytic sets $F \subset \mathbf{R}^{d}$ the following are equivalent:

1. $\mathrm{P}\left\{\left|\mathscr{X}_{N, \alpha}\left(\mathbf{R}_{+}^{N}\right) \oplus F\right|>0\right\}>0$;
2. ${ }^{\exists} \mu \in \mathscr{P}(F)$ such that

$$
\int_{\mathbf{R}^{d}} \frac{|\hat{\mu}(\xi)|^{2}}{1+\|\xi\|^{\alpha N}} d \xi<\infty ;
$$

3. ${ }^{\exists} \mu \in \mathscr{P}(F)$ such that

$$
I_{d-\alpha N}(\mu)=\iint \frac{\mu(d x) \mu(d y)}{\|x-y\|^{d-\alpha N}}<\infty ;
$$

4. $\operatorname{Cap}_{d-\alpha N}(F)>0$.

We saw this before too.
I.e., if X_{1}, \ldots, X_{N} are i.i.d. isotropic stable- α in \mathbf{R}^{d} and $\mathscr{X}_{N, \alpha}(\boldsymbol{t})=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right)$, then

$$
\mathrm{P}\left\{\left|\mathscr{X}_{N, \alpha}\left(\mathbf{R}_{+}^{N}\right) \oplus F\right|>0\right\}>0 \leftrightarrow \operatorname{Cap}_{d-\alpha N}(F)>0 .
$$

Let Y be an independent [ordinary] Lévy process in \mathbf{R}^{d}, and apply the preceding to $F:=Y\left(\mathbf{R}_{+}\right)$, conditional on Y : As positive-probability events,

$$
\left|\mathscr{X}_{N, \alpha}\left(\mathbf{R}_{+}^{N}\right) \oplus Y\left(\mathbf{R}_{+}\right)\right|>0 \leftrightarrow \operatorname{Cap}_{d-\alpha N}\left(Y\left(\mathbf{R}_{+}\right)\right)>0
$$

But $\mathscr{X}_{N, \alpha}\left(\mathbf{R}_{+}^{N}\right) \oplus Y\left(\mathbf{R}_{+}\right)=\mathscr{Z}\left(\mathbf{R}_{+}^{N+1}\right)$, where \mathscr{Z} is the ALP $\mathscr{Z}(\boldsymbol{t}):=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right)+Y\left(t_{N+1}\right)$. We can apply the previous theorem with $F:=\{0\}$ to find that

$$
\left|\mathscr{Z}\left(\mathbf{R}_{+}^{N+1}\right)\right|>0 \leftrightarrow \int_{\mathbf{R}^{d}} \operatorname{Re}\left(\frac{1}{1+\Psi_{Y}(\xi)}\right) \frac{d \xi}{\|\xi\|^{\alpha N}}<\infty .
$$

Compare the boxed equations to find $\operatorname{dim}_{\mathrm{H}} Y\left(\mathbf{R}_{+}\right)$ (Frostman, 1935).

Additive BM and the Brownian Sheet

Let $B\left(t_{1}, t_{2}\right)$ denote two-parameter Brownian sheet in \mathbf{R}^{d}. I.e., B is a centered Gaussian process and

$$
\operatorname{Cov}\left(B_{i}\left(s_{1}, s_{2}\right), B_{j}\left(t_{1}, t_{2}\right)\right)=\min \left(s_{1}, t_{1}\right) \min \left(s_{2}, t_{2}\right) \delta_{i, j} .
$$

Locally, Brownian sheet looks like additive Brownian motion. Here is a precise statement near the point $\boldsymbol{t}:=(1,1)$ (say!): For $\varepsilon, \delta>0$,

$$
B(1+\varepsilon, 1+\delta)=B(1,1)+\underbrace{X_{1}(\varepsilon)+X_{2}(\delta)}_{\mathrm{ABM} \approx \sqrt{\varepsilon+\delta}}+\underbrace{Y(\varepsilon, \delta)}_{\approx \sqrt{\varepsilon \delta}},
$$

where:

- X_{1} and X_{2} are Brownian motions;
- Y is a Brownian sheet;
- $B(1,1), X_{1}, X_{2}$, and Y are totally independent.

When $\varepsilon, \delta \approx 0$,

$$
B(1+\varepsilon, 1+\delta)-B(1,1) \approx X_{1}(\varepsilon)+X_{2}(\boldsymbol{\delta}) .
$$

One makes precise sense of this in a problemdependent manner. Here is an application:

Theorem. [Kh. and Shi, 1999] If $F \subset \mathbf{R}^{d}$ is analytic, then $\mathrm{P}\left\{B\left((0, \infty)^{2}\right) \cap F \neq \varnothing\right\}>0$ iff $\mathrm{Cap}_{d-4}(F)>0$.
$\left[\mathrm{Cap}_{0}:=\log\right.$. capacity; $\mathrm{Cap}_{-r}:=1$ for $\left.r<0\right]$
For instance, let $F:=\{0\}$ to find that B hits singletons iff $d \leq 3$ (Orey and Pruitt, 1973).

By Girsanov this theorem translates to a statement about SPDEs:

Let \dot{W} denote d-dimensional white noise over \mathbf{R}^{2}. Consider the system of SPDEs of the wave type,

$$
\frac{\partial^{2} u(t, x)}{\partial t^{2}}-\frac{\partial^{2} u(t, x)}{\partial x^{2}}=b(u(t, x))+\boldsymbol{\Sigma} \dot{W}(t, x) .
$$

Here, $\boldsymbol{\Sigma}$ is a non-singular, $d \times d$ matrix, and b : $\mathbf{R}^{d} \rightarrow \mathbf{R}^{d}$ is bounded and globally Lipschitz (say!). Note that $u: \mathbf{R}_{+} \times \mathbf{R} \rightarrow \mathbf{R}^{d}$. Then, for all nonrandom analytic sets $F \subset \mathbf{R}^{d}$,

$$
\mathrm{P}\left\{u\left((0, \infty) \times \mathbf{R}_{+}\right) \cap F \neq \varnothing\right\}>0 \leftrightarrow \operatorname{Cap}_{d-4}(F)>0 .
$$

A remarkable recent theorem of Robert Dalang and Eulalia Nualart (2004) shows that the same result holds for the system of SPDEs,

$$
\frac{\partial^{2} u(t, x)}{\partial t^{2}}=\frac{\partial^{2} u(t, x)}{\partial x^{2}}+b(u(t, x))+a(u(t, x)) \dot{W}(t, x),
$$

as long as a and b are Lipschitz and bounded (say!), and a is strictly elliptic.

