Additive Lévy Processes, I: Background and Motivation

Davar Khoshnevisan University of Utah, USA davar@math.utah.edu http://www.math.utah.edu~davar

Workshop on Probabilistic Analysis Taipei, June 2006

– Typeset by $\operatorname{FoilT}_{E}X$ –

Outline of Lecture 1:

- Definition of LPs.
- Examples of LPs.
- Definition of ALPs.
- Do ALPs arise naturally?
- An application of ALPs to Lévy processes.
- Additive Brownian Motion and the Brownian Sheet [time permitting].

Definition of LPs

Let $X := \{X(t)\}_{t \ge 0}$ be a stoch. process [i.e., a sequence of rv's indexed by \mathbf{R}_+]. Suppose it takes values in \mathbf{R}^d ; i.e., $X(t) \in \mathbf{R}^d$ with probab. one.

X is a *Lévy process* if:

- For all $t, s \ge 0$, $\{X(t+s) X(s)\}_{t\ge 0}$ is [totally] independent of $\{X(u)\}_{0\le u\le s}$; ["*indep. incs*"]
- for all $t, s \ge 0$, $\{X(t+s) X(s)\}_{t\ge 0}$ has the same [fi-di] distributions as $\{X(t)\}_{t\ge 0}$; ["stat. inc's"]
- X(0) = 0 and X is continuous in $L^0(\Omega, \mathscr{F}, P)$.

The distribution of the entire process X depends on the distribution of X(t) which we realize via the Lévy–Khintchine formula for

E
$$e^{i\boldsymbol{\xi}\cdot\boldsymbol{X}(t)} = e^{-t\Psi(\boldsymbol{\xi})}$$
 $\forall \boldsymbol{\xi} \in \mathbf{R}^d, t \geq 0.$

 $\Psi := L \acute{e}vy$ exponent of *X*.

– Typeset by $FoilT_EX$ –

A Connection to Semigroups

Define for all $f : \mathbf{R}^d \to \mathbf{R}_+$ [Borel meas.], $x \in \mathbf{R}^d$, and $t \ge 0$,

 $(T_t f)(x) := \mathbf{E} \left[f(x + X(t)) \right].$

Let $\hat{f}(\xi) := \int_{\mathbf{R}^d} e^{i\xi \cdot x} f(x) dx$ and note that if $f, \hat{f} \in L^1(\mathbf{R}^d)$, then $f(x) = (2\pi)^{-d} \int_{\mathbf{R}^d} e^{i\xi \cdot x} \overline{\hat{f}(\xi)} d\xi$. Thus,

$$(T_t f)(x) = \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} \mathbf{E} \left[e^{i\boldsymbol{\xi}\cdot\boldsymbol{X}(t)} \right] e^{i\boldsymbol{\xi}\cdot\boldsymbol{x}} \overline{\hat{f}(\boldsymbol{\xi})} d\boldsymbol{\xi}$$
$$= \frac{1}{(2\pi)^d} \int_{\mathbf{R}^d} e^{-t\Psi(\boldsymbol{\xi})} e^{i\boldsymbol{\xi}\cdot\boldsymbol{x}} \overline{\hat{f}(\boldsymbol{\xi})} d\boldsymbol{\xi}.$$

Thus, T_t is a convolution kernel with multiplier $\widehat{T}_t(\xi) = e^{-t\Psi(\xi)}$.

 ${T_t}_{t\geq 0}$ is a convolution semigroup.

Example: Brownian Motion

Think of $X : \mathbf{R}_+ \to \mathbf{R}^d$ as a "random function."

- (Bachelier, 1900; Einstein, 1905) $\Psi(\xi) = \|\xi\|^2$.
- (Wiener, 1910) *X* is continuous a.s.
- (Paley, Wiener, Zygmund, 1933) *X* is nowheredifferentiable a.s.
- (Taylor, 1952/53) The random image-set X(R₊) a.s. has Hausdorff dimension min(d,2).
- The Hille–Yosida generator of $\{T_t\}_{t\geq 0}$ is Δ [distribution sense]; i.e., $T_t = e^{t\Delta}$.

Recall on Hausdorff Dimension

Let $s, \varepsilon > 0$ be fixed; $A \subset \mathbf{R}^d$ a set.

$$\mathscr{H}^{s}_{\varepsilon}(A) := \inf \sum_{j=1}^{\infty} (2r_{j})^{s},$$

where the infimum is taken over all balls $B_1, B_2, ...$ of respective radii $r_1, r_2, ... \in (0, \varepsilon)$ such that $\bigcup_{j=1}^{\infty} B_j \supset A$. The *s*-dimensional Hausdorff measure of A is

$$\mathscr{H}^{s}(A) := \lim_{\varepsilon \to 0^{+}} \mathscr{H}^{s}_{\varepsilon}(A).$$

 \mathscr{H}^{s} is an outer measure; measure on Borel sets.

$$\dim_{\mathrm{H}} A := \sup \{ s > 0 : \mathscr{H}^{s}(A) > 0 \}$$
$$= \inf \{ s > 0 : \mathscr{H}^{s}(A) < \infty \}$$

(Hausdorff, \leq 1927)

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

A Relation to [Bessel-] Riesz Capacities

$$I_{s}(\mu) := \begin{cases} \iint \|x - y\|^{-s} \mu(dx) \mu(dy), & \text{if } s > 0, \\ \iint \log_{+} \|x - y\|^{-1} \mu(dx) \mu(dy), & \text{if } s = 0, \\ 1, & \text{if } s < 0. \end{cases}$$
$$\operatorname{Cap}_{s}(A) := \left[\inf_{\mu \in \mathscr{P}(A)} I_{s}(\mu)\right]^{-1}, & [\inf \varnothing := \infty, \ 1/\infty := 0]. \end{cases}$$

Theorem. [Frostman, 1935] For all Borel sets $A \subset \mathbb{R}^d$,

$$\dim_{H} A = \sup \{ s > 0 : \operatorname{Cap}_{s}(A) > 0 \}$$

= $\inf \{ s > 0 : \operatorname{Cap}_{s}(A) = 0 \}.$

– Typeset by $\operatorname{FoilT}_{E}X$ –

Example: Isotropic Stable Processes

- (Lévy, 1937) $\Psi(\xi) = \|\xi\|^{\alpha}$; $\alpha \in (0, 2]$.
- $T_t = \exp(t\Delta^{\alpha/2})$.
- (Lévy, 1937) When $\alpha < 2$, X is pure-jump a.s.
- (McKean, 1955) The random image-set $X(\mathbf{R}_+)$ a.s. has Hausdorff dimension $\min(d, \alpha)$.
- (Kakutani, 1944; Dvoretzky, Erdős, and Kakutani, 1950; McKean, 1955) For all Borel sets A ⊂ R^d,

 $\mathrm{P}\left\{X(\mathbf{R}_+) \cap A \neq \emptyset\right\} > 0 \leftrightarrow \operatorname{Cap}_{d-\alpha}(A) > 0.$

• (Nevanlinna, 1936; Noshiro, 1948; Ninomiya, 1953) Connections to the Dirichlet problem for $\Delta^{\alpha/2}$ with removable singularities.

Codimension and a Drawback

Recall that if X_{α} is iso. stable- α in \mathbf{R}^{d} then

 $\mathrm{P}\left\{X_{\alpha}(\mathbf{R}_{+})\cap A\neq\varnothing\right\}>0\leftrightarrow \operatorname{Cap}_{d-\alpha}(A)>0.$

Also recall (Frostman, 1935) that

$$\inf \{s \in (0,d): \operatorname{Cap}_{d-s}(A) > 0\} + \dim_{\mathrm{H}} A = d.$$

Thus,

Proposition. [Taylor, 1966] For all Borel sets $A \subset \mathbf{R}^d$ with $\dim_{\mathbf{H}} A \ge d-2$,

$$\inf\left\{\alpha\in(0,2] \mid \mathrm{P}\left\{X_{\alpha}(\mathbf{R}_{+})\cap A\neq\varnothing\right\}>0\right\}+\dim_{\mathrm{H}}A=d.$$

What if $\dim_{H} A < d - 2$? An answer is given by Peres (1996; 1998), but this answer does not involve Lévy processes.

– Typeset by FoilT $_{E}X$ –

Additive Stable Processes

Let X_1, \ldots, X_N denote independent iso. stable- α processes in \mathbf{R}^d . Define the (N, d)-random field

 $\mathscr{X}_{N,\alpha}(\boldsymbol{t}) := X_1(t_1) + \cdots + X_N(t_N), \qquad \boldsymbol{t} = (t_1, \ldots, t_N) \in \mathbf{R}^N_+.$

["additive stable process"]

Theorem. [Hirsch–Song, 1995; Kh. 2002] For all Borel sets $A \subset \mathbf{R}^d$,

$$\mathrm{P}\left\{\mathscr{X}_{N,\alpha}(\mathbf{R}^{N}_{+})\cap A\neq\varnothing\right\}>0\leftrightarrow\mathrm{Cap}_{d-\alpha N}(A)>0.$$

So now we can characterize $\dim_{H} A$ by seeing for which pairs (N, α) the range of $\mathscr{X}_{N,\alpha}$ can hit *A*.

Definition of ALPs

- X_1, \ldots, X_N = independent Lévy in \mathbf{R}^d ;
- ALP [additive Lévy process]:

$$\mathscr{X}(\boldsymbol{t}) := X_1(t_1) + \cdots + X_N(t_N),$$

for $t := (t_1, ..., t_N) \in \mathbf{R}^N_+$.

• Law is characterized by

E
$$e^{i\boldsymbol{\xi}\cdot\boldsymbol{\mathscr{X}}(\boldsymbol{t})} = \exp\left(-\sum_{j=1}^{N}t_{j}\Psi_{j}(\boldsymbol{\xi})\right) = e^{-\boldsymbol{t}\cdot\boldsymbol{\Psi}(\boldsymbol{\xi})},$$

where $\Psi(\xi) := (\Psi_1(\xi), \dots, \Psi_N(\xi))$ and Ψ_j is the Lévy exponent of X_j :

$$\mathbf{E} \ e^{i\boldsymbol{\xi}\cdot\boldsymbol{X}_j(s)} = e^{-s\Psi_j(\boldsymbol{\xi})}.$$

– Typeset by $\operatorname{FoilT}_{E}X$ –

Do ALPs Arise Naturally?

- Yes. Here are 4 ways; there are others as well.
- 1. Double Points
- 2. Triple Points, etc.
- 3. Arithmetic properties ["*Kahane's Problem*"]
- 4. Brownian sheet [time permitting]

Reason1: Intersections of Paths ["Double Points"]

Let *Y* be a Lévy process in \mathbb{R}^d . An old question:

When is $\mathscr{P} := P\left\{ \exists s \neq t : Y(s) = Y(t) \right\} > 0?$

•
$$Y = \mathsf{BM}$$
: $\mathscr{P} > 0 \text{ iff } d \leq 3$

(Dvoretzky, Erdős, and Kakutani, 1950; Aizenmann, 1985; Peres, 1996; Kh. 2003).

 Dvoretzky, Erdős, Kakutani, and Taylor (1957); Hendricks (1973/74); Hawkes (1977, 1978); Hendricks (1979); Kahane (1983, 1985); Evans (1987); Tongring (1988); Rogers (1989); Le Gall, Rosen, and Shieh (1989); Fitzsimmons and Salisbury (1989); Ren (1990); Hirsch and Song (1995); Shieh (1998); Peres (1999); Kh. (2002).

Connection to Additive Lévy Processes

When is
$$\mathscr{P} := P\left\{ \exists s \neq t : Y(s) = Y(t) \right\} > 0?$$

Let Y_1 and Y_2 be i.i.d. copies. The above is equivalent to:

When is $P\{\exists s, t > 0: Y_1(s) = Y_2(t)\} > 0?$

Consider the additive Lévy process

$$\mathscr{Y}(\boldsymbol{t}) := Y_1(t_1) - Y_2(t_2).$$

We wish to know

When does \mathscr{Y} hit zero?

– Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

Reason 2: Variants ["Triple Points"]

When is P{ \exists distinct s, t, u : Y(s) = Y(t) = Y(u)} > 0? If Y = BM then the answer is "iff $d \le 2$ " (Dvoretzky, Erdős, Kakutani, and Taylor, 1957).

Equivalently, if Y_1, Y_2, Y_3 are i.i.d. Lévy processes then we wish to know when

$$P\left\{ {}^{\exists}s,t,u>0: Y_1(s)=Y_2(t)=Y_3(u) \right\} > 0?$$

Define $\mathscr{Y}(t) := \begin{bmatrix} Y_1(t_1) \\ \mathbf{0}_d \\ \mathbf{0}_d \end{bmatrix} + \begin{bmatrix} \mathbf{0}_d \\ Y_2(t_2) \\ \mathbf{0}_d \end{bmatrix} + \begin{bmatrix} \mathbf{0}_d \\ \mathbf{0}_d \\ Y_3(t_3) \end{bmatrix}$. Then

we wish to know when \mathscr{Y} hits the diagonal of \mathbb{R}^{3d} ; i.e., the collection of all points of the form $x \otimes x \otimes x$ where $x \in \mathbb{R}^d$.

Reason 3: Arithmetic Properties

- B, B_1 , and B_2 = indept. Br. motions in \mathbf{R}^d ;
- $E, F \subset [0, \infty)$ compact, nonrandom, disjoint.

Then the following are equivalent (Kahane, 1985):

- $|B(E) \oplus B(F)| > 0$ with pos. probab.;
- $|B_1(E) \oplus B_2(F)| > 0$ with pos. probab. [does not require that $E \cap F = \emptyset$].

Kahane also provided a necessary as well as a sufficient condition, and asked for a precise condition on $E \times F$ to ensure $|B(E) \oplus B(F)| > 0$.

$$\operatorname{Cap}_{d/2}(E \times F) > 0$$

Answer: (Kh. 1999):

Define

$$\mathscr{B}(\boldsymbol{t}) := \boldsymbol{B}_1(t_1) + \boldsymbol{B}_2(t_2)$$

"Additive Brownian motion."

Then the following are equivalent:

- $|B_1(E) \oplus B_2(F)| > 0$ with pos. probab.
- $\mathscr{B}(E \times F)$ has positive Leb. meas. with pos. probab.

This problem is now very well understood for very general Lévy processes (Kh. and Xiao, 2005).

An Application of ALPs to LPs

Let *Y* be an arbitrary Lévy process in \mathbb{R}^d with Lévy exponent Ψ_Y : $\mathbb{E}[e^{i\xi \cdot Y(s)}] = \exp(-s\Psi_Y(\xi))$. Our immediate goal is to derive the following:

Theorem. [Kh., Xiao, and Zhong, 2003] With probability one, $\dim_{H} Y(\mathbf{R}_{+})$ is equal to

$$\sup\left\{s>0: \int_{\mathbf{R}^d} \operatorname{Re}\left(\frac{1}{1+\Psi_Y(\xi)}\right) \frac{d\xi}{\|\xi\|^{d-s}} < \infty\right\}$$

This solved a relatively old problem (Taylor, 1952/53; McKean, 1955; Blumenthal and Getoor, 1960, 1961; Pruitt 1969; Fristedt, 1974).

⇒ If \overline{Y} := symmetrization of Y [i.e., $\overline{Y}(t) = Y(t) - Y'(t)$ for an indep. copy Y'] then $\dim_{\mathrm{H}} Y(\mathbf{R}_{+}) \ge \dim_{\mathrm{H}} \overline{Y}(\mathbf{R}_{+})$ a.s. Completes the observation of Kesten (1969). Let X_1, \ldots, X_N be indept. Lévy processes in \mathbb{R}^d ; $\Psi_j =$ Lévy exponent of X_j .

$$\mathscr{X}(\boldsymbol{t}) := X_1(t_1) + \cdots + X_N(t_N).$$

Theorem. [Kh. and Xiao 2006+] Let $F \subset \mathbf{R}^d =$ nonrandom Borel. Then, we have $|\mathscr{X}(\mathbf{R}^N_+) \oplus F| > 0$ with pos. probab. iff $\exists \mu \in \mathscr{P}(F)$:

$$\int_{\mathbf{R}^d} \prod_{j=1}^N \operatorname{Re}\left(\frac{1}{1+\Psi_j(\xi)}\right) |\hat{\mu}(\xi)|^2 d\xi < \infty.$$

This improves on Kh., Xiao, and Zhong (2003).

When N = 1 this is well known (Orey, 1967; Kesten, 1969; Port and Stone, 1971; Hawkes, <u>1979</u>, 1986; ...). For N > 1 we need <u>different</u> ideas.

For instance, suppose X_1, \ldots, X_N are i.i.d., isotropic α -stable Lévy processes in \mathbb{R}^d . The "*additive stable process*" $\mathscr{X}_{N,\alpha}(t) := \sum_{j=1}^N X_j(t_j)$ has the property that for all non-random analytic sets $F \subset \mathbb{R}^d$ the following are equivalent:

1.
$$\mathrm{P}\{|\mathscr{X}_{N,\alpha}(\mathbf{R}^N_+)\oplus F|>0\}>0;$$

2. $\exists \mu \in \mathscr{P}(F)$ such that

$$\int_{\mathbf{R}^d} \frac{|\hat{\mu}(\xi)|^2}{1+\|\xi\|^{\alpha N}} d\xi < \infty;$$

3. $\exists \mu \in \mathscr{P}(F)$ such that

$$I_{d-\alpha N}(\mu) = \iint \frac{\mu(dx)\,\mu(dy)}{\|x-y\|^{d-\alpha N}} < \infty;$$

4. $Cap_{d-\alpha N}(F) > 0.$

We saw this before too.

– Typeset by $\mbox{FoilT}_{\!E\!X}$ –

I.e., if X_1, \ldots, X_N are i.i.d. isotropic stable- α in \mathbb{R}^d and $\mathscr{X}_{N,\alpha}(t) = X_1(t_1) + \cdots + X_N(t_N)$, then

$$\mathbf{P}\Big\{\Big|\mathscr{X}_{N,\alpha}(\mathbf{R}^N_+)\oplus F\big|>0\Big\}>0 \;\leftrightarrow\; \mathrm{Cap}_{d-\alpha N}(F)>0.$$

Let *Y* be an independent [ordinary] Lévy process in \mathbf{R}^d , and apply the preceding to $F := Y(\mathbf{R}_+)$, conditional on *Y*: As positive-probability events,

$$\mathscr{X}_{N,\alpha}(\mathbf{R}^N_+) \oplus Y(\mathbf{R}_+) | > 0 \iff \operatorname{Cap}_{d-\alpha N}(Y(\mathbf{R}_+)) > 0.$$

But $\mathscr{X}_{N,\alpha}(\mathbf{R}^N_+) \oplus Y(\mathbf{R}_+) = \mathscr{Z}(\mathbf{R}^{N+1}_+)$, where \mathscr{Z} is the ALP $\mathscr{Z}(\mathbf{t}) := X_1(t_1) + \cdots + X_N(t_N) + Y(t_{N+1})$. We can apply the previous theorem with $F := \{0\}$ to find that

$$\left|\mathscr{Z}(\mathbf{R}^{N+1}_{+})\right| > 0 \leftrightarrow \int_{\mathbf{R}^{d}} \operatorname{Re}\left(\frac{1}{1 + \Psi_{Y}(\xi)}\right) \frac{d\xi}{\|\xi\|^{\alpha N}} < \infty.$$

Compare the boxed equations to find $\dim_{H} Y(\mathbf{R}_{+})$ (Frostman, 1935).

Additive BM and the Brownian Sheet

Let $B(t_1, t_2)$ denote two-parameter Brownian sheet in \mathbf{R}^d . I.e., *B* is a centered Gaussian process and

 $\operatorname{Cov}(B_i(s_1, s_2), B_j(t_1, t_2)) = \min(s_1, t_1) \min(s_2, t_2) \delta_{i,j}.$

Locally, Brownian sheet looks like additive Brownian motion. Here is a precise statement near the point t := (1, 1) (say!): For $\varepsilon, \delta > 0$,

$$B(1+\varepsilon,1+\delta) = B(1,1) + \underbrace{X_1(\varepsilon) + X_2(\delta)}_{\mathsf{ABM} \approx \sqrt{\varepsilon+\delta}} + \underbrace{Y(\varepsilon,\delta)}_{\approx \sqrt{\varepsilon\delta}},$$

where:

- *X*₁ and *X*₂ are Brownian motions;
- *Y* is a Brownian sheet;
- B(1,1), X_1 , X_2 , and Y are totally independent.

When $\varepsilon, \delta \approx 0$,

$$B(1+\varepsilon,1+\delta)-B(1,1)\approx X_1(\varepsilon)+X_2(\delta).$$

One makes precise sense of this in a problemdependent manner. Here is an application:

Theorem. [Kh. and Shi, 1999] If $F \subset \mathbb{R}^d$ is analytic, then $P\{B((0,\infty)^2) \cap F \neq \emptyset\} > 0$ iff $\operatorname{Cap}_{d-4}(F) > 0$.

 $[Cap_0 := log. capacity; Cap_{-r} := 1 \text{ for } r < 0]$

For instance, let $F := \{0\}$ to find that *B* hits singletons iff $d \le 3$ (Orey and Pruitt, 1973).

By Girsanov this theorem translates to a statement about SPDEs:

Let \dot{W} denote *d*-dimensional white noise over \mathbb{R}^2 . Consider the system of SPDEs of the wave type,

$$\frac{\partial^2 u(t,x)}{\partial t^2} - \frac{\partial^2 u(t,x)}{\partial x^2} = b(u(t,x)) + \Sigma \dot{W}(t,x).$$

Here, Σ is a non-singular, $d \times d$ matrix, and b: $\mathbf{R}^d \to \mathbf{R}^d$ is bounded and globally Lipschitz (say!). Note that $u : \mathbf{R}_+ \times \mathbf{R} \to \mathbf{R}^d$. Then, for all nonrandom analytic sets $F \subset \mathbf{R}^d$,

$$\mathrm{P}\left\{u((0,\infty)\times\mathbf{R}_+)\cap F\neq\varnothing\right\}>0\leftrightarrow\ \mathrm{Cap}_{d-4}(F)>0.$$

A remarkable recent theorem of Robert Dalang and Eulalia Nualart (2004) shows that the same result holds for the system of SPDEs,

$$\frac{\partial^2 u(t,x)}{\partial t^2} = \frac{\partial^2 u(t,x)}{\partial x^2} + b(u(t,x)) + a(u(t,x))\dot{W}(t,x),$$

as long as *a* and *b* are Lipschitz and bounded (say!), and *a* is strictly elliptic.

– Typeset by $\operatorname{FoilT}_{EX}$ –