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Our High-Entropy Programme:
(Time permitting)

Normal numbers
⇒ uniform sampling
⇒ uniform sampling from non-normals
⇒ entropy/dimension for non-normals

Why uniform sampling?
Laplace’s maximum-entropy principle



Normal Numbers (1/4)

Choose a number x ∈ [0,1] and write it out, in deci-
mal form, as

x = 0.x1x2x3 · · · ,

where the xj ’s are integers between 0 and 9. E.g.,
x = 0.5302. The number x is a “normal number”
(aka “simply-normal number”) if the asymptotic frac-
tion of every digit in its expansion is 1

10. [Not to be mistaken

with the “normal distribution.”]

Some Questions

1. Can you construct a normal number?
(Doable but requires thought)

2. Is there an algorithm for deciding when a given
number is normal?
(Open for about 100 years)

To see why the latter is a tough problem, consider the
following surprising fact:



Normal Numbers (2/4)

Theorem 1 (D. G. Champernowne, 1933) The follow-
ing is a normal number:

x = 0.123456789101112131415161718 · · · .

Several proofs exist, but none are overtly simple. Can
you at least find an intuitive explanation?

The existing literature contains some sufficient condi-
tions for normality, but as far as I know it is not known
whether any of the following is normal: π/4, e/3, · · · .

One might be tempted to think that normal numbers
are rare. Quite the opposite is true, though.



Normal Numbers (3/4)

Theorem 2 ( É. Borel, 1904) The set of non-normals
has zero length.

To understand why, suppose X is a random variable
(r.v.) that is selected uniformly at random from [0,1]

(U([0,1])). That is, for “all” subsets A of [0,1],

Pr{X ∈ A} = Length(A).

Therefore, Borel’s theorem in fact says:

Theorem 3 If X is U([0,1]), then with probability one
X is normal.

So, given an honest random-number generator, we
could construct all manners of normal numbers. This
can be turned around to give you a fitness test for your
random number generator! (Statistics+Cramér’s the-
orem of large deviations)



Normal Numbers (4/4)

Lemma 4 If X = 0.X1, X2 . . . is U([0,1]), then the
Xj ’s are independent, each taking values 0, . . . ,9 with
prob. 1

10 each.

Proof. Binary (actually 10-ary) search. �

Borel’s theorem follows from this and the law of large
numbers (A. N. Kolmogorov, 1933): Let Yj = 1 if
Xj = 0; else, Yj = 0. Then, the Yj ’s are inde-
pendent rv’s, and E[Yj] = 1

10. By the law of large
numbers, with probability one,

lim
N→∞

Y1 + · · ·+ YN

N︸ ︷︷ ︸
fraction of 0’s

=
1

10
.

Ditto for the (asymptotic) fraction of 1’s, 2’s, . . . ,9’s.



Non-Normal Numbers (1/6)

Here is a “nice” class of non-normal numbers: Sup-
pose ~p = (p0, . . . , p9) is a probability vector; i.e.,
pj ∈ [0,1] and p0 + · · · + p9 = 1. Define N(~p)

to be the collection of all points x ∈ [0,1] such that
the asymptotic fraction of j is pj (j = 0, . . . ,9).

If p0 = · · · = p9, then N(~p) is the collection of all
normal numbers, and we have seen that in that case
N(~p) has full length; i.e., its complement has zero
length.

For all other probability vectors ~p, N(~p) has zero length.
Nevertheless, we can still draw “uniformly” at random
from N(~p). Here is how:



Non-Normal Numbers (2/6)

Suppose X1, X2, . . . are independent r.v.’s taking the
values 0, . . . ,9 with probabilities p0, . . . , p9, respec-
tively. Now define X to be the random number in
[0,1] whose ith decimal point is Xi; i.e.,

X = X1 · 10−1 + X2 · 10−2 + · · · .

What does the distribution of the r.v. X look like? For
one, an appeal to the law of large numbers shows that

Pr{X ∈ N(~p)} = 1.

So we have described a way to sample randomly from
N(~p). But why is it “uniform”?



Non-Normal Numbers (3/6)

Choose and fix any point z ∈ N(~p), and write z, in
decimal form, as z = 0.z1z2 . . .. By independence,

Pr{X1 = z1, . . . , Xn = zn}
= Pr{X1 = z1} × · · · ×Pr{Xn = zn}
= p

fn(0)
0 × · · · × p

fn(9)
9 ,

where fn(i) is the number (frequency) of times that
z1, . . . , zn equal to i. Now take logs:

logPr{X1 = z1, . . . , Xn = zn}
= fn(0) log p0 + · · ·+ fn(9) log p9.

(1)

Because z ∈ N(~p), the asymptotic fraction of i in the
expansion of z is pi; i.e.,

lim
n→∞

fn(i)

n
= pi, for all i = 0, . . . ,9.

Plug in (1) find:



Non-Normal Numbers (4/6)

lim
n→∞

1

n
logPr{X1 = z1, . . . , Xn = zn}

= p0 log p0 + · · ·+ p9 log p9.
(2)

The thermodynamic entropy of the probability vector
~p is simply the absolute-value of the right-hand side;
i.e.,

Ent(~p) = −p0 log p0 − . . .− p9 log p9.

(pi ≤ 1 ) log pi ≤ 0 ) Ent(~p) ≥ 0.)

Thus, we can think of (2) as

Pr{X1 = z1, . . . , Xn = zn} ≈ 10−nEnt(~p).

But the left-hand side is just about the same as the
probability that X is within 10−n of z. This “shows”
that for any z ∈ N(~p) fixed, and all large n,

Pr
{
|X − z| ≤ 10−n

}
≈ 10−nEnt(~p).



Non-Normal Numbers (5/6)

“Thus,” for all sufficiently small ε > 0,

Pr {|X − z| ≤ ε} ≈ εEnt(~p). (3)

Because the right-hand side does not depend on z,
this justifies (somewhat) the notion that X is uniformly
distributed on N(~p) (why? More importantly, why only
somewhat?).

Although my “derivation” of (3) has some logical holes
in it, these holes can be patched up; (3) itself is en-
tirely true if you interpret “≈” appropriately.

Next is a happy consequence of (3) [in case you have
heard of the terms to follow]:



Non-Normal Numbers (6/6)

Theorem 5 (H. G. Eggleston, 1949) For any proba-
bility vector ~p = (p0, . . . , p9),

dimH N(~p) = Ent(~p).

Here dimH F stands for the Hausdorff–Besicovitch
(often called fractal) dimension of a set F . P.S. The
same formula is valid for the other fractal dimension
(“packing”) too.



U([0,1]) via Entropy (1/4)

Why does choosing uniformly work in some instances?

I close by introducing another connection between U([0,1])

and entropy. This connection was originated by P.-S.
Laplace (1810’s), and is called the “maximum entropy
law,” as well as the “method of maximum probabilities.”

First, some undergraduate probability:



U([0,1]) via Entropy (2/4)

If f(x) ≥ 0 and
∫∞−∞ f(x) dx = 1, then f is a so-

called “probability density function” or pdf. A random
variable X has pdf f if for “all” A,

Pr{X ∈ A} =
∫
A

f(x) dx.

If X is U([0,1]), then its pdf is

funif(x) =



1, if 0 ≤ x ≤ 1,

0, otherwise.



U([0,1]) via Entropy (3/4)

If f is a pdf, then its entropy is

Ent(f) = −
∫ ∞
−∞

f(x) ln f(x) dx,

where 0 · ln 0 := 0. (This is a continuous version of
the entropy we saw earlier.) Thus, for example,

Ent (funif) = 0.

The (informal) “law of maximum entropy” states that if
you wish to predict the pdf of a r.v. X, then you should
maximize entropy. If there is further info, then take
that into account while finding the max.



U([0,1]) via Entropy (4/4)

Now suppose we know that we have ourselves an un-
known pdf f on [0,1]. What is a good guess for f?
Because we know only that f is a pdf on [0,1], the
“most sensible guess” is funif .

The maximum-entropy law confirms this: Note that
h(x) = 1− x + x ln x (x ≥ 0) is minimized at x = 1

with h(1) = 0. I.e.,

−x ln x ≤ 1− x, for all x ≥ 0.

Let x := f(t) to deduce that for any pdf f on [0,1],

−f(t) ln f(t) ≤ 1− f(t), for all t ∈ [0,1].

Integrate this over all t ∈ [0,1] now. Because
∫ 1
0 f(t) dt =

1, this shows that Ent(f) ≤ 0 = Ent(funif)!


