Roots and Chaos

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]
- 3. Randomness in biological sciences [population genetics]

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]
- 3. Randomness in biological sciences [population genetics]
- 4. Randomness in the financial sciences [stock market, option pricing,...]

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]
- 3. Randomness in biological sciences [population genetics]
- 4. Randomness in the financial sciences [stock market, option pricing,...]
- 5. What is random? [E.g., "is 4.167 random?"]

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]
- 3. Randomness in biological sciences [population genetics]
- 4. Randomness in the financial sciences [stock market, option pricing,...]
- 5. What is random? [E.g., "is 4.167 random?"]
- 6. At least two ways of reaching randomness:

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]
- 3. Randomness in biological sciences [population genetics]
- 4. Randomness in the financial sciences [stock market, option pricing,...]
- 5. What is random? [E.g., "is 4.167 random?"]
- 6. At least two ways of reaching randomness:
 - 6.1 (Human-made) models for understanding complicated problems;

- 1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, . . .]
- 2. Randomness in statistical sciences [sampling]
- 3. Randomness in biological sciences [population genetics]
- 4. Randomness in the financial sciences [stock market, option pricing,...]
- 5. What is random? [E.g., "is 4.167 random?"]
- 6. At least two ways of reaching randomness:
 - 6.1 (Human-made) models for understanding complicated problems;
 - 6.2 Intrinsic randomness [today's main topic].

1. What happens during a coin toss? Can we predict the outcome?

- 1. What happens during a coin toss? Can we predict the outcome?
- 2. A standard method: Find a mathematical model for the outcome [Pr(Heads) = Pr(Tails) = 1/2].

- 1. What happens during a coin toss? Can we predict the outcome?
- 2. A standard method: Find a mathematical model for the outcome [Pr(Heads) = Pr(Tails) = 1/2].
- 3. Probability theory studies the model [law of large numbers, central limit theorem, etc.].

- 1. What happens during a coin toss? Can we predict the outcome?
- 2. A standard method: Find a mathematical model for the outcome [Pr(Heads) = Pr(Tails) = 1/2].
- 3. Probability theory studies the model [law of large numbers, central limit theorem, etc.].
- 4. Is the model any good?

Intrinsic Randomness

1. Today's topic: Sometimes complex systems act as if they were truly governed by random underlying rules.

Intrinsic Randomness

- 1. Today's topic: Sometimes complex systems act as if they were truly governed by random underlying rules.
- 2. Complex \neq complicated [as we shall see].

Intrinsic Randomness

- 1. Today's topic: Sometimes complex systems act as if they were truly governed by random underlying rules.
- 2. Complex \neq complicated [as we shall see].
- 3. Might draw conclusions about the existence of random patterns in various disciplines.

▶ If area of square = 4, then side = $2(2 \times 2 = 4)$

 $\sqrt{2}\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \cdots$

- ▶ If area of square = 4, then side = $2(2 \times 2 = 4)$
- ► I.e., $\sqrt{4} = 2$

 $\sqrt{2}\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \cdots$

- ▶ If area of square = 4, then side = $2(2 \times 2 = 4)$
- ▶ I.e., $\sqrt{4} = 2$
- ▶ $\sqrt{9} = 3$, $\sqrt{16} = 4$, ...

 $\sqrt{2}\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \cdots$

- ▶ If area of square = 4, then side = $2(2 \times 2 = 4)$
- ► I.e., $\sqrt{4} = 2$
- ▶ $\sqrt{9} = 3$, $\sqrt{16} = 4$, ...
- ► $\sqrt{2} = ?$

- ▶ If area of square = 4, then side = $2(2 \times 2 = 4)$
- ▶ I.e., $\sqrt{4} = 2$
- ▶ $\sqrt{9} = 3$, $\sqrt{16} = 4$, ...
- ► $\sqrt{2} = ?$

By a calculator: $\sqrt{2} \approx 1.414213562373095$

- ▶ If area of square = 4, then side = $2(2 \times 2 = 4)$
- ▶ I.e., $\sqrt{4} = 2$
- ▶ $\sqrt{9} = 3$, $\sqrt{16} = 4$, ...
- ► $\sqrt{2} = ?$

By a calculator: $\sqrt{2} \approx 1.414213562373095$

• How is this done? First, a few facts about $\sqrt{2}$

On $\sqrt{2}$

 $\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \, \cdots$

 $ightharpoonup \sqrt{2}$ is an irrational number (ascribed to Hippasus; around 5 BC)

On $\sqrt{2}$

 $\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \, \cdots \,$

- $ightharpoonup \sqrt{2}$ is an irrational number (ascribed to Hippasus; around 5 BC)
- ▶ Open Question: How many zeros in the decimal expansion of $\sqrt{2}$?

On $\sqrt{2}$

 $\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \cdots$

- $ightharpoonup \sqrt{2}$ is an irrational number (ascribed to Hippasus; around 5 BC)
- ▶ Open Question: How many zeros in the decimal expansion of $\sqrt{2}$?
- ▶ Conjecture: [Émile Borel, *Comptes Rendus Acad Sci Paris* **230**, 1950, pp. 591–593] all digits 0–9 are equidistributed in the decimal expansion of $\sqrt{2}$

▶ What does $\sqrt{2}$ "look like"? Here is a simple first attempt:

a	a ²	
1	1	$\Rightarrow 1 < \sqrt{2} < 2$
$\sqrt{2}$	2	$\Rightarrow 1 < \sqrt{2} < 2$
2	4	

June 16, 2015

▶ What does $\sqrt{2}$ "look like"? Here is a simple first attempt:

a	a-	
1	1	$\begin{vmatrix} 1 & 1 & \sqrt{2} & 2 \end{vmatrix}$
$\sqrt{2}$	2	$\Rightarrow 1 < \sqrt{2} < 2$
2	4	

► So $\sqrt{2} \approx 1.??$. Therefore:

a	a^2	
1.1	1.21	
1.2	1.44	
1.3	1.69	$\Rightarrow 1.4 < \sqrt{2} < 1.5$
1.4	1.96	
$\sqrt{2}$	2	
1.5	2.25	

► ... So $\sqrt{2} \approx 1.4$??. Therefore:

a	a²	
1.41	1.9881	$\Rightarrow 1.41 < \sqrt{2} < 1.42$
$\sqrt{2}$	2	$\Rightarrow 1.41 < \sqrt{2} < 1.42$
1.42	2.0164	

 $\sqrt{2}\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \, \cdots$

► ... So $\sqrt{2} \approx 1.4$??. Therefore:

a	a ²	
1.41	1.9881	$\Rightarrow 1.41 < \sqrt{2} < 1.42$
$\sqrt{2}$	2	$ \rightarrow 1.41 < \sqrt{2} < 1.42$
1.42	2.0164	

► ... So $\sqrt{2} \approx 1.41$??. Therefore:

a	a^2	
1.411	1.990921	
1.412	1.993744	
1.413	1.996569	$\Rightarrow 1.414 < \sqrt{2} < 1.415$ etc
1.414	1.999396	
$\sqrt{2}$	2	
1.415	2.002225	

The Babylonian Clay Tablet

(circa 1600-1800 BC; Yale Collection 7289)

$$\sqrt{2} \approx 1 + \frac{24}{60} + \frac{51}{60^2} + \frac{10}{60^3} = \underbrace{1.41421}_{296296} \cdot \cdot \cdot$$

Newton's Method for $\sqrt{2}\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \cdots$

▶ Want to solve $x^2 = 2$

- ▶ Want to solve $x^2 = 2$
- ► Equivalently, $\frac{x}{2} = \frac{1}{x}$; i.e., $x = \frac{x}{2} + \frac{1}{x}$

- ▶ Want to solve $x^2 = 2$
- ► Equivalently, $\frac{x}{2} = \frac{1}{x}$; i.e., $x = \frac{x}{2} + \frac{1}{x}$
- ▶ Try an initial guess [or "seed"] x_0 [say $x_0 := 1$]

- ▶ Want to solve $x^2 = 2$
- ► Equivalently, $\frac{x}{2} = \frac{1}{x}$; i.e., $x = \frac{x}{2} + \frac{1}{x}$
- ▶ Try an initial guess [or "seed"] x_0 [say $x_0 := 1$]
- ► Next guess: $x_1 := \frac{x_0}{2} + \frac{1}{x_0}$ [say $x_1 := \frac{3}{2} = 1.5$]

- ▶ Want to solve $x^2 = 2$
- ► Equivalently, $\frac{x}{2} = \frac{1}{x}$; i.e., $x = \frac{x}{2} + \frac{1}{x}$
- ▶ Try an initial guess [or "seed"] x_0 [say $x_0 := 1$]
- ► Next guess: $x_1 := \frac{x_0}{2} + \frac{1}{x_0}$ [say $x_1 := \frac{3}{2} = 1.5$]
- ► Next guess: $x_2 := \frac{x_1}{2} + \frac{1}{x_1}$ [say $x_2 := \frac{17}{12} = \underbrace{1.41}_{\bar{6}}$]

- ▶ Want to solve $x^2 = 2$
- ► Equivalently, $\frac{x}{2} = \frac{1}{x}$; i.e., $x = \frac{x}{2} + \frac{1}{x}$
- ▶ Try an initial guess [or "seed"] x_0 [say $x_0 := 1$]
- ► Next guess: $x_1 := \frac{x_0}{2} + \frac{1}{x_0}$ [say $x_1 := \frac{3}{2} = 1.5$]
- ► Next guess: $x_2 := \frac{x_1}{2} + \frac{1}{x_1}$ [say $x_2 := \frac{17}{12} = 1.41\overline{6}$]
- Next guess: $x_3 := \frac{x_2}{2} + \frac{1}{x_2}$ [say $x_3 := \frac{577}{408} \approx 1.41421568627451$]

The Babylonian Way (likely)

Newton's Method for $\sqrt{2}\approx 1.41421356237309504880168872420969807856967187537694807317667973799 \cdots$

- ▶ Want to solve $x^2 = 2$
- ► Equivalently, $\frac{x}{2} = \frac{1}{x}$; i.e., $x = \frac{x}{2} + \frac{1}{x}$
- ▶ Try an initial guess [or "seed"] x_0 [say $x_0 := 1$]
- ► Next guess: $x_1 := \frac{x_0}{2} + \frac{1}{x_0}$ [say $x_1 := \frac{3}{2} = 1.5$]
- ► Next guess: $x_2 := \frac{x_1}{2} + \frac{1}{x_1}$ [say $x_2 := \frac{17}{12} = \underbrace{1.41}_{\bar{6}}$]
- ► Next guess: $x_3 := \frac{x_2}{2} + \frac{1}{x_2}$ [say $x_3 := \frac{577}{408} \approx 1.41421568627451$]
- Next guess: $x_4 := \frac{x_3}{2} + \frac{1}{x_3}$ [say $x_4 := \frac{665857}{470832} \approx \underbrace{1.41421356237}_{\text{of UTAH}} 469_{\text{intersity of UTAH}}^{\text{hittersity}}$

• $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- $\blacktriangleright \Leftrightarrow x^2 1 = 1$, which when factored yields . . .

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow $x^2 1 = 1$, which when factored yields ...
- (x-1)(x+1)=1

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- $\blacktriangleright \Leftrightarrow x^2 1 = 1$, which when factored yields . . .
- (x-1)(x+1)=1

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow $x^2 1 = 1$, which when factored yields ...
- (x-1)(x+1) = 1 equivalently, $x-1 = \frac{1}{1+x}$

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow \Leftrightarrow $x^2 1 = 1$, which when factored yields ...
- (x-1)(x+1) = 1 equivalently, $x-1 = \frac{1}{1+x}$
- Equivalently, $x = 1 + \frac{1}{1+x}$

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow \Leftrightarrow $x^2 1 = 1$, which when factored yields . . .
- (x-1)(x+1) = 1 equivalently, $x-1 = \frac{1}{1+x}$
- Equivalently, $x = 1 + \frac{1}{1+x}$
- ► This is a "self-referential" description of *x*:

$$x = 1 + \frac{1}{1+x}$$

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow \Leftrightarrow $x^2 1 = 1$, which when factored yields . . .
- (x-1)(x+1) = 1 equivalently, $x-1 = \frac{1}{1+x}$
- Equivalently, $x = 1 + \frac{1}{1+x}$
- ▶ This is a "self-referential" description of *x*:

$$x = 1 + \frac{1}{1+x}$$

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow $x^2 1 = 1$, which when factored yields ...
- (x-1)(x+1) = 1 equivalently, $x-1 = \frac{1}{1+x}$
- Equivalently, $x = 1 + \frac{1}{1+x}$
- ▶ This is a "self-referential" description of *x*:

$$x = 1 + \frac{1}{1+x} = 1 + \frac{1}{2 + \frac{1}{1+x}}$$

- $x = \sqrt{2}$ is the only positive solution to $x^2 = 2$
- \Rightarrow $x^2 1 = 1$, which when factored yields ...
- (x-1)(x+1) = 1 equivalently, $x-1 = \frac{1}{1+x}$
- Equivalently, $x = 1 + \frac{1}{1+x}$
- ▶ This is a "self-referential" description of *x*:

$$x = 1 + \frac{1}{1+x} = 1 + \frac{1}{2 + \frac{1}{1+x}} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{1+x}}}.$$

▶ **Theorem.** The preceding can be carried out *ad infinitum*; that is,

$$\sqrt{2} = 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$$

▶ Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

► $x^2 = 3$ \Leftrightarrow $\frac{x}{2} = \frac{3}{2x}$ \Leftrightarrow $x = \frac{x}{2} + \frac{3}{2x}$

►
$$x^2 = 3$$

$$\Leftrightarrow$$

$$\frac{x}{2} = \frac{3}{2}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} + \frac{3}{2x}$$

- ▶ Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

- $x^2 = 3$ \Leftrightarrow $\frac{x}{2} = \frac{3}{2x}$ \Leftrightarrow $x = \frac{x}{2} + \frac{3}{2x}$
- $x_0 = 2$ [1 < $\sqrt{3}$ < 2]

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

$$\Rightarrow \qquad \frac{x}{2} = \frac{3}{2}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} + \frac{3}{2x}$$

•
$$x_0 = 2$$
 $[1 < \sqrt{3} < 2]$

►
$$x_0 = 2$$
 [1 < $\sqrt{3}$ < 2]
► $x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = \underbrace{1.7}_{5}$ 5

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

•
$$x_0 = 2$$
 $[1 < \sqrt{3} < 2]$

►
$$x_0 = 2$$
 [1 < $\sqrt{3}$ < 2]
► $x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = \underbrace{1.7}_{5}$ 5

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

•
$$x_0 = 2$$
 $[1 < \sqrt{3} < 2]$

$$x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = 1.75$$

$$x_2 = \frac{x_1}{2} + \frac{3}{2x_1} = \frac{97}{56} \approx 1.732142857142857$$

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

•
$$x_0 = 2$$
 [1 < $\sqrt{3}$ < 2]

$$x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = \underbrace{1.7}_{5} 5$$

$$x_3 = \frac{x_2}{2} + \frac{3}{2x_2} = \frac{37634}{21728} \approx \underbrace{1.7320508}_{10014728} \cdot \dots$$

► Aside. For a continued-fraction expansion, start with

$$x^2 = 3 \Leftrightarrow x^2 - 1 = 2 \Leftrightarrow$$

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

•
$$x_0 = 2$$
 [1 < $\sqrt{3}$ < 2]

$$x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = \underbrace{1.7}_{5} 5$$

•
$$x_2 = \frac{x_1}{2} + \frac{3}{2x_1} = \frac{97}{56} \approx 1.732142857142857$$

•
$$x_3 = \frac{x_2}{2} + \frac{3}{2x_2} = \frac{37634}{21728} \approx 1.7320508 \times 10014728 \dots$$

► Aside. For a continued-fraction expansion, start with

$$x^2 = 3 \Leftrightarrow x^2 - 1 = 2 \Leftrightarrow$$

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

•
$$x_0 = 2$$
 [1 < $\sqrt{3}$ < 2]

$$x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = \underbrace{1.7}_{5} 5$$

•
$$x_2 = \frac{x_1}{2} + \frac{3}{2x_1} = \frac{97}{56} \approx 1.732142857142857$$

$$x_3 = \frac{x_2}{2} + \frac{3}{2x_2} = \frac{37634}{21728} \approx \underbrace{1.7320508}_{10014728} \cdot \dots$$

► Aside. For a continued-fraction expansion, start with

$$x^2 = 3 \Leftrightarrow x^2 - 1 = 2 \Leftrightarrow (x - 1)(x + 1) = 2 \Leftrightarrow$$

► Can apply our method to $\sqrt{3} \approx 1.732050807568877...$:

•
$$x_0 = 2$$
 $[1 < \sqrt{3} < 2]$

$$x_1 = \frac{x_0}{2} + \frac{3}{2x_0} = \frac{7}{4} = \underbrace{1.7}_{5} 5$$

•
$$x_2 = \frac{x_1}{2} + \frac{3}{2x_1} = \frac{97}{56} \approx 1.732142857142857$$

•
$$x_3 = \frac{x_2}{2} + \frac{3}{2x_2} = \frac{37634}{21728} \approx 1.7320508 \times 10014728 \dots$$

► Aside. For a continued-fraction expansion, start with

$$x^{2} = 3 \Leftrightarrow x^{2} - 1 = 2 \Leftrightarrow (x - 1)(x + 1) = 2 \Leftrightarrow x = 1 + \frac{2}{1 + x}$$

► This yields

$$\sqrt{3} = 1 + \frac{2}{2 + \frac{2}{2 + \frac{2}{2 + \dots}}}$$

▶ The method can be used to compute $\sqrt{5}$, etc. . . .

13 / 18

- ▶ The method can be used to compute $\sqrt{5}$, etc. . . .
- ► E.g., $x = \sqrt{5}$ can be written as $x^2 1 = 4 \Leftrightarrow (x 1)(x + 1) = 4 \Leftrightarrow x = 1 + \frac{4}{1 + x} \dots$

13 / 18

- ▶ The method can be used to compute $\sqrt{5}$, etc. . . .
- ► E.g., $x = \sqrt{5}$ can be written as $x^2 1 = 4 \Leftrightarrow (x 1)(x + 1) = 4 \Leftrightarrow x = 1 + \frac{4}{1+x} \dots$
- ► This yields

$$\sqrt{5} = 1 + \frac{4}{2 + \frac{4}{2 + \frac{4}{2 + \cdots}}}$$

- ▶ The method can be used to compute $\sqrt{5}$, etc. . . .
- ► E.g., $x = \sqrt{5}$ can be written as $x^2 1 = 4 \Leftrightarrow (x 1)(x + 1) = 4 \Leftrightarrow x = 1 + \frac{4}{1+x} \dots$
- ► This yields

$$\sqrt{5} = 1 + \frac{4}{2 + \frac{4}{2 + \frac{4}{2 + \cdots}}}$$

► Or $x^2 - 4 = 1 \Leftrightarrow (x - 2)(x + 2) = 1 \Leftrightarrow x = 2 + \frac{1}{2 + x}$.

- ▶ The method can be used to compute $\sqrt{5}$, etc. . . .
- ► E.g., $x = \sqrt{5}$ can be written as $x^2 1 = 4 \Leftrightarrow (x 1)(x + 1) = 4 \Leftrightarrow x = 1 + \frac{4}{1+x} \dots$
- ► This yields

$$\sqrt{5} = 1 + \frac{4}{2 + \frac{4}{2 + \frac{4}{2 + \cdots}}}$$

- ► Or $x^2 4 = 1 \Leftrightarrow (x 2)(x + 2) = 1 \Leftrightarrow x = 2 + \frac{1}{2+x}$.
- ► This yields

$$\sqrt{5} = 2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \cdots}}}$$

► Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

► $x_0 = 0.1$

► Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

 $x_0 = 0.1$

$$x_1 = \frac{0.1}{2} - \frac{1}{2 \times 0.1} = -4.95$$

Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

- $x_0 = 0.1$
- $x_1 = \frac{0.1}{2} \frac{1}{2 \times 0.1} = -4.95$
- $x_2 = \frac{-4.95}{2} \frac{1}{2 \times (-4.95)} \approx -2.3740$

Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

- $x_0 = 0.1$
- $x_1 = \frac{0.1}{2} \frac{1}{2 \times 0.1} = -4.95$
- $x_2 = \frac{-4.95}{2} \frac{1}{2 \times (-4.95)} \approx -2.3740$
- $x_3 \approx -0.9764$, $x_4 \approx 0.0239$, $x_5 \approx -20.9027$, $x_6 \approx -10.4274$, ...

Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

- $x_0 = 0.1$
- $x_1 = \frac{0.1}{2} \frac{1}{2 \times 0.1} = -4.95$
- $x_2 = \frac{-4.95}{2} \frac{1}{2 \times (-4.95)} \approx -2.3740$
- $x_3 \approx -0.9764$, $x_4 \approx 0.0239$, $x_5 \approx -20.9027$, $x_6 \approx -10.4274$, ...
- $\rightarrow x_7 \approx -5.1658, x_8 = -2.4861, x_9 = -1.0419, \dots$

Now try:
$$x^2 = -1$$
 \Leftrightarrow $\frac{x}{2} = -\frac{1}{2x}$ \Leftrightarrow

$$\Leftrightarrow$$

$$\frac{x}{2} = -\frac{1}{2x}$$

$$\Leftrightarrow$$

$$x = \frac{x}{2} - \frac{1}{2x}$$

- $x_0 = 0.1$
- $x_1 = \frac{0.1}{2} \frac{1}{2 \times 0.1} = -4.95$
- $x_2 = \frac{-4.95}{2} \frac{1}{2 \times (-4.95)} \approx -2.3740$
- $x_3 \approx -0.9764$, $x_4 \approx 0.0239$, $x_5 \approx -20.9027$, $x_6 \approx -10.4274$, ...
- $x_7 \approx -5.1658$, $x_8 = -2.4861$, $x_9 = -1.0419$, ...
- Do see a pattern?

A silly extension ... or is it? $x^2 = -1 ... x = \frac{x}{2} - \frac{1}{2x} ... 5000$ iterations

A silly extension . . . or is it? $x^2 = -1 \dots x = \frac{x}{2} - \frac{1}{2x} \dots 5000$ iterations . . . "heavy tails" . . . n versus $\frac{2}{\pi}$ arctan(x_n)

A silly extension . . . or is it? $x^2 = -1 \dots x = \frac{x}{2} - \frac{1}{2x} \dots 5000$ iterations . . . "heavy tails" . . . n versus $\frac{2}{\pi}$ arctan(x_n)

A silly extension . . . or is it? $x^2 = -1 \dots x = \frac{x}{2} - \frac{1}{2x} \dots 50,000$ iterations . . . "heavy tails" . . . n versus $\frac{2}{\pi}$ arctan(x_n)

