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Outline of Lecture 1:

e Definition of LPs.

e Examples of LPs.

e Definition of ALPs.

e Do ALPs arise naturally?

e An application of ALPs to Lévy processes.

e Additive Brownian Motion and the Brownian
Sheet [time permitting].
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Definition of LPs

Let X := {X(¢)};>0 be a stoch. process [i.e., a
sequence of rv’'s indexed by R,]. Suppose it takes
values in R¢; i.e., X(¢) € R? with probab. one.

X is a Lévy process if:

e For all t,5s >0, {X(t+s)—X(s)}>0 is [totally]
independent of {X (u) }o<.<s; [‘indep. incs”

o forall z,s >0, {X(t+s)—X(s)},>0 has the same
[fi-di] distributions as {X (¢) },>o; [“Stat. inc’s”]

e X(0)=0and X is continuous in L°(Q,.7 ,P).

The distribution of the entire process X depends
on the distribution of X (#) which we realize via the
Lévy—Khintchine formula for

1D ei'g'-X(t) _ e—t‘P(é) V§ c Rd, r > 0.

¥ .= Lévy exponent of X.
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A Connection to Semigroups

Define for all f: R?Y — R [Borel meas.], x € R¢, and

t >0,
(T.f)(x) :=E[f(x+X(1))].

Let f(E) := [pae®*f(x)dx and note that if f, f ¢

L'(R?), then f(x) = (27) ¢ fpae** /(&) dE. Thus,

(1)) = Tz [ B[54 5@

1 — iSx £
_ <2n)d/Rde H(E) il 7 (&

dE.

N—"

Ihus, 17; is a convolution kernel with multiplier
h(§)=eE),

‘ {T;};>0 is a convolution semigroup. I
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Example: Brownian Motion

Think of X : R, — R¢ as a “random function.”

e (Bachelier, 1900; Einstein, 1905) ¥ (&) = ||€]|>.
e (Wiener, 1910) X is continuous a.s.

o (Paley, Wiener, Zygmund, 1933) X is nowhere-
differentiable a.s.

e (Taylor, 1952/53) The random image-set X(R )
a.s. has Hausdorff dimension min(d,2).

e The Hille—Yosida generator of {T;},>0 is A
[distribution sense]; i.e., T; = .
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Recall on Hausdorff Dimension

Let s, > 0 be fixed; A C R? a set.

(o]

A (A) =infY (2r))"

j=1
where the infimum is taken over all balls B;, B,, ... of

respective radii ry,r,,... € (0,€) such that U7 B; D
A. The s-dimensional Hausdorff measure of A is

JC(A) = lim JZ7(A).

e—0t

J7° 1S an outer measure:; measure on Borel sets.

dim_ A :=sup{s>0: J°(A) > 0}
=inf{s > 0: J°(A) < oo}.

(Hausdorff, <1927)
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A Relation to [Bessel-] Riesz Capacities

S e =17 p(dx) p(dy), if s >0,
(1) = [ log, [ —y] u(dx) u(dy), it s=0,
L1, if s <O.

Cap,(A) := Lei;fm)ls(u)]_ : [inf & :=c0, 1/c0:=0)].

Theorem. [Frostman, 1935] For all Borel sets A C
R,

dim A =sup{s > 0: Cap,(A4) > 0}
=inf{s > 0: Cap,(A) =0}.
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Example: Isotropic Stable Processes

o (Lévy, 1937) ¥(&) = ||&||*; a € (0,2].
o T, =exp(tA%/?).
e (Lévy, 1937) When a < 2, X is pure-jump a.s.

e (McKean, 1955) The random image-set X(R,)
a.s. has Hausdorff dimension min(d, o).

e (Kakutani, 1944; Dvoretzky, Erdos, and Kakutani,
1950; McKean, 1955) For all Borel sets A C R¢,

P{X(R))NA# @} >0« Cap,_,(A)>0.

e (Nevanlinna, 1936; Noshiro, 1948; Ninomiya,
1953) Connections to the Dirichlet problem for
A%/ with removable singularities.
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Codimension and a Drawback

Recall that if X,, is iso. stable-a in R¢ then

P {Xy(R;)NA#£ 3} >0 Cap,_,(A) > 0.
Also recall (Frostman, 1935) that

inf{s € (0,d): Cap,_,(A) >0} +dim, A =d.

Thus,

Proposition. [Taylor, 1966] For all Borel sets A C
R? with dim, A > d -2,

inf{ € (0,2] ) P {Xa(R;)NA # &} >0} +dim, A=d

What if dim, A <d —27 An answer is given by Peres
(1996; 1998), but this answer does not involve Lévy
processes.
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Additive Stable Processes

Let Xi,...,Xy denote independent iso. stable-o
processes in RY. Define the (N,d)-random field

Dvalt) =Xi(0)++Xn(ty),  t=(t1,...,ty) ERY.

“additive stable process’]

Theorem. [Hirsch-Song, 1995; Kh. 2002] For all
Borel sets A C R,

P{2ZnaRY)NA# 2} >0 Cap,_gy(A) > 0.

So now we can characterize dim, A by seeing for
which pairs (N, o) the range of Zy , can hit A.
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Definition of ALPs

e Xi,...,Xy = independent Lévy in R;

e ALP [additive Lévy process]:

%(t) = Xl(tl) + .- —I—XN(IN),

for ¢t := (t1,...,ty) € RY.

e Law is characterized by

where ¥ (&) := (¥i(§),...,¥n(E)) and ¥; is the
Lévy exponent of X :

E 5 Xi(s) — o—s¥(5)
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Do ALPs Arise Naturally?

Yes. Here are 4 ways; there are others as well.

1. Double Points
2. Triple Points, efc.

3. Arithmetic properties [*“Kahane’s Problem”]

4. Brownian sheet [time permitting]
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Reason1: Intersections of Paths
[“Double Points™]

Let Y be a Lévy process in R?. An old question:

Whenis &2 :=P{s#r: Y(s)=Y(r)} >0?

32>0iffd§3|
e Y =BM:

(Dvoretzky, Erdds, and Kakutani, 1950; Aizenmann,
1985; Peres, 1996; Kh. 2003).

e Dvoretzky, Erdds, Kakutani, and Taylor (1957);
Hendricks (1973/74); Hawkes (1977, 1978);
Hendricks (1979); Kahane (1983, 1985); Evans
(1987); Tongring (1988); Rogers (1989); Le
Gall, Rosen, and Shieh (1989); Fitzsimmons and
Salisbury (1989); Ren (1990); Hirsch and Song
(1995); Shieh (1998); Peres (1999); Kh. (2002).
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Connection to Additive Levy Processes

Whenis & :=P{ s#1: Y(s)

Let Y and Y, be i.i.d. copies. The above is
equivalent to:

Whenis P{ s,t >0: Yi(s) =Ya(t)} > 0?
Consider the additive Lévy process
Y (t):=Yi(t1) —Yata).
We wish to know

When does % hit zero?
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Reason 2: Variants [“ Triple Points’]

P {- distinct s,z,u: Y(s)=Y()=Y(u)} > 0?

When is
If ¥ = BM then the answer is “iff d < 2” (Dvoretzky,
Erdos, Kakutani, and Taylor, 1957).

Equivalently, if Y,,Y,,Y; are i.i.d. Lévy processes
then we wish to know when

P{7s,t,u>0: Yi(s) =Ya(t) = Y3(u) } > 0?

Y (1) 0,4 04
Define ' (t):=| 0, |+ |Ya(t2)| +| Os | . Then
04 04 3(13)

we wish to know when # hits the diagonal of R3;
l.e., the collection of all points of the form zx ® xz ® x
where x € R<.
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Reason 3: Arithmetic Properties

e B, By, and B, = indept. Br. motions in RY;

e £, F C [0,0) compact, nonrandom, disjoint.
Then the following are equivalent (Kahane, 1985):

e |B(E)®B(F)| > 0 with pos. probab.;

e |B{(E)® By(F)| > 0 with pos. probab. [does not
require that ENF = .

Kahane also provided a necessary as well as
a sufficient condition, and asked for a precise
condition on E x F to ensure |B(E) ®B(F)| > 0.

Capd/z(E X F) > 0
Answer: (Kh. 1999):
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Define
%(t) = Bl(ll) +B2(t2)

“Additive Brownian motion.”

Then the following are equivalent:
e |Bi(E)®By(F)| > 0 with pos. probab.

e B(E x F) has positive Leb. meas. with pos.
probab.

This problem is now very well understood for very
general Lévy processes (Kh. and Xiao, 2005).
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An Application of ALPs to LPs

Let Y be an arbitrary Lévy process in R with
Lévy exponent Wy: Ele’sY®)] = exp(—s¥y(&)). Our
iImmediate goal is to derive the following:

Theorem. [Kh., Xiao, and Zhong, 2003] With
probability one, dim_ Y (R.) is equal to

S“p{”(” RdRe(lwlfY(&)) Hédlﬁ"s<°°}'

This solved a relatively old problem (Taylor,
1952/53; McKean, 1955; Blumenthal and Getoor,
1960, 1961; Pruitt 1969; Fristedt, 1974).

= If Y := symmetrization of Y [i.e., Y (r) =Y (t) - Y'(¢)

for an indep. copy Y’] then dim, Y (R;) > dim, Y (R})
a.s. Completes the observation of Kesten (1969).
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Let Xi,...,Xy be indept. Lévy processes in RY; ¥; =
Lévy exponent of X.

%‘(t) = Xl(tl) S +XN(tN)-

Theorem. [Kh. and Xiao 2006+] Let F C R? =
nonrandom Borel. Then, we have |2 (RY) & F| >0
with pos. probab. iff>u ¢ 2 (F):

/RdII_VIRe (1 +\Ilfj(§)) 1(E)PdE < oo,

This improves on Kh., Xiao, and Zhong (2003).

When N =1 this is well known (Orey, 1967; Kesten,
1969; Port and Stone, 1971; Hawkes, 1979, 1986;
...). For N > 1 we need different ideas.
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For instance, suppose Xi,...,Xy are i.i.d., isotropic
a-stable Lévy processes in RY. The “additive stable

process” Zy.q(t) :=Y\_ X;(t;) has the property that
for all non-random analytic sets F c R¢ the following
are equivalent:

1. P{|2ZnoaRY)DF| >0} > 0;

2. 2u € Z(F) such that

2P
Jot g e <=

3. u € Z(F) such that

W(dx)u .
fa-anll / o yud <

4. Cap,_,n(F) > 0.

We saw this before too.
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l.e., if Xi,...,Xy are i.i.d. isotropic stable-c in R and
%N,(x(t) = X (tl) +--- +XN(tN), then

P{ | Zna(RY) O F| > o} >0 o Cap, o v(F)> 0.
Let Y be an independent [ordinary] Lévy process

in RY, and apply the preceding to F := Y(R,),
conditional on Y: As positive-probability events,

| ZvaRY)®Y(Ry)| >0 « Cap,_qy(Y(Ry)) > 0.

But Zyv«(RY)®Y(R,) = Z(RY*!), where 2 is the
ALP Z(t) .= Xi(t;) +---+ Xn(ty) + Y (ty+1). We can
apply the previous theorem with F := {0} to find that

o T
[ZRED]> 0 RdRe(H‘PY(é)) R

Compare the boxed equations to find dim, Y (Ry)
(Frostman, 1935).
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Additive BM and the Brownian Sheet

Let B(z1,7,) denote two-parameter Brownian sheet in
RY. l.e., B is a centered Gaussian process and

Cov (Bi(Sl,Sz) ,Bj(fl,tz)) = min(sl,tl) min(sz,tz)&-,j.
Locally, Brownian sheet looks like additive Brownian
motion. Here is a precise statement near the point

t:=(1,1) (say!): Fore, o >0,

B(1+¢,1468)=B(1,1)+X(e) +X:(6)+Y(¢,6),

J/

-~

ABM=~+/e+6 ~\V €0

where:

e X; and X, are Brownian motions;
e Y is a Brownian sheet;

e B(1,1), X;, X;, and Y are totally independent.
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When €,0 =~ 0,
B(l4+¢€,14+6)—B(1,1)~ X (g)+X3(5).

One makes precise sense of this in a problem-
dependent manner. Here is an application:

Theorem. [Kh. and Shi, 1999] /fF c R? js analytic,
then P{B((0,)*)NF # @} > 0 iff Cap,_4(F) > 0.

Cap, := log. capacity; Cap_, :=1 for r < 0]

For instance, let F := {0} to find that B hits
singletons iff d < 3 (Orey and Pruitt, 1973).

By Girsanov this theorem translates to a statement
about SPDEs:
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Let W denote d-dimensional white noise over R2.
Consider the system of SPDEs of the wave type,

0°u(t,x) B d%u(t,x)

012 55 = bult,x) +EW(1,x).

Here, X is a non-singular, d x d matrix, and b :
R? — RY is bounded and globally Lipschitz (say!).
Note that « : R, x R — R?. Then, for all nonrandom
analytic sets F C R¢,

P{u((0,00) x Ry\)NF # 2} >0« Cap,_4(F) > 0.

A remarkable recent theorem of Robert Dalang and
Eulalia Nualart (2004) shows that the same result
holds for the system of SPDEs,

J%u(t,x)  9%u(t,x)

8t2 o axz —I—b(u(t,x))—I—a(u(t,x))W(t,x),

as long as a and b are Lipschitz and bounded (say!),
and a is strictly elliptic.
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