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What is “random”?

1. Randomness in physical sciences [quantum mechanics, statistical
physics, astrophysics, . . . ]

2. Randomness in statistical sciences [sampling]

3. Randomness in biological sciences [population genetics]

4. Randomness in the financial sciences [stock market, option
pricing,. . . ]

5. What is random? [E.g., “is 4.167 random?”]

6. At least two ways of reaching randomness:

6.1 (Human-made) models for understanding complicated problems;
6.2 Intrinsic randomness [today’s main topic].
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Randomness in modeling

1. What happens during a coin toss? Can we predict the outcome?

2. A standard method: Find a mathematical model for the outcome
[Pr(Heads) = Pr(Tails) = 1/2].

3. Probability theory studies the model [law of large numbers, central
limit theorem, etc.].

4. Is the model any good?
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Intrinsic Randomness

1. Today’s topic: Sometimes complex systems act as if they were truly
governed by random underlying rules.

2. Complex 6= complicated [as we shall see].

3. Might draw conclusions about the existence of random patterns in
various disciplines.
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A Basic Example√
2 ≈ 1.41421356237309504880168872420969807856967187537694807317667973799 · · ·

I If area of square = 4, then side = 2 (2× 2 = 4)

I I.e.,
√

4 = 2

I
√

9 = 3,
√

16 = 4, . . .

I
√

2 = ?

I By a calculator:
√

2 ≈ 1.414213562373095

I How is this done? First, a few facts about
√

2
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On
√
2

≈ 1.41421356237309504880168872420969807856967187537694807317667973799 · · ·

I
√

2 is an irrational number (ascribed to Hippasus; around 5 BC)

I Open Question: How many zeros in the decimal expansion of
√

2?

I Conjecture: [Émile Borel, Comptes Rendus Acad Sci Paris 230, 1950,
pp. 591–593] all digits 0–9 are equidistributed in the decimal
expansion of

√
2
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Mathematical Experimentation√
2 ≈ 1.41421356237309504880168872420969807856967187537694807317667973799 · · ·

I What does
√

2 “look like”? Here is a simple first attempt:
a a2

1 1√
2 2

2 4

⇒ 1 <
√

2 < 2

I So
√

2 ≈ 1.??. Therefore:
a a2

1.1 1.21
1.2 1.44
1.3 1.69
1.4 1.96√

2 2
1.5 2.25

⇒ 1.4 <
√

2 < 1.5
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Mathematical Experimentation√
2 ≈ 1.41421356237309504880168872420969807856967187537694807317667973799 · · ·

I . . . So
√

2 ≈ 1.4??. Therefore:
a a2

1.41 1.9881√
2 2

1.42 2.0164

⇒ 1.41 <
√

2 < 1.42

I . . . So
√

2 ≈ 1.41??. Therefore:
a a2

1.411 1.990921
1.412 1.993744
1.413 1.996569
1.414 1.999396√

2 2
1.415 2.002225

⇒ 1.414 <
√

2 < 1.415 etc. . . .
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The Babylonian Clay Tablet
(circa 1600–1800 BC; Yale Collection 7289)√
2 ≈ 1 + 24

60 +
51
602 +

10
603= 1.41421︸ ︷︷ ︸

X

296296 · · ·
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The Babylonian Way (likely)
Newton’s Method for√
2 ≈ 1.41421356237309504880168872420969807856967187537694807317667973799 · · ·

I Want to solve x2 = 2

I Equivalently, x
2 = 1

x ; i.e., x = x
2 + 1

x

I Try an initial guess [or “seed”] x0 [say x0 := 1]

I Next guess: x1 := x0
2 + 1

x0
[say x1 := 3

2 = 1.5]

I Next guess: x2 := x1
2 + 1

x1
[say x2 := 17

12 = 1.41︸︷︷︸ 6̄]

I Next guess: x3 := x2
2 + 1

x2
[say x3 := 577

408 ≈ 1.41421︸ ︷︷ ︸ 568627451]

I Next guess: x4 := x3
2 + 1

x3
[say x4 := 665857

470832 ≈ 1.41421356237︸ ︷︷ ︸ 469]
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An Amusing Aside

I x =
√

2 is the only positive solution to x2 = 2

I ⇔ x2 − 1 = 1, which when factored yields . . .
I (x − 1)(x + 1) = 1

equivalently, x − 1 = 1
1+x

I Equivalently, x = 1 + 1
1+x

I This is a “self-referential” description of x :

x = 1 +
1

1 + x
= 1 +

1

2 + 1
1+x

= 1 +
1

2 + 1
2+ 1

1+x

.

I Theorem. The preceding can be carried out ad infinitum; that is,

√
2 = 1 +

1

2 +
1

2 +
1

2 + · · ·
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Extensions

I Can apply our method to
√

3 ≈ 1.732050807568877 . . . :

I x2 = 3 ⇔ x
2 = 3

2x ⇔ x = x
2 + 3

2x

I x0 = 2 [1 <
√

3 < 2]
I x1 = x0

2 + 3
2x0

= 7
4 = 1.7︸︷︷︸ 5

I x2 = x1
2 + 3

2x1
= 97

56 ≈ 1.732︸ ︷︷ ︸ 142857142857

I x3 = x2
2 + 3

2x2
= 37634

21728 ≈ 1.7320508︸ ︷︷ ︸ 10014728 . . .

I Aside. For a continued-fraction expansion, start with

x2 = 3⇔ x2 − 1 = 2⇔

(x − 1)(x + 1) = 2⇔ x = 1 + 2
1+x .

I This yields
√

3 = 1 +
2

2 +
2

2 +
2

2 + · · ·
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Related Exercises

I The method can be used to compute
√

5, etc. . . .

I E.g., x =
√

5 can be written as
x2 − 1 = 4⇔ (x − 1)(x + 1) = 4⇔ x = 1 + 4

1+x . . .

I This yields
√

5 = 1 +
4

2 +
4

2 +
4

2 + · · ·
I Or x2 − 4 = 1⇔ (x − 2)(x + 2) = 1⇔ x = 2 + 1

2+x .

I This yields
√

5 = 2 +
1

4 +
1

4 +
1

4 + · · ·
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A silly extension . . . or is it?

I Now try: x2 = −1 ⇔ x
2 = − 1

2x ⇔ x = x
2 −

1
2x

I x0 = 0.1

I x1 = 0.1
2 −

1
2×0.1 = −4.95

I x2 = −4.95
2 − 1

2×(−4.95) ≈ −2.3740

I x3 ≈ −0.9764, x4 ≈ 0.0239, x5 ≈ −20.9027, x6 ≈ −10.4274, . . .

I x7 ≈ −5.1658, x8 = −2.4861, x9 = −1.0419, . . .

I Do see a pattern?
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A silly extension . . . or is it?
x2 = −1 . . . x = x

2
− 1

2x
. . . 5000 iterations
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A silly extension . . . or is it?
x2 = −1 . . . x = x

2
− 1

2x
. . . 5000 iterations . . . “heavy tails” . . . n versus 2

π
arctan(xn)
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A silly extension . . . or is it?
x2 = −1 . . . x = x

2
− 1

2x
. . . 50,000 iterations . . . “heavy tails” . . . n versus 2

π
arctan(xn)
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