A Statistics Primer
 Math 6070, Spring 2006

Davar Khoshnevisan
University of Utah
January 30, 2006

Contents

1 Statistical Models 1
2 Classical Parametric Inference 2
3 The Information Inequality 4
4 A Glance at Confidence Intervals 7
5 A Glance at Testing Statistical Hypotheses 9

1 Statistical Models

It is convenient to have an abstract framework for discussing statistical theory. The general problem is that there exists an unknown parameter θ_{0}, which we wish to find out about. To have something concrete in mind, consider for example a population with the $N\left(\theta_{0}, 1\right)$ distribution, where θ_{0} is an unknown constant. If we do not have any a priori information about θ_{0} then it stands to reason that we consider every distribution of the form $N(\theta, 1)$, as θ ranges over \mathbf{R}, and then use data to make inference about the real, unknown θ_{0}.

The general framework is this: We have a parameter space Θ and the real θ_{0} is in Θ, but we do not its value. For every $\theta \in \Theta$, let P_{θ} denote the underlying probability, which is computed by assuming that $\theta_{0}=\theta$. Similarly define E_{θ}, $\operatorname{Var}_{\theta}, \operatorname{Cov}_{\theta}$, etc. Then, the idea is to take a sample - typically an independent sample $-\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ from $\mathrm{P}_{\theta_{0}}$. If the true (unknown) θ_{0} were equal to some (known) $\theta_{1} \in \Theta$, then one would expect \boldsymbol{X} to behave like an independent sample from $\mathrm{P}_{\theta_{1}}$. If so, then we declare that θ_{0} might well be θ_{0}. Else, we reject the notion that $\theta_{0}=\theta_{1}$. The remainder of these notes make this technique precise in more special settings.

2 Classical Parametric Inference

The typical problem of classical statistics is the following: Given a family of probability densities $\left\{f_{\theta}\right\}_{\theta \in \Theta}$ how can we decide whether or not ours is f_{θ} ? More precisely, we have an unknown density $f_{\theta_{0}}$; we wish to estimate it by choosing one from the family $\left\{f_{\theta}\right\}_{\theta \in \Theta}$ of densities available to us. [Alternatively, you could replace f_{θ} by a mass function p_{θ}.] Here, Θ is the "parameter space," and θ_{0} is the unknown "parameter."

To estimate θ_{0} one typically considers an independent sample X_{1}, \ldots, X_{n} from the true distribution with density $f_{\theta_{0}}$, and constructs an estimator $\hat{\theta}$.

Example 1 Let $\Theta:=\mathbf{R}$, and f_{θ} the $N(\theta, 1)$ density. The standard approach is to estimate θ_{0} with

$$
\begin{equation*}
\hat{\theta}:=\frac{X_{1}+\cdots+X_{n}}{n} \tag{1}
\end{equation*}
$$

There are many reasons why $\hat{\theta}$ is a good estimate of θ.

1. [Unbiasedness] Evidently,

$$
\begin{equation*}
\mathrm{E}_{\theta} \hat{\theta}=\theta, \quad \text { for all } \theta \in \Theta \tag{2}
\end{equation*}
$$

This is called unbiasedness. In general, a random variable T is said to be an unbiased estimator of θ if $\mathrm{E}_{\theta} T=\theta$ for all $\theta \in \Theta$.
2. [Consistency] By the law of large numbers, for all $\theta \in \Theta$,

$$
\begin{equation*}
\hat{\theta} \xrightarrow{\mathrm{P}_{\theta}} \theta \quad \text { as } n \rightarrow \infty . \tag{3}
\end{equation*}
$$

This is called consistency. In general, a random variable T is said to be a consistent estimator of θ_{0} if for all $\theta \in \Theta, T \xrightarrow{\mathrm{P}_{\theta}} \theta$ as the sample size tends to infinity.
3. [MLE] The maximum likelihood estimate of θ_{0}-in all cases-is an estimator that maximizes $\theta \mapsto f_{\theta}\left(X_{1} \ldots, X_{n}\right)$ for an independent sample $\left(X_{1}, \ldots, X_{n}\right)$, where f_{θ} here represents the joint density function of n i.i.d. random variables each with density $N(\theta, 1)$. In the present example.

$$
\begin{equation*}
f_{\theta}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \sum_{j=1}^{n}\left(X_{j}-\theta\right)^{2}\right) \tag{4}
\end{equation*}
$$

To find a MLE, it is easier to maximize the log likelihood,

$$
\begin{equation*}
L(\theta):=\ln f_{\theta}\left(X_{1}, \ldots, X_{n}\right) \tag{5}
\end{equation*}
$$

which is the same as minimizing $h(\theta):=\sum_{j=1}^{n}\left(X_{j}-\theta\right)^{2}$ over all θ. But $h^{\prime}(\theta)=-2 \sum_{j=1}^{n}\left(X_{j}-\theta\right)$ and $h^{\prime \prime}(\theta)=2 n>0$. Therefore, the MLE is uniquely $\hat{\theta}$.

The statistics $\hat{\theta}$ has other optimality features too. See for instance Example 8 (page 6) below.

Example 2 Suppose $\Theta:=\mathbf{R} \times(0, \infty)$. Then, we can write $\theta \in \Theta$ as $\theta=\left(\mu, \sigma^{2}\right)$ where $\mu \in \mathbf{R}$ and $\sigma>0$. Suppose f_{θ} is the $N\left(\mu, \sigma^{2}\right)$ density. Then the usual estimator for the true parameter $\theta_{0}=\left(\mu_{0}, \sigma_{0}^{2}\right)$ is $\hat{\theta}:=\left(\hat{\mu}, \hat{\sigma}^{2}\right)$, where

$$
\begin{align*}
\hat{\mu} & :=\frac{1}{n} \sum_{j=1}^{n} X_{j} \tag{6}\\
\hat{\sigma}^{2} & :=\frac{1}{n} \sum_{j=1}^{n}\left(X_{j}-\hat{\mu}\right)^{2} .
\end{align*}
$$

[As before, X_{1}, \ldots, X_{n} is an independent sample.] As in the previous example, $\hat{\theta}$ is the unique MLE, and is consistent. However, it is not unbiased. Indeed,

$$
\begin{equation*}
\mathrm{E}_{\theta} \hat{\theta}=\binom{\mu}{\left[1-\frac{1}{n}\right]^{2} \sigma^{2}}, \quad \text { for all } \theta=\left(\mu, \sigma^{2}\right) \in \Theta \tag{7}
\end{equation*}
$$

So $\hat{\theta}$ is "biased," although it is asymptotically unbiased; i.e., $\mathrm{E}_{\theta} \hat{\theta} \rightarrow \theta$ as $n \rightarrow \infty$.

Example 3 Suppose $\Theta=(0, \infty)$, and f_{θ} is the uniform- $(0, \theta)$ density for all $\theta \in \Theta$. Given an independent sample X_{1}, \ldots, X_{n}, we consider

$$
\begin{equation*}
\hat{\theta}:=\max _{1 \leq j \leq n} X_{j} \tag{8}
\end{equation*}
$$

The distribution of $\hat{\theta}$ is easily computed, viz.,

$$
\begin{equation*}
\mathrm{P}_{\theta}\{\hat{\theta} \leq a\}=\left[\mathrm{P}_{\theta}\left\{X_{1} \leq a\right\}\right]^{n}=\left(a / \theta_{0}\right)^{n}, \quad 0 \leq a \leq \theta_{0} \tag{9}
\end{equation*}
$$

This gives the density $f_{\hat{\theta}}(a)=n \theta_{0}^{-n} a^{n-1}$ for $0 \leq a \leq \theta_{0}$. Consequently,

$$
\begin{equation*}
\mathrm{E}_{\theta} \hat{\theta}=\theta_{0}^{-n} \int_{0}^{\theta_{0}} n a^{n} d a=\frac{n \theta_{0}}{n+1} . \tag{10}
\end{equation*}
$$

Therefore: (i) $\hat{\theta}$ is biased; but (ii) it is asymptotically unbiased. Next we show that $\hat{\theta}$ is consistent. Note that $\hat{\theta} \leq \theta_{0}$, by force. So it is enough to show that with high probability $\hat{\theta}$ is not too much smaller than θ_{0}. Fix $\epsilon>0$, and note that

$$
\begin{equation*}
\mathrm{P}_{\theta}\left\{\hat{\theta} \leq(1-\epsilon) \theta_{0}\right\}=\int_{0}^{(1-\epsilon) \theta_{0}} n \theta_{0}^{-n} a^{n-1} d a=(1-\epsilon)^{n} \tag{11}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\mathrm{P}_{\theta}\left\{\left|\frac{\hat{\theta}}{\theta_{0}}-1\right|>\epsilon\right\} \leq 1-(1-\epsilon)^{n} \rightarrow 0 \tag{12}
\end{equation*}
$$

That is, $\hat{\theta}$ is consistent, as asserted earlier. To complete the example let us compute the MLE for θ_{0}. Evidently,

$$
\begin{equation*}
f_{\theta}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{\theta^{n}} \mathbf{I}\{\theta>\hat{\theta}\} \tag{13}
\end{equation*}
$$

where $\mathbf{I}\{A\}$ is the indicator of A. So to find the MLE we observe that $\mathbf{I}\{A\} \leq 1$, so that $f_{\theta}\left(X_{1}, \ldots, X_{n}\right) \leq 1 / \hat{\theta}^{n}$. The MLE is $\hat{\theta}$ uniquely.

One can consider a variant of $\hat{\theta}$, here, that is unbiased and consistent, but only "approximately" MLE for large n. Namely, we can consider the statistic $\tilde{\theta}:=(n+1) \max _{1 \leq j \leq n} X_{j} / n=\left(1+\frac{1}{n}\right) \max _{1 \leq j \leq n} X_{j}$.

3 The Information Inequality

Let us concentrate on the case where every $\theta \in \Theta$ is one-dimensional, and hence so is θ_{0}.

Let $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector with joint density $f_{\theta}(\boldsymbol{x})$. The Fisher information of the family $\left\{f_{\theta}\right\}_{\theta \in \Theta}$ is defined as the function $I(\theta)$, where

$$
\begin{equation*}
I(\theta):=\mathrm{E}_{\theta}\left[\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right)^{2}\right], \quad(\theta \in \Theta) \tag{14}
\end{equation*}
$$

provided that the expectation exists and is finite. If \boldsymbol{X} is discrete we define $I(\theta)$ in the same way, but replace f_{θ} by the joint mass function p_{θ}.

In the continuous case, for example, the Fisher information is computed as follows:

$$
\begin{align*}
I(\theta) & =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{x})\right)^{2} f_{\theta}(\boldsymbol{x}) d \boldsymbol{x} \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{1}{f_{\theta}(\boldsymbol{x})}\left(\frac{\partial}{\partial \theta} f_{\theta}(\boldsymbol{x})\right)^{2} d x \tag{15}
\end{align*}
$$

So in fact $I(\theta)$ is always defined, but could be any number in $[0, \infty]$.
Example 4 In the case of independent $N(\theta, 1)$'s,

$$
\begin{equation*}
\ln f_{\theta}(\boldsymbol{x})=-\frac{n}{2} \ln (2 \pi)-\frac{1}{2} \sum_{j=1}^{n}\left(x_{j}-\theta\right)^{2} \tag{16}
\end{equation*}
$$

The θ-derivative is $\sum_{j=1}^{n}\left(x_{j}-\theta\right)$. Therefore,

$$
\begin{equation*}
I(\theta)=\mathrm{E}_{\theta}\left[\left(\sum_{j=1}^{n} X_{j}-n \theta\right)^{2}\right]=\operatorname{Var}_{\theta}\left(\sum_{j=1}^{n} X_{j}\right)=n \tag{17}
\end{equation*}
$$

[Here it does not depend on θ.]

Example 5 Suppose $X_{1}, \ldots, X_{n} \sim \operatorname{Poisson}(\theta)$ are independent, where $\theta \in$ $\Theta:=(0, \infty)$. [Remember that " $Y \sim D$ " means that " Y is distributed as $D . "]$ Now we have the joint mass function $p_{\theta}(\boldsymbol{x})$ instead of densities. Then,

$$
\begin{equation*}
\ln p_{\theta}(\boldsymbol{x})=-n \theta+\ln \theta \sum_{j=1}^{n} x_{j}-\sum_{j=1}^{n} \ln \left(x_{j}!\right) \tag{18}
\end{equation*}
$$

Differentiate to obtain

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \ln p_{\theta}(\boldsymbol{x})=-n+\frac{1}{\theta} \sum_{j=1}^{n} x_{j} . \tag{19}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
I(\theta)=\frac{1}{\theta^{2}} \mathrm{E}\left[\left(\sum_{j=1}^{n} X_{j}-n \theta\right)^{2}\right]=\frac{\operatorname{Var}\left(\sum_{j=1}^{n} X_{j}\right)}{\theta^{2}}=\frac{n}{\theta} \tag{20}
\end{equation*}
$$

The following is due to Fréchét originally, and was rediscovered independently, and later on, by Crámer and Rao.

Theorem 6 (The Information Inequality) Suppose T is a non-random function of n variables. Then, under "mild regularity conditions,"

$$
\begin{equation*}
\operatorname{Var}_{\theta}(T(\boldsymbol{X})) \geq \frac{\left[h^{\prime}(\theta)\right]^{2}}{I(\theta)} \tag{21}
\end{equation*}
$$

for all θ, where $h(\theta):=\mathrm{E}_{\theta}[T(\boldsymbol{X})]$.
The regularity conditions are indeed mild; they guarantee that certain integrals and derivatives commute. See (24) and (27) below.

The proof requires the following form of the Cauchy-Schwarz inequality:
Lemma 7 (Cauchy-Schwarz Inequality) For all rv's X and Y,

$$
\begin{equation*}
|\operatorname{Cov}(X, Y)|^{2} \leq \operatorname{Var} X \cdot \operatorname{Var} Y \tag{22}
\end{equation*}
$$

provided that all the terms inside the expectations are integrable.
Proof. Let $X^{\prime}:=(X-\mathrm{E} X) / \sqrt{\operatorname{Var} X}$ and $Y^{\prime}:=(Y-\mathrm{E} Y) / \sqrt{\operatorname{Var} Y}$. Then,

$$
\begin{align*}
0 \leq \mathrm{E}\left[\left(X^{\prime}-Y^{\prime}\right)^{2}\right] & =\mathrm{E}\left[\left(X^{\prime}\right)^{2}\right]+\mathrm{E}\left[\left(Y^{\prime}\right)^{2}\right]-2 \mathrm{E}\left[X^{\prime} Y^{\prime}\right] \\
& =2\left[1-\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var} X \cdot \operatorname{Var} Y}}\right] \tag{23}
\end{align*}
$$

This proves the result when $\operatorname{Cov}(X, Y) \geq 0$. When $\operatorname{Cov}(X, Y)<0$, we consider instead $\mathrm{E}\left[\left(X^{\prime}+Y^{\prime}\right)^{2}\right]$.

Proof of the Information Inequality in the Continuous Case. Note that if f_{θ} is nice then

$$
\begin{equation*}
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f_{\theta}(\boldsymbol{x}) d \boldsymbol{x}=\frac{\partial}{\partial \theta}\left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\theta}(\boldsymbol{x}) d \boldsymbol{x}\right]=0 \tag{24}
\end{equation*}
$$

This is so simply because $[\cdots]=1$. Therefore,

$$
\begin{equation*}
\mathrm{E}_{\theta}\left[\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right]=\int_{-\infty}^{\infty} f_{\theta}(\boldsymbol{x}) \frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{x}) d \boldsymbol{x}=0 \tag{25}
\end{equation*}
$$

This proves that

$$
\begin{equation*}
I(\theta)=\operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right) \tag{26}
\end{equation*}
$$

Similarly, if things are nice then

$$
\begin{align*}
\mathrm{E}_{\theta}\left[T(\boldsymbol{X}) \frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right] & =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(\boldsymbol{x}) \frac{\partial}{\partial \theta} f_{\theta}(\boldsymbol{x}) d \boldsymbol{x} \\
& =\frac{\partial}{\partial \theta}\left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} T(\boldsymbol{x}) f_{\theta}(\boldsymbol{x}) d \boldsymbol{x}\right] \tag{27}\\
& =\frac{\partial}{\partial \theta} \mathrm{E}_{\theta}[T(\boldsymbol{X})]=h^{\prime}(\theta)
\end{align*}
$$

Combine (24) and (27) to find that

$$
\begin{equation*}
\operatorname{Cov}_{\theta}\left(T(\boldsymbol{X}), \frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right)=h^{\prime}(\theta) \tag{28}
\end{equation*}
$$

Thanks to Lemma 7,

$$
\begin{equation*}
\left|h^{\prime}(\theta)\right|^{2} \leq \operatorname{Var}_{\theta}(T(\boldsymbol{X})) \cdot \operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right)=\operatorname{Var}_{\theta}(T(\boldsymbol{X})) \cdot I(\theta) \tag{29}
\end{equation*}
$$

See (26). This proves the information inequality.
A useful consequence of the information inequality is that, under mild conditions, any unbiased estimator $T(\boldsymbol{X})$ has the property that

$$
\begin{equation*}
\operatorname{Var}_{\theta}(T(\boldsymbol{X})) \geq \frac{1}{I(\theta)} \tag{30}
\end{equation*}
$$

This leads to the notion of MVU estimators: These are unbiased estimators that have minimum variance. Thanks to (30), if we can find a function T such that $\operatorname{Var} T(\boldsymbol{X})=1 / I\left(\theta_{0}\right)$, then we have found an MVU estimator of θ.
Example 8 Suppose X_{1}, \ldots, X_{n} are i.i.d. $N(\theta, 1)$'s. Let T be such that $T(\boldsymbol{X})$ is an unbiased estimator of θ. According to Example $4, I(\theta)=n$, so that $\operatorname{Var}_{\theta}(T(\boldsymbol{X})) \geq 1 / n=\operatorname{Var}_{\theta} \bar{X}_{n}$. That is, $\hat{\theta}:=\left(X_{1}+\cdots+X_{n}\right) / n$ has the smallest variance among all unbiased estimators of θ. This is the "MVU" property. More precisely, any estimator $\hat{\theta}$ is said to be $M V U E$ when it is a (often, "the") minimum variance unbiased estimator of θ_{0}.

Example 9 Suppose X_{1}, \ldots, X_{n} are $\operatorname{Poisson}(\theta)$, where $\theta>0$ is an unknown parameter. [The true parameter is some unknown θ_{0}, so we model it this way.] Because $\mathrm{E}_{\theta} X_{1}=\theta$, the law of large numbers implies that

$$
\begin{equation*}
\bar{X}_{n}:=\frac{X_{1}+\cdots+X_{n}}{n} \xrightarrow{\mathrm{P}_{\theta}} \theta . \tag{31}
\end{equation*}
$$

So, \bar{X}_{n} is a consistent estimator of θ_{0}. Recall also that $\operatorname{Var}_{\theta} X_{1}=\theta$, so that $\operatorname{Var}_{\theta} \bar{X}_{n}=\theta / n$. We claim that \bar{X}_{n} is a minimum variance unbiased estimator. In order to prove it it suffices to show that $I(\theta)=n / \theta$. But this was shown to be the case already; see Example 5 on page 5 .

4 A Glance at Confidence Intervals

Choose and fix $\alpha \in(0,1)$. A confidence set C with level $(1-\alpha)$ is a random set that depends on the sample \boldsymbol{X}, and has the property that $\mathrm{P}_{\theta}\{\theta \in C\} \geq 1-\alpha$ for all $\theta \in \Theta$. If C varies with n, and $\lim _{n \rightarrow \infty} \mathrm{P}_{\theta}\{\theta \in C\} \geq 1-\alpha$ for all $\theta \in \Theta$, then we say that C is a confidence interval for θ_{0} with asymptotic level $(1-\alpha)$.

Example 10 Consider the model $N(\theta, 1)$ where $\theta \in \Theta:=\mathbf{R}$. Then, it easy to see that

$$
\begin{equation*}
\frac{\bar{X}_{n}-\theta}{1 / \sqrt{n}} \sim N(0,1) \quad \text { under } \mathrm{P}_{\theta} \tag{32}
\end{equation*}
$$

Here, "Under P_{θ} " is short-hand for "If θ were the true parameter, for all $\theta \in \Theta$." Consider the random set

$$
\begin{equation*}
C(z):=\left[\bar{X}_{n}-\frac{z}{\sqrt{n}}, \bar{X}_{n}+\frac{z}{\sqrt{n}}\right] \tag{33}
\end{equation*}
$$

where $z \geq 0$ is fixed. Then,

$$
\begin{align*}
\mathrm{P}_{\theta}\{\theta \in C(z)\} & =\mathrm{P}_{\theta}\left\{\left|\bar{X}_{n}-\theta\right| \leq \frac{z}{\sqrt{n}}\right\} \\
& =\mathrm{P}_{\theta}\left\{\frac{\left|\bar{X}_{n}-\theta\right|}{1 / \sqrt{n}} \leq z\right\} \tag{34}\\
& =\mathrm{P}\{|N(0,1)| \leq z\}=2 \Phi(z)-1
\end{align*}
$$

See (32) for the last identity. Choose $z=z_{\alpha / 2}$ such that $2 \Phi\left(z_{\alpha / 2}\right)-1=1-\alpha$ to see that $\mathrm{P}_{\theta}\left\{\theta \in C\left(z_{\alpha / 2}\right)\right\}=1-\alpha$. That is, $C\left(z_{\alpha / 2}\right)$ is a confidence interval for θ_{0} with level $1-\alpha$. Note that $z_{\alpha / 2}$ is defined by $\Phi\left(z_{\alpha / 2}\right)=1-(\alpha / 2)$. The numbers $z_{\alpha / 2}$ are called "normal quantiles," because $\mathrm{P}\left\{N(0,1) \leq z_{\alpha / 2}\right\}=$ $\Phi\left(z_{\alpha / 2}\right)=1-(\alpha / 2)$.

Example 11 Consider the model $\operatorname{Binomial}(n, p)$, where n is a known integer, but $p \in[0,1]$ is an unknown constant. Here, $\Theta=[0,1]$, and every $p \in \Theta$ is a parameter. We consider the estimate

$$
\begin{equation*}
\hat{p}:=\frac{S_{n}}{n}, \tag{35}
\end{equation*}
$$

where S_{n} denotes the total number of successes in n independent samples. Evidently, $S_{n} \sim \operatorname{Binomial}(n, p)$ under P_{p}. Therefore, $\mathrm{E}_{p} \hat{p}=p$ and $\operatorname{Var}_{p} \hat{p}=$ $p(1-p) / n$.

By the central limit theorem, as n tends to infinity,

$$
\begin{equation*}
\frac{S_{n}-n p}{\sqrt{n p(1-p)}} \xrightarrow{d} N(0,1), \tag{36}
\end{equation*}
$$

under P_{p}. (Why?) Equivalently,

$$
\begin{equation*}
\frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \xrightarrow{d} N(0,1), \tag{37}
\end{equation*}
$$

under P_{p}. Also, by the law of large numbers, $\hat{p} \xrightarrow{\mathrm{P}_{p}} p$. (Why?) Apply the latter two results, via Slutsky's theorem, to find that under P_{p},

$$
\begin{equation*}
\frac{\hat{p}-p}{\sqrt{\hat{p}(1-\hat{p}) / n}} \xrightarrow{d} N(0,1) . \tag{38}
\end{equation*}
$$

Now consider

$$
\begin{equation*}
C_{n}(z):=\left[\hat{p}-z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] . \tag{39}
\end{equation*}
$$

Then, we have shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{P}_{p}\left\{p \in C_{n}(z)\right\}=\mathrm{P}\{|N(0,1)| \leq z\}=2 \Phi(z)-1 . \tag{40}
\end{equation*}
$$

Therefore, $C_{n}\left(z_{\alpha / 2}\right)$ is asymptotically a level- $(1-\alpha)$ confidence interval for p.
There are many variants of confidence intervals that are also useful. For instance, a one-sided confidence interval is a half-infinite random interval that should contain the parameter of interest with a pre-described probability. Similarly, there are one-sided confidence intervals that have a given asymptotic level. Finally, there are higher-dimensional generalizations. For example, there are confidence ellipsoids, confidence bands, etc. All of them are random setsoften with a pre-described geometry - that have exact or asymptotic level ($1-\alpha$) for a pre-described level $\alpha \in(0,1)$.

5 A Glance at Testing Statistical Hypotheses

Someone proposes the theory that a certain coin is fair. To test this hypothesis, a statistician can flip the said coin n times, independently. Record the number of heads S_{n}. In any event, we know that $S_{n} \sim \operatorname{binomial}(n, p)$ for some p. Thus, we write the proposed hypothesis as the null hypothesis, $H_{0}: p=\frac{1}{2}$, versus the alternative, $H_{1}: p \neq \frac{1}{2}$. If the null hypothesis is correct, then $\hat{p}:=S_{n} / n$ is close to $p=1 / 2$ with high probability. Fix $\alpha \in(0,1)$, and consider the confidence interval $C_{n}\left(z_{\alpha / 2}\right)$ from Example 11 on page 8 . It is more convenient to write $\mathrm{P}_{H_{0}}$ here instead of P_{p}. With this in mind, we know then that for large n,

$$
\begin{equation*}
\mathrm{P}_{H_{0}}\left\{p \notin C_{n}\left(z_{\alpha / 2}\right)\right\} \approx \alpha \tag{41}
\end{equation*}
$$

Here is how we make an inference about H_{0} : If $p \notin C_{n}\left(z_{\alpha / 2}\right)$, then we reject the null hypothesis H_{0}. Else, we accept H_{0}, but only in the sense that we do not reject it. There are two sources of error in testing statistical hypotheses:

1. Type-I Error: This is the probability of incorrect rejection of H_{0}. In our example, (41) shows that the type-I error is asymptotically α.
2. Type-II Error: This is the probability of incorrect acceptance of H_{1}. In our example, type-II error is

$$
\begin{equation*}
\beta=\mathrm{P}_{H_{1}}\left\{p \in C_{n}\left(z_{\alpha / 2}\right)\right\}, \tag{42}
\end{equation*}
$$

which goes to zero as $n \rightarrow \infty$.
A slightly more general parametric testing problem is to decide between $H_{0}: \theta \in \Theta_{0}$ versus $H_{1}: \theta \in \Theta_{1}$, where Θ_{0} and Θ_{1} are subsets of Θ. It need not be the case that $\Theta_{0} \cup \Theta_{1}=\Theta$, but it must be that $\Theta_{0} \cap \Theta_{1}=\varnothing$. Our answer is typically found by finding a confidence interval (or set, or ...) C of a predescribed asymptotic level $(1-\alpha)$ such that $\mathrm{P}_{H_{0}}\{\theta \in C\} \approx 1-\alpha$, and hopefully $\mathrm{P}_{H_{1}}\{\theta \in C\}$ is small. If $C \cap \Theta_{0}=\varnothing$ then reject H_{0}, else accept H_{1}.

