"What Does a Typical Normal

Number Look Like?," and Other

Enchanting Tales

Davar Khoshnevisan
University of Utah
davar@math.utah.edu
http://www.math.utah.edu/~davar

Our High-Entropy Programme:
 (Time permitting)

Normal numbers
\Rightarrow uniform sampling
\Rightarrow uniform sampling from non-normals
\Rightarrow entropy/dimension for non-normals

Why uniform sampling?
Laplace's maximum-entropy principle

Normal Numbers

Choose a number $x \in[0,1]$ and write it out, in decimal form, as

$$
x=0 . x_{1} x_{2} x_{3} \cdots,
$$

where the x_{j} 's are integers between 0 and 9. E.g., $x=0.5302$. The number x is a "normal number" (aka "simply-normal number") if the asymptotic fraction of every digit in its expansion is $\frac{1}{10}$. [Not to be mistaken with the "normal distribution."]

Some Questions

1. Can you construct a normal number?
(Doable but requires thought)
2. Is there an algorithm for deciding when a given number is normal?
(Open for about 100 years)

To see why the latter is a tough problem, consider the following surprising fact:

Normal Numbers (2/4)

Theorem 1 (D. G. Champernowne, 1933) The following is a normal number:

$$
x=0.123456789101112131415161718 \cdots .
$$

Several proofs exist, but none are overtly simple. Can you at least find an intuitive explanation?

The existing literature contains some sufficient conditions for normality, but as far as I know it is not known whether any of the following is normal: $\pi / 4, e / 3, \cdots$.

One might be tempted to think that normal numbers are rare. Quite the opposite is true, though.

Theorem 2 (É. Borel, 1904) The set of non-normals has zero length.

To understand why, suppose X is a random variable (r.v.) that is selected uniformly at random from [0, 1] $(\mathcal{U}([0,1]))$. That is, for "all" subsets A of $[0,1]$,

$$
\operatorname{Pr}\{X \in A\}=\text { Length }(A) .
$$

Therefore, Borel's theorem in fact says:

Theorem 3 If X is $\mathcal{U}([0,1])$, then with probability one X is normal.

So, given an honest random-number generator, we could construct all manners of normal numbers. This can be turned around to give you a fitness test for your random number generator! (Statistics+Cramér's theorem of large deviations)

Lemma 4 If $X=0 . X_{1}, X_{2} \ldots$ is $\mathcal{U}([0,1])$, then the X_{j} 's are independent, each taking values $0, \ldots, 9$ with prob. $\frac{1}{10}$ each.

Proof. Binary (actually 10-ary) search.

Borel's theorem follows from this and the law of large numbers (A. N. Kolmogorov, 1933): Let $Y_{j}=1$ if $X_{j}=0$; else, $Y_{j}=0$. Then, the Y_{j} 's are independent rv's, and $E\left[Y_{j}\right]=\frac{1}{10}$. By the law of large numbers, with probability one,

$$
\lim _{N \rightarrow \infty} \underbrace{\frac{Y_{1}+\cdots+Y_{N}}{N}}_{\text {fraction of 0's }}=\frac{1}{10} .
$$

Ditto for the (asymptotic) fraction of 1's, 2's, ..., 9's.

Non-Normal Numbers

Here is a "nice" class of non-normal numbers: Suppose $\vec{p}=\left(p_{0}, \ldots, p_{9}\right)$ is a probability vector; i.e., $p_{j} \in[0,1]$ and $p_{0}+\cdots+p_{9}=1$. Define $N(\vec{p})$ to be the collection of all points $x \in[0,1]$ such that the asymptotic fraction of j is $p_{j}(j=0, \ldots, 9)$.

If $p_{0}=\cdots=p_{9}$, then $N(\vec{p})$ is the collection of all normal numbers, and we have seen that in that case $N(\vec{p})$ has full length; i.e., its complement has zero length.

For all other probability vectors $\vec{p}, N(\vec{p})$ has zero length. Nevertheless, we can still draw "uniformly" at random from $N(\vec{p})$. Here is how:

Suppose X_{1}, X_{2}, \ldots are independent r.v.s taking the values $0, \ldots, 9$ with probabilities p_{0}, \ldots, p_{9}, respectively. Now define X to be the random number in $[0,1]$ whose i th decimal point is X_{i}; i.e.,

$$
X=X_{1} \cdot 10^{-1}+X_{2} \cdot 10^{-2}+\cdots
$$

What does the distribution of the r.v. X look like? For one, an appeal to the law of large numbers shows that

$$
\operatorname{Pr}\{X \in N(\vec{p})\}=1
$$

So we have described a way to sample randomly from $N(\vec{p})$. But why is it "uniform"?

Choose and fix any point $z \in N(\vec{p})$, and write z, in decimal form, as $z=0 . z_{1} z_{2} \ldots$. By independence,

$$
\begin{aligned}
& \operatorname{Pr}\left\{X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right\} \\
& =\operatorname{Pr}\left\{X_{1}=z_{1}\right\} \times \cdots \times \operatorname{Pr}\left\{X_{n}=z_{n}\right\} \\
& =p_{0}^{f_{n}(0)} \times \cdots \times p_{9}^{f_{n}(9)},
\end{aligned}
$$

where $f_{n}(i)$ is the number (frequency) of times that z_{1}, \ldots, z_{n} equal to i. Now take logs:

$$
\begin{align*}
& \log \operatorname{Pr}\left\{X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right\} \\
& =f_{n}(0) \log p_{0}+\cdots+f_{n}(9) \log p_{9} . \tag{1}
\end{align*}
$$

Because $z \in N(\vec{p})$, the asymptotic fraction of i in the expansion of z is p_{i}; i.e.,

$$
\lim _{n \rightarrow \infty} \frac{f_{n}(i)}{n}=p_{i}, \quad \text { for all } i=0, \ldots, 9
$$

Plug in (1) find:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Pr}\left\{X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right\} \tag{2}\\
& =p_{0} \log p_{0}+\cdots+p_{9} \log p_{9} .
\end{align*}
$$

The thermodynamic entropy of the probability vector \vec{p} is simply the absolute-value of the right-hand side; i.e.,

$$
\begin{gathered}
\operatorname{Ent}(\vec{p})=-p_{0} \log p_{0}-\ldots-p_{9} \log p_{9} . \\
\left(p_{i} \leq 1 \therefore \log p_{i} \leq 0 \therefore \operatorname{Ent}(\vec{p}) \geq 0 .\right)
\end{gathered}
$$

Thus, we can think of (2) as

$$
\operatorname{Pr}\left\{X_{1}=z_{1}, \ldots, X_{n}=z_{n}\right\} \approx 10^{-n \operatorname{Ent}(\vec{p})}
$$

But the left-hand side is just about the same as the probability that X is within 10^{-n} of z. This "shows" that for any $z \in N(\vec{p})$ fixed, and all large n,

$$
\operatorname{Pr}\left\{|X-z| \leq 10^{-n}\right\} \approx 10^{-n \operatorname{Ent}(\vec{p})}
$$

"Thus," for all sufficiently small $\varepsilon>0$,

$$
\begin{equation*}
\operatorname{Pr}\{|X-z| \leq \varepsilon\} \approx \varepsilon^{\operatorname{Ent}(\vec{p})} \tag{3}
\end{equation*}
$$

Because the right-hand side does not depend on z, this justifies (somewhat) the notion that X is uniformly distributed on $N(\vec{p})$ (why? More importantly, why only somewhat?).

Although my "derivation" of (3) has some logical holes in it, these holes can be patched up; (3) itself is entirely true if you interpret " \approx " appropriately.

Next is a happy consequence of (3) [in case you have heard of the terms to follow]:

Theorem 5 (H. G. Eggleston, 1949) For any probability vector $\vec{p}=\left(p_{0}, \ldots, p_{9}\right)$,

$$
\operatorname{dim}_{\mathcal{H}} N(\vec{p})=\operatorname{Ent}(\vec{p}) .
$$

Here $\operatorname{dim}_{\mathcal{H}} F$ stands for the Hausdorff-Besicovitch (often called fractal) dimension of a set F. P.S. The same formula is valid for the other fractal dimension ("packing") too.

$\mathcal{U}([0,1])$ via Entropy

Why does choosing uniformly work in some instances?

I close by introducing another connection between $\mathcal{U}([0,1])$ and entropy. This connection was originated by P.-S. Laplace (1810's), and is called the "maximum entropy law," as well as the "method of maximum probabilities."

First, some undergraduate probability:

$\mathcal{U}([0,1])$ via Entropy (2/4)

If $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x) d x=1$, then f is a socalled "probability density function" or pdf. A random variable X has pdf f if for "all" A,

$$
\operatorname{Pr}\{X \in A\}=\int_{A} f(x) d x
$$

If X is $\mathcal{U}([0,1])$, then its pdf is

$$
f_{\text {unif }}(x)= \begin{cases}1, & \text { if } 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

$\mathcal{U}([0,1])$ via Entropy (3/4)

If f is a pdf, then its entropy is

$$
\operatorname{Ent}(f)=-\int_{-\infty}^{\infty} f(x) \ln f(x) d x
$$

where $0 \cdot \ln 0:=0$. (This is a continuous version of the entropy we saw earlier.) Thus, for example,

$$
\operatorname{Ent}\left(f_{\text {unif }}\right)=0
$$

The (informal) "law of maximum entropy" states that if you wish to predict the pdf of a r.v. X, then you should maximize entropy. If there is further info, then take that into account while finding the max.
$\mathcal{U}([0,1])$ via Entropy (4/4)

Now suppose we know that we have ourselves an unknown pdf f on $[0,1]$. What is a good guess for f ? Because we know only that f is a pdf on $[0,1]$, the "most sensible guess" is $f_{\text {unif }}$.

The maximum-entropy law confirms this: Note that $h(x)=1-x+x \ln x(x \geq 0)$ is minimized at $x=1$ with $h(1)=0$. I.e.,

$$
-x \ln x \leq 1-x, \quad \text { for all } x \geq 0
$$

Let $x:=f(t)$ to deduce that for any pdf f on $[0,1]$,

$$
-f(t) \ln f(t) \leq 1-f(t), \quad \text { for all } t \in[0,1] .
$$

Integrate this over all $t \in[0,1]$ now. Because $\int_{0}^{1} f(t) d t=$ 1 , this shows that $\operatorname{Ent}(f) \leq 0=\operatorname{Ent}\left(f_{\text {unif }}\right)$!

