Roots and Chaos

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]
3. Randomness in biological sciences [population genetics]

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]
3. Randomness in biological sciences [population genetics]
4. Randomness in the financial sciences [stock market, option pricing,...]

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]
3. Randomness in biological sciences [population genetics]
4. Randomness in the financial sciences [stock market, option pricing,...]
5. What is random? [E.g., "is 4.167 random?"]

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]
3. Randomness in biological sciences [population genetics]
4. Randomness in the financial sciences [stock market, option pricing,...]
5. What is random? [E.g., "is 4.167 random?"]
6. At least two ways of reaching randomness:

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]
3. Randomness in biological sciences [population genetics]
4. Randomness in the financial sciences [stock market, option pricing,...]
5. What is random? [E.g., "is 4.167 random?"]
6. At least two ways of reaching randomness:
6.1 (Human-made) models for understanding complicated problems;

What is "random"?

1. Randomness in physical sciences [quantum mechanics, statistical physics, astrophysics, ...]
2. Randomness in statistical sciences [sampling]
3. Randomness in biological sciences [population genetics]
4. Randomness in the financial sciences [stock market, option pricing,...]
5. What is random? [E.g., "is 4.167 random?"]
6. At least two ways of reaching randomness:
6.1 (Human-made) models for understanding complicated problems;
6.2 Intrinsic randomness [today's main topic].

Randomness in modeling

1. What happens during a coin toss? Can we predict the outcome?

Randomness in modeling

1. What happens during a coin toss? Can we predict the outcome?
2. A standard method: Find a mathematical model for the outcome $[\operatorname{Pr}($ Heads $)=\operatorname{Pr}($ Tails $)=1 / 2]$.

Randomness in modeling

1. What happens during a coin toss? Can we predict the outcome?
2. A standard method: Find a mathematical model for the outcome $[\operatorname{Pr}($ Heads $)=\operatorname{Pr}($ Tails $)=1 / 2]$.
3. Probability theory studies the model [law of large numbers, central limit theorem, etc.].
D. Khoshnevisan (Univ of Utah)

Randomness in modeling

1. What happens during a coin toss? Can we predict the outcome?
2. A standard method: Find a mathematical model for the outcome $[\operatorname{Pr}($ Heads $)=\operatorname{Pr}($ Tails $)=1 / 2]$.
3. Probability theory studies the model [law of large numbers, central limit theorem, etc.].
4. Is the model any good?

Intrinsic Randomness

1. Today's topic: Sometimes complex systems act as if they were truly governed by random underlying rules.

Intrinsic Randomness

1. Today's topic: Sometimes complex systems act as if they were truly governed by random underlying rules.
2. Complex \neq complicated [as we shall see].

Intrinsic Randomness

1. Today's topic: Sometimes complex systems act as if they were truly governed by random underlying rules.
2. Complex \neq complicated [as we shall see].
3. Might draw conclusions about the existence of random patterns in various disciplines.

A Basic Example

- If area of square $=4$, then side $=2(2 \times 2=4)$

A Basic Example

- If area of square $=4$, then side $=2(2 \times 2=4)$
- I.e., $\sqrt{4}=2$

A Basic Example

- If area of square $=4$, then side $=2(2 \times 2=4)$
- I.e., $\sqrt{4}=2$
- $\sqrt{9}=3, \sqrt{16}=4, \ldots$

A Basic Example

- If area of square $=4$, then side $=2(2 \times 2=4)$
- I.e., $\sqrt{4}=2$
- $\sqrt{9}=3, \sqrt{16}=4, \ldots$
- $\sqrt{2}=$?

A Basic Example

- If area of square $=4$, then side $=2(2 \times 2=4)$
- I.e., $\sqrt{4}=2$
- $\sqrt{9}=3, \sqrt{16}=4, \ldots$
- $\sqrt{2}=$?

By a calculator: $\sqrt{2} \approx 1.414213562373095$

A Basic Example

- If area of square $=4$, then side $=2(2 \times 2=4)$
- I.e., $\sqrt{4}=2$
- $\sqrt{9}=3, \sqrt{16}=4, \ldots$
- $\sqrt{2}=$?

By a calculator: $\sqrt{2} \approx 1.414213562373095$

- How is this done? First, a few facts about $\sqrt{2}$

On $\sqrt{2}$

$\approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- $\sqrt{2}$ is an irrational number (ascribed to Hippasus; around 5 BC)

On $\sqrt{2}$

$\approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- $\sqrt{2}$ is an irrational number (ascribed to Hippasus; around 5 BC)
- Open Question: How many zeros in the decimal expansion of $\sqrt{2}$?
- $\sqrt{2}$ is an irrational number (ascribed to Hippasus; around 5 BC)
- Open Question: How many zeros in the decimal expansion of $\sqrt{2}$?
- Conjecture: [Émile Borel, Comptes Rendus Acad Sci Paris 230, 1950, pp. 591-593] all digits $0-9$ are equidistributed in the decimal expansion of $\sqrt{2}$

D. Khoshnevisan (Univ of Utah)

Mathematical Experimentation

- What does $\sqrt{2}$ "look like"? Here is a simple first attempt:

\mathbf{a}	\mathbf{a}^{2}
1	1
$\sqrt{2}$	2
2	4

Mathematical Experimentation

- What does $\sqrt{2}$ "look like"? Here is a simple first attempt:

\mathbf{a}	\mathbf{a}^{2}
1	1
$\sqrt{2}$	2
2	4

- So $\sqrt{2} \approx 1$.??. Therefore:

\mathbf{a}	\mathbf{a}^{2}
1.1	1.21
1.2	1.44
1.3	1.69
1.4	1.96
$\sqrt{2}$	2
1.5	2.25

Mathematical Experimentation

- ... So $\sqrt{2} \approx 1.4$??. Therefore:

\mathbf{a}	\mathbf{a}^{2}
1.41	1.9881
$\sqrt{2}$	2
1.42	2.0164

Mathematical Experimentation

 $\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$- ... So $\sqrt{2} \approx 1.4$??. Therefore:

\mathbf{a}	\mathbf{a}^{2}
1.41	1.9881
$\sqrt{2}$	2
1.42	2.0164

- ... So $\sqrt{2} \approx 1.41$??. Therefore:

\mathbf{a}	\mathbf{a}^{2}
1.411	1.990921
1.412	1.993744
1.413	1.996569
1.414	1.999396
$\sqrt{2}$	2
1.415	2.002225

The Babylonian Clay Tablet

(circa 1600-1800 BC; Yale Collection 7289)
$\sqrt{2} \approx 1+\frac{24}{60}+\frac{51}{60^{2}}+\frac{10}{60^{3}}=\underbrace{1.41421}_{\checkmark} 296296 \ldots$

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$
- Equivalently, $\frac{x}{2}=\frac{1}{x}$; i.e., $x=\frac{x}{2}+\frac{1}{x}$

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$
- Equivalently, $\frac{x}{2}=\frac{1}{x}$; i.e., $x=\frac{x}{2}+\frac{1}{x}$
- Try an initial guess [or "seed"] $x_{0}\left[\right.$ say $\left.x_{0}:=1\right]$

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$
- Equivalently, $\frac{x}{2}=\frac{1}{x}$; i.e., $x=\frac{x}{2}+\frac{1}{x}$
- Try an initial guess [or "seed"] $x_{0}\left[\right.$ say $\left.x_{0}:=1\right]$
- Next guess: $x_{1}:=\frac{x_{0}}{2}+\frac{1}{x_{0}}\left[\right.$ say $\left.x_{1}:=\frac{3}{2}=1.5\right]$

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$
- Equivalently, $\frac{x}{2}=\frac{1}{x}$; i.e., $x=\frac{x}{2}+\frac{1}{x}$
- Try an initial guess [or "seed"] $x_{0}\left[\right.$ say $\left.x_{0}:=1\right]$
- Next guess: $x_{1}:=\frac{x_{0}}{2}+\frac{1}{x_{0}}$ [say $\left.x_{1}:=\frac{3}{2}=1.5\right]$
- Next guess: $x_{2}:=\frac{x_{1}}{2}+\frac{1}{x_{1}}[$ say $x_{2}:=\frac{17}{12}=\underbrace{1.41} \bar{\sigma}]$
D. Khoshnevisan (Univ of Utah)

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$
- Equivalently, $\frac{x}{2}=\frac{1}{x}$; i.e., $x=\frac{x}{2}+\frac{1}{x}$
- Try an initial guess [or "seed"] $x_{0}\left[\right.$ say $\left.x_{0}:=1\right]$
- Next guess: $x_{1}:=\frac{x_{0}}{2}+\frac{1}{x_{0}}\left[\right.$ say $\left.x_{1}:=\frac{3}{2}=1.5\right]$
- Next guess: $x_{2}:=\frac{x_{1}}{2}+\frac{1}{x_{1}}[$ say $x_{2}:=\frac{17}{12}=\underbrace{1.41} \bar{\sigma}]$
- Next guess: $x_{3}:=\frac{x_{2}}{2}+\frac{1}{x_{2}}[$ say $x_{3}:=\frac{577}{408} \approx \underbrace{1.41421} 568627451]$

The Babylonian Way (likely)

Newton's Method for
$\sqrt{2} \approx 1.41421356237309504880168872420969807856967187537694807317667973799$

- Want to solve $x^{2}=2$
- Equivalently, $\frac{x}{2}=\frac{1}{x}$; i.e., $x=\frac{x}{2}+\frac{1}{x}$
- Try an initial guess [or "seed"] $x_{0}\left[\right.$ say $\left.x_{0}:=1\right]$
- Next guess: $x_{1}:=\frac{x_{0}}{2}+\frac{1}{x_{0}}\left[\right.$ say $\left.x_{1}:=\frac{3}{2}=1.5\right]$
- Next guess: $x_{2}:=\frac{x_{1}}{2}+\frac{1}{x_{1}}[$ say $x_{2}:=\frac{17}{12}=\underbrace{1.41} \bar{\sigma}]$
- Next guess: $x_{3}:=\frac{x_{2}}{2}+\frac{1}{x_{2}}[$ say $x_{3}:=\frac{577}{408} \approx \underbrace{1.41421} 568627451]$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$ equivalently, $x-1=\frac{1}{1+x}$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$ equivalently, $x-1=\frac{1}{1+x}$
- Equivalently, $x=1+\frac{1}{1+x}$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$ equivalently, $x-1=\frac{1}{1+x}$
- Equivalently, $x=1+\frac{1}{1+x}$
- This is a "self-referential" description of x :

$$
x=1+\frac{1}{1+x}
$$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$ equivalently, $x-1=\frac{1}{1+x}$
- Equivalently, $x=1+\frac{1}{1+x}$
- This is a "self-referential" description of x :

$$
x=1+\frac{1}{1+x}
$$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$ equivalently, $x-1=\frac{1}{1+x}$
- Equivalently, $x=1+\frac{1}{1+x}$
- This is a "self-referential" description of x :

$$
x=1+\frac{1}{1+x}=1+\frac{1}{2+\frac{1}{1+x}}
$$

An Amusing Aside

- $x=\sqrt{2}$ is the only positive solution to $x^{2}=2$
- $\Leftrightarrow x^{2}-1=1$, which when factored yields \ldots
- $(x-1)(x+1)=1$ equivalently, $x-1=\frac{1}{1+x}$
- Equivalently, $x=1+\frac{1}{1+x}$
- This is a "self-referential" description of x :

$$
x=1+\frac{1}{1+x}=1+\frac{1}{2+\frac{1}{1+x}}=1+\frac{1}{2+\frac{1}{2+\frac{1}{1+x}}} .
$$

- Theorem. The preceding can be carried out ad infinitum; that is,

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}
$$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877$...:

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
$\rightarrow x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$
- $x_{2}=\frac{x_{1}}{2}+\frac{3}{2 x_{1}}=\frac{97}{56} \approx \underbrace{1.732} 142857142857$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$
- $x_{2}=\frac{x_{1}}{2}+\frac{3}{2 x_{1}}=\frac{97}{56} \approx \underbrace{1.732} 142857142857$
- $x_{3}=\frac{x_{2}}{2}+\frac{3}{2 x_{2}}=\frac{37634}{21728} \approx \underbrace{1.7320508} 10014728 \ldots$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$
- $x_{2}=\frac{x_{1}}{2}+\frac{3}{2 x_{1}}=\frac{97}{56} \approx \underbrace{1.732} 142857142857$
- $x_{3}=\frac{x_{2}}{2}+\frac{3}{2 x_{2}}=\frac{37634}{21728} \approx \underbrace{1.7320508} 10014728 \ldots$
- Aside. For a continued-fraction expansion, start with

$$
x^{2}=3 \Leftrightarrow x^{2}-1=2 \Leftrightarrow
$$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$
- $x_{2}=\frac{x_{1}}{2}+\frac{3}{2 x_{1}}=\frac{97}{56} \approx \underbrace{1.732} 142857142857$
- $x_{3}=\frac{x_{2}}{2}+\frac{3}{2 x_{2}}=\frac{37634}{21728} \approx \underbrace{1.7320508} 10014728 \ldots$
- Aside. For a continued-fraction expansion, start with

$$
x^{2}=3 \Leftrightarrow x^{2}-1=2 \Leftrightarrow
$$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$
- $x_{2}=\frac{x_{1}}{2}+\frac{3}{2 x_{1}}=\frac{97}{56} \approx \underbrace{1.732} 142857142857$
- $x_{3}=\frac{x_{2}}{2}+\frac{3}{2 x_{2}}=\frac{37634}{21728} \approx \underbrace{1.7320508} 10014728 \ldots$
- Aside. For a continued-fraction expansion, start with

$$
x^{2}=3 \Leftrightarrow x^{2}-1=2 \Leftrightarrow(x-1)(x+1)=2 \Leftrightarrow
$$

Extensions

- Can apply our method to $\sqrt{3} \approx 1.732050807568877 \ldots$:
- $x^{2}=3 \quad \Leftrightarrow \quad \frac{x}{2}=\frac{3}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}+\frac{3}{2 x}$
- $x_{0}=2 \quad[1<\sqrt{3}<2]$
- $x_{1}=\frac{x_{0}}{2}+\frac{3}{2 x_{0}}=\frac{7}{4}=\underbrace{1.7} 5$
- $x_{2}=\frac{x_{1}}{2}+\frac{3}{2 x_{1}}=\frac{97}{56} \approx \underbrace{1.732} 142857142857$
- $x_{3}=\frac{x_{2}}{2}+\frac{3}{2 x_{2}}=\frac{37634}{21728} \approx \underbrace{1.7320508} 10014728 \ldots$
- Aside. For a continued-fraction expansion, start with

$$
x^{2}=3 \Leftrightarrow x^{2}-1=2 \Leftrightarrow(x-1)(x+1)=2 \Leftrightarrow x=1+\frac{2}{1+x} .
$$

- This yields

$$
\sqrt{3}=1+\frac{2}{2+\frac{2}{2+\frac{2}{2+\cdots ;}}}
$$

Related Exercises

- The method can be used to compute $\sqrt{5}$, etc. ...

Related Exercises

- The method can be used to compute $\sqrt{5}$, etc. ...
- E.g., $x=\sqrt{5}$ can be written as

$$
x^{2}-1=4 \Leftrightarrow(x-1)(x+1)=4 \Leftrightarrow x=1+\frac{4}{1+x} \cdots
$$

Related Exercises

- The method can be used to compute $\sqrt{5}$, etc. ...
- E.g., $x=\sqrt{5}$ can be written as $x^{2}-1=4 \Leftrightarrow(x-1)(x+1)=4 \Leftrightarrow x=1+\frac{4}{1+x} \cdots$
- This yields

$$
\sqrt{5}=1+\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}
$$

Related Exercises

- The method can be used to compute $\sqrt{5}$, etc. ...
- E.g., $x=\sqrt{5}$ can be written as

$$
x^{2}-1=4 \Leftrightarrow(x-1)(x+1)=4 \Leftrightarrow x=1+\frac{4}{1+x} \cdots
$$

- This yields

$$
\sqrt{5}=1+\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}
$$

- $\operatorname{Or} x^{2}-4=1 \Leftrightarrow(x-2)(x+2)=1 \Leftrightarrow x=2+\frac{1}{2+x}$.

Related Exercises

- The method can be used to compute $\sqrt{5}$, etc. ...
- E.g., $x=\sqrt{5}$ can be written as $x^{2}-1=4 \Leftrightarrow(x-1)(x+1)=4 \Leftrightarrow x=1+\frac{4}{1+x} \cdots$
- This yields

$$
\sqrt{5}=1+\frac{4}{2+\frac{4}{2+\frac{4}{2+\cdots}}}
$$

- Or $x^{2}-4=1 \Leftrightarrow(x-2)(x+2)=1 \Leftrightarrow x=2+\frac{1}{2+x}$.
- This yields

$$
\sqrt{5}=2+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots}}}
$$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$
- $x_{0}=0.1$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$
- $x_{0}=0.1$
- $x_{1}=\frac{0.1}{2}-\frac{1}{2 \times 0.1}=-4.95$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$
- $x_{0}=0.1$
- $x_{1}=\frac{0.1}{2}-\frac{1}{2 \times 0.1}=-4.95$
- $x_{2}=\frac{-4.95}{2}-\frac{1}{2 \times(-4.95)} \approx-2.3740$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$
- $x_{0}=0.1$
- $x_{1}=\frac{0.1}{2}-\frac{1}{2 \times 0.1}=-4.95$
- $x_{2}=\frac{-4.95}{2}-\frac{1}{2 \times(-4.95)} \approx-2.3740$
- $x_{3} \approx-0.9764, x_{4} \approx 0.0239, x_{5} \approx-20.9027, x_{6} \approx-10.4274, \ldots$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$
- $x_{0}=0.1$
- $x_{1}=\frac{0.1}{2}-\frac{1}{2 \times 0.1}=-4.95$
- $x_{2}=\frac{-4.95}{2}-\frac{1}{2 \times(-4.95)} \approx-2.3740$
- $x_{3} \approx-0.9764, x_{4} \approx 0.0239, x_{5} \approx-20.9027, x_{6} \approx-10.4274, \ldots$
- $x_{7} \approx-5.1658, x_{8}=-2.4861, x_{9}=-1.0419, \ldots$

A silly extension ... or is it?

- Now try: $x^{2}=-1 \quad \Leftrightarrow \quad \frac{x}{2}=-\frac{1}{2 x} \quad \Leftrightarrow \quad x=\frac{x}{2}-\frac{1}{2 x}$
- $x_{0}=0.1$
- $x_{1}=\frac{0.1}{2}-\frac{1}{2 \times 0.1}=-4.95$
- $x_{2}=\frac{-4.95}{2}-\frac{1}{2 \times(-4.95)} \approx-2.3740$
- $x_{3} \approx-0.9764, x_{4} \approx 0.0239, x_{5} \approx-20.9027, x_{6} \approx-10.4274, \ldots$
- $x_{7} \approx-5.1658, x_{8}=-2.4861, x_{9}=-1.0419, \ldots$
- Do see a pattern?

A silly extension ... or is it?
 $x^{2}=-1 \ldots x=\frac{x}{2}-\frac{1}{2 x} \ldots 5000$ iterations

A silly extension . . or is it?

$x^{2}=-1 \ldots x=\frac{x}{2}-\frac{1}{2 x} \ldots 5000$ iterations \ldots ". "heavy tails" $\ldots n$ versus $\frac{2}{\pi} \arctan \left(x_{n}\right)$

A silly extension ... or is it?

$x^{2}=-1 \ldots x=\frac{x}{2}-\frac{1}{2 x} \ldots 5000$ iterations \ldots "heavy tails" $\ldots n$ versus $\frac{2}{\pi} \arctan \left(x_{n}\right)$

A silly extension . . . or is it?
 $x^{2}=-1 \ldots x=\frac{x}{2}-\frac{1}{2 x} \ldots 50,000$ iterations \ldots "heavy tails" $\ldots n$ versus $\frac{2}{\pi} \arctan \left(x_{n}\right)$

