A Statistics Primer Math 6070, Spring 2006

Davar Khoshnevisan University of Utah

January 30, 2006

Contents

1	Statistical Models	1
2	Classical Parametric Inference	2
3	The Information Inequality	4
4	A Glance at Confidence Intervals	7
5	A Glance at Testing Statistical Hypotheses	9

1 Statistical Models

It is convenient to have an abstract framework for discussing statistical theory. The general problem is that there exists an unknown *parameter* θ_0 , which we wish to find out about. To have something concrete in mind, consider for example a population with the $N(\theta_0, 1)$ distribution, where θ_0 is an unknown constant. If we do not have any *a priori* information about θ_0 then it stands to reason that we consider every distribution of the form $N(\theta, 1)$, as θ ranges over **R**, and then use data to make inference about the real, unknown θ_0 .

The general framework is this: We have a parameter space Θ and the real θ_0 is in Θ , but we do not its value. For every $\theta \in \Theta$, let P_{θ} denote the underlying probability, which is computed by assuming that $\theta_0 = \theta$. Similarly define E_{θ} , Var_{θ} , Cov_{θ} , etc. Then, the idea is to take a sample—typically an independent sample— $\mathbf{X} = (X_1, \ldots, X_n)$ —from P_{θ_0} . If the true (unknown) θ_0 were equal to some (known) $\theta_1 \in \Theta$, then one would expect \mathbf{X} to behave like an independent sample from P_{θ_1} . If so, then we declare that θ_0 might well be θ_0 . Else, we reject the notion that $\theta_0 = \theta_1$. The remainder of these notes make this technique precise in more special settings.

2 Classical Parametric Inference

The typical problem of classical statistics is the following: Given a family of probability densities $\{f_{\theta}\}_{\theta \in \Theta}$ how can we decide whether or not ours is f_{θ} ? More precisely, we have an unknown density f_{θ_0} ; we wish to estimate it by choosing one from the family $\{f_{\theta}\}_{\theta \in \Theta}$ of densities available to us. [Alternatively, you could replace f_{θ} by a mass function p_{θ} .] Here, Θ is the "parameter space," and θ_0 is the unknown "parameter."

To estimate θ_0 one typically considers an independent sample X_1, \ldots, X_n from the true distribution with density f_{θ_0} , and constructs an estimator $\hat{\theta}$.

Example 1 Let $\Theta := \mathbf{R}$, and f_{θ} the $N(\theta, 1)$ density. The standard approach is to estimate θ_0 with

$$\hat{\theta} := \frac{X_1 + \dots + X_n}{n}.\tag{1}$$

There are many reasons why $\hat{\theta}$ is a good estimate of θ .

1. [Unbiasedness] Evidently,

$$E_{\theta}\hat{\theta} = \theta, \quad \text{for all } \theta \in \Theta.$$
 (2)

This is called *unbiasedness*. In general, a random variable T is said to be an *unbiased* estimator of θ if $E_{\theta}T = \theta$ for all $\theta \in \Theta$.

2. [Consistency] By the law of large numbers, for all $\theta \in \Theta$,

$$\hat{\theta} \xrightarrow{\mathbf{P}_{\theta}} \theta \quad \text{as } n \to \infty.$$
 (3)

This is called *consistency*. In general, a random variable T is said to be a *consistent* estimator of θ_0 if for all $\theta \in \Theta$, $T \xrightarrow{\mathbf{P}_{\theta}} \theta$ as the sample size tends to infinity.

3. [MLE] The maximum likelihood estimate of θ_0 —in all cases—is an estimator that maximizes $\theta \mapsto f_{\theta}(X_1 \dots, X_n)$ for an independent sample (X_1, \dots, X_n) , where f_{θ} here represents the joint density function of n i.i.d. random variables each with density $N(\theta, 1)$. In the present example.

$$f_{\theta}(X_1, \dots, X_n) = \frac{1}{(2\pi)^{n/2}} \exp\left(-\frac{1}{2}\sum_{j=1}^n (X_j - \theta)^2\right).$$
 (4)

To find a MLE, it is easier to maximize the log likelihood,

$$L(\theta) := \ln f_{\theta}(X_1, \dots, X_n), \tag{5}$$

which is the same as minimizing $h(\theta) := \sum_{j=1}^{n} (X_j - \theta)^2$ over all θ . But $h'(\theta) = -2\sum_{j=1}^{n} (X_j - \theta)$ and $h''(\theta) = 2n > 0$. Therefore, the MLE is uniquely $\hat{\theta}$.

The statistics $\hat{\theta}$ has other optimality features too. See for instance Example 8 (page 6) below.

Example 2 Suppose $\Theta := \mathbf{R} \times (0, \infty)$. Then, we can write $\theta \in \Theta$ as $\theta = (\mu, \sigma^2)$ where $\mu \in \mathbf{R}$ and $\sigma > 0$. Suppose f_{θ} is the $N(\mu, \sigma^2)$ density. Then the usual estimator for the true parameter $\theta_0 = (\mu_0, \sigma_0^2)$ is $\hat{\theta} := (\hat{\mu}, \hat{\sigma}^2)$, where

$$\hat{\mu} := \frac{1}{n} \sum_{j=1}^{n} X_j,$$

$$\hat{\sigma}^2 := \frac{1}{n} \sum_{j=1}^{n} (X_j - \hat{\mu})^2.$$
(6)

[As before, X_1, \ldots, X_n is an independent sample.] As in the previous example, $\hat{\theta}$ is the unique MLE, and is consistent. However, it is not unbiased. Indeed,

$$\mathbf{E}_{\theta}\hat{\theta} = \begin{pmatrix} \mu \\ \left[1 - \frac{1}{n}\right]^2 \sigma^2 \end{pmatrix}, \quad \text{for all } \theta = (\mu, \sigma^2) \in \Theta.$$
 (7)

So $\hat{\theta}$ is "biased," although it is asymptotically unbiased; i.e., $\mathbf{E}_{\theta}\hat{\theta} \to \theta$ as $n \to \infty$.

Example 3 Suppose $\Theta = (0, \infty)$, and f_{θ} is the uniform- $(0, \theta)$ density for all $\theta \in \Theta$. Given an independent sample X_1, \ldots, X_n , we consider

$$\hat{\theta} := \max_{1 \le j \le n} X_j. \tag{8}$$

The distribution of $\hat{\theta}$ is easily computed, viz.,

$$P_{\theta}\left\{\hat{\theta} \le a\right\} = \left[P_{\theta}\left\{X_{1} \le a\right\}\right]^{n} = (a/\theta_{0})^{n}, \qquad 0 \le a \le \theta_{0}.$$
(9)

This gives the density $f_{\hat{\theta}}(a) = n\theta_0^{-n}a^{n-1}$ for $0 \le a \le \theta_0$. Consequently,

$$\mathbf{E}_{\theta}\hat{\theta} = \theta_0^{-n} \int_0^{\theta_0} na^n \, da = \frac{n\theta_0}{n+1}.$$
 (10)

Therefore: (i) $\hat{\theta}$ is biased; but (ii) it is asymptotically unbiased. Next we show that $\hat{\theta}$ is consistent. Note that $\hat{\theta} \leq \theta_0$, by force. So it is enough to show that with high probability $\hat{\theta}$ is not too much smaller than θ_0 . Fix $\epsilon > 0$, and note that

$$P_{\theta}\left\{\hat{\theta} \le (1-\epsilon)\theta_0\right\} = \int_0^{(1-\epsilon)\theta_0} n\theta_0^{-n} a^{n-1} da = (1-\epsilon)^n.$$
(11)

Thus,

$$P_{\theta}\left\{ \left| \frac{\hat{\theta}}{\theta_0} - 1 \right| > \epsilon \right\} \le 1 - (1 - \epsilon)^n \to 0.$$
(12)

That is, $\hat{\theta}$ is consistent, as asserted earlier. To complete the example let us compute the MLE for θ_0 . Evidently,

$$f_{\theta}(X_1, \dots, X_n) = \frac{1}{\theta^n} \mathbf{I}\{\theta > \hat{\theta}\},$$
(13)

where $\mathbf{I}\{A\}$ is the indicator of A. So to find the MLE we observe that $\mathbf{I}\{A\} \leq 1$, so that $f_{\theta}(X_1, \ldots, X_n) \leq 1/\hat{\theta}^n$. The MLE is $\hat{\theta}$ uniquely.

One can consider a variant of $\hat{\theta}$, here, that is unbiased and consistent, but only "approximately" MLE for large *n*. Namely, we can consider the statistic $\tilde{\theta} := (n+1) \max_{1 \le j \le n} X_j/n = (1+\frac{1}{n}) \max_{1 \le j \le n} X_j.$

3 The Information Inequality

Let us concentrate on the case where every $\theta \in \Theta$ is one-dimensional, and hence so is θ_0 .

Let $\mathbf{X} := (X_1, \ldots, X_n)$ be a random vector with joint density $f_{\theta}(\mathbf{x})$. The *Fisher information* of the family $\{f_{\theta}\}_{\theta \in \Theta}$ is defined as the function $I(\theta)$, where

$$I(\theta) := \mathcal{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X}) \right)^{2} \right], \qquad (\theta \in \Theta),$$
(14)

provided that the expectation exists and is finite. If X is discrete we define $I(\theta)$ in the same way, but replace f_{θ} by the joint mass function p_{θ} .

In the continuous case, for example, the Fisher information is computed as follows:

$$I(\theta) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{x})\right)^{2} f_{\theta}(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{1}{f_{\theta}(\boldsymbol{x})} \left(\frac{\partial}{\partial \theta} f_{\theta}(\boldsymbol{x})\right)^{2} d\boldsymbol{x}.$$
 (15)

So in fact $I(\theta)$ is always defined, but could be any number in $[0, \infty]$.

Example 4 In the case of independent $N(\theta, 1)$'s,

$$\ln f_{\theta}(\boldsymbol{x}) = -\frac{n}{2}\ln(2\pi) - \frac{1}{2}\sum_{j=1}^{n}(x_j - \theta)^2.$$
 (16)

The θ -derivative is $\sum_{j=1}^{n} (x_j - \theta)$. Therefore,

$$I(\theta) = \mathcal{E}_{\theta} \left[\left(\sum_{j=1}^{n} X_j - n\theta \right)^2 \right] = \operatorname{Var}_{\theta} \left(\sum_{j=1}^{n} X_j \right) = n.$$
(17)

[Here it does not depend on θ .]

Example 5 Suppose $X_1, \ldots, X_n \sim \text{Poisson}(\theta)$ are independent, where $\theta \in \Theta := (0, \infty)$. [Remember that " $Y \sim D$ " means that "Y is distributed as D."] Now we have the joint mass function $p_{\theta}(\boldsymbol{x})$ instead of densities. Then,

$$\ln p_{\theta}(\boldsymbol{x}) = -n\theta + \ln \theta \sum_{j=1}^{n} x_j - \sum_{j=1}^{n} \ln(x_j!).$$
(18)

Differentiate to obtain

$$\frac{\partial}{\partial \theta} \ln p_{\theta}(\boldsymbol{x}) = -n + \frac{1}{\theta} \sum_{j=1}^{n} x_j.$$
(19)

Therefore,

$$I(\theta) = \frac{1}{\theta^2} \mathbb{E}\left[\left(\sum_{j=1}^n X_j - n\theta\right)^2\right] = \frac{\operatorname{Var}(\sum_{j=1}^n X_j)}{\theta^2} = \frac{n}{\theta}.$$
 (20)

The following is due to Fréchét originally, and was rediscovered independently, and later on, by Crámer and Rao.

Theorem 6 (The Information Inequality) Suppose T is a non-random function of n variables. Then, under "mild regularity conditions,"

$$\operatorname{Var}_{\theta}(T(\boldsymbol{X})) \ge \frac{\left[h'(\theta)\right]^2}{I(\theta)},\tag{21}$$

for all θ , where $h(\theta) := E_{\theta}[T(\boldsymbol{X})].$

The regularity conditions are indeed mild; they guarantee that certain integrals and derivatives commute. See (24) and (27) below.

The proof requires the following form of the Cauchy–Schwarz inequality:

Lemma 7 (Cauchy–Schwarz Inequality) For all rv's X and Y,

$$|\operatorname{Cov}(X,Y)|^2 \le \operatorname{Var} X \cdot \operatorname{Var} Y,$$
(22)

provided that all the terms inside the expectations are integrable.

Proof. Let $X' := (X - EX)/\sqrt{\operatorname{Var} X}$ and $Y' := (Y - EY)/\sqrt{\operatorname{Var} Y}$. Then,

$$0 \le \mathbf{E} \left[(X' - Y')^2 \right] = \mathbf{E} [(X')^2] + \mathbf{E} [(Y')^2] - 2\mathbf{E} [X'Y']$$

= $2 \left[1 - \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}X \cdot \operatorname{Var}Y}} \right].$ (23)

This proves the result when $Cov(X, Y) \ge 0$. When Cov(X, Y) < 0, we consider instead $E[(X' + Y')^2]$.

Proof of the Information Inequality in the Continuous Case. Note that if f_{θ} is nice then

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{\partial}{\partial \theta} f_{\theta}(\boldsymbol{x}) \, d\boldsymbol{x} = \frac{\partial}{\partial \theta} \left[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\theta}(\boldsymbol{x}) \, d\boldsymbol{x} \right] = 0.$$
(24)

This is so simply because $[\cdots] = 1$. Therefore,

$$E_{\theta}\left[\frac{\partial}{\partial\theta}\ln f_{\theta}(\boldsymbol{X})\right] = \int_{-\infty}^{\infty} f_{\theta}(\boldsymbol{x})\frac{\partial}{\partial\theta}\ln f_{\theta}(\boldsymbol{x})\,d\boldsymbol{x} = 0.$$
 (25)

This proves that

$$I(\theta) = \operatorname{Var}_{\theta} \left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X}) \right).$$
(26)

Similarly, if things are nice then

$$E_{\theta}\left[T(\boldsymbol{X})\frac{\partial}{\partial\theta}\ln f_{\theta}(\boldsymbol{X})\right] = \int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}T(\boldsymbol{x})\frac{\partial}{\partial\theta}f_{\theta}(\boldsymbol{x})\,d\boldsymbol{x}$$
$$= \frac{\partial}{\partial\theta}\left[\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}T(\boldsymbol{x})f_{\theta}(\boldsymbol{x})\,d\boldsymbol{x}\right] \qquad (27)$$
$$= \frac{\partial}{\partial\theta}E_{\theta}[T(\boldsymbol{X})] = h'(\theta).$$

Combine (24) and (27) to find that

$$\operatorname{Cov}_{\theta}\left(T(\boldsymbol{X}), \frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right) = h'(\theta).$$
(28)

Thanks to Lemma 7,

$$|h'(\theta)|^2 \le \operatorname{Var}_{\theta}(T(\boldsymbol{X})) \cdot \operatorname{Var}_{\theta}\left(\frac{\partial}{\partial \theta} \ln f_{\theta}(\boldsymbol{X})\right) = \operatorname{Var}_{\theta}(T(\boldsymbol{X})) \cdot I(\theta).$$
(29)

See (26). This proves the information inequality.

A useful consequence of the information inequality is that, under mild conditions, any **unbiased** estimator $T(\mathbf{X})$ has the property that

$$\operatorname{Var}_{\theta}(T(\boldsymbol{X})) \ge \frac{1}{I(\theta)}.$$
 (30)

This leads to the notion of MVU estimators: These are unbiased estimators that have minimum variance. Thanks to (30), if we can find a function T such that $\operatorname{Var} T(\mathbf{X}) = 1/I(\theta_0)$, then we have found an MVU estimator of θ .

Example 8 Suppose X_1, \ldots, X_n are i.i.d. $N(\theta, 1)$'s. Let T be such that $T(\mathbf{X})$ is an unbiased estimator of θ . According to Example 4, $I(\theta) = n$, so that $\operatorname{Var}_{\theta}(T(\mathbf{X})) \geq 1/n = \operatorname{Var}_{\theta} \bar{X}_n$. That is, $\hat{\theta} := (X_1 + \cdots + X_n)/n$ has the smallest variance among all unbiased estimators of θ . This is the "MVU" property. More precisely, any estimator $\hat{\theta}$ is said to be MVUE when it is a (often, "the") minimum variance unbiased estimator of θ_0 .

Example 9 Suppose X_1, \ldots, X_n are $Poisson(\theta)$, where $\theta > 0$ is an unknown parameter. [The true parameter is some unknown θ_0 , so we model it this way.] Because $E_{\theta}X_1 = \theta$, the law of large numbers implies that

$$\bar{X}_n := \frac{X_1 + \dots + X_n}{n} \xrightarrow{\mathbf{P}_{\theta}} \theta.$$
(31)

So, \bar{X}_n is a consistent estimator of θ_0 . Recall also that $\operatorname{Var}_{\theta}X_1 = \theta$, so that $\operatorname{Var}_{\theta}\bar{X}_n = \theta/n$. We claim that \bar{X}_n is a minimum variance unbiased estimator. In order to prove it it suffices to show that $I(\theta) = n/\theta$. But this was shown to be the case already; see Example 5 on page 5.

4 A Glance at Confidence Intervals

Choose and fix $\alpha \in (0, 1)$. A confidence set C with level $(1 - \alpha)$ is a random set that depends on the sample \mathbf{X} , and has the property that $P_{\theta}\{\theta \in C\} \ge 1 - \alpha$ for all $\theta \in \Theta$. If C varies with n, and $\lim_{n\to\infty} P_{\theta}\{\theta \in C\} \ge 1 - \alpha$ for all $\theta \in \Theta$, then we say that C is a confidence interval for θ_0 with asymptotic level $(1 - \alpha)$.

Example 10 Consider the model $N(\theta, 1)$ where $\theta \in \Theta := \mathbf{R}$. Then, it easy to see that

$$\frac{X_n - \theta}{1/\sqrt{n}} \sim N(0, 1) \quad \text{under } \mathbf{P}_{\theta}.$$
(32)

Here, "Under P_{θ} " is short-hand for "If θ were the true parameter, for all $\theta \in \Theta$." Consider the random set

$$C(z) := \left[\bar{X}_n - \frac{z}{\sqrt{n}}, \bar{X}_n + \frac{z}{\sqrt{n}}\right],\tag{33}$$

where $z \ge 0$ is fixed. Then,

$$P_{\theta} \{ \theta \in C(z) \} = P_{\theta} \left\{ |\bar{X}_n - \theta| \le \frac{z}{\sqrt{n}} \right\}$$
$$= P_{\theta} \left\{ \frac{|\bar{X}_n - \theta|}{1/\sqrt{n}} \le z \right\}$$
$$= P\{|N(0, 1)| \le z\} = 2\Phi(z) - 1.$$
(34)

See (32) for the last identity. Choose $z = z_{\alpha/2}$ such that $2\Phi(z_{\alpha/2}) - 1 = 1 - \alpha$ to see that $P_{\theta}\{\theta \in C(z_{\alpha/2})\} = 1 - \alpha$. That is, $C(z_{\alpha/2})$ is a confidence interval for θ_0 with level $1 - \alpha$. Note that $z_{\alpha/2}$ is defined by $\Phi(z_{\alpha/2}) = 1 - (\alpha/2)$. The numbers $z_{\alpha/2}$ are called "normal quantiles," because $P\{N(0, 1) \leq z_{\alpha/2}\} = \Phi(z_{\alpha/2}) = 1 - (\alpha/2)$. **Example 11** Consider the model Binomial(n, p), where n is a known integer, but $p \in [0, 1]$ is an unknown constant. Here, $\Theta = [0, 1]$, and every $p \in \Theta$ is a parameter. We consider the estimate

$$\hat{p} := \frac{S_n}{n},\tag{35}$$

where S_n denotes the total number of successes in n independent samples. Evidently, $S_n \sim \text{Binomial}(n,p)$ under P_p . Therefore, $E_p \hat{p} = p$ and $\text{Var}_p \hat{p} = p(1-p)/n$.

By the central limit theorem, as n tends to infinity,

$$\frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow{d} N(0, 1), \tag{36}$$

under P_p . (Why?) Equivalently,

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \xrightarrow{d} N(0, 1), \tag{37}$$

under P_p . Also, by the law of large numbers, $\hat{p} \xrightarrow{P_p} p$. (Why?) Apply the latter two results, via Slutsky's theorem, to find that under P_p ,

$$\frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})/n}} \xrightarrow{d} N(0, 1).$$
(38)

Now consider

$$C_n(z) := \left[\hat{p} - z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right].$$
(39)

Then, we have shown that

$$\lim_{n \to \infty} \mathcal{P}_p \{ p \in C_n(z) \} = \mathcal{P}\{ |N(0,1)| \le z \} = 2\Phi(z) - 1.$$
(40)

Therefore, $C_n(z_{\alpha/2})$ is asymptotically a level- $(1 - \alpha)$ confidence interval for p.

There are many variants of confidence intervals that are also useful. For instance, a one-sided confidence interval is a half-infinite random interval that should contain the parameter of interest with a pre-described probability. Similarly, there are one-sided confidence intervals that have a given asymptotic level. Finally, there are higher-dimensional generalizations. For example, there are confidence ellipsoids, confidence bands, etc. All of them are random sets—often with a pre-described geometry—that have exact or asymptotic level $(1-\alpha)$ for a pre-described level $\alpha \in (0, 1)$.

5 A Glance at Testing Statistical Hypotheses

Someone proposes the theory that a certain coin is fair. To test this hypothesis, a statistician can flip the said coin n times, independently. Record the number of heads S_n . In any event, we know that $S_n \sim \text{binomial}(n, p)$ for some p. Thus, we write the proposed hypothesis as the *null hypothesis*, $H_0: p = \frac{1}{2}$, versus the *alternative*, $H_1: p \neq \frac{1}{2}$. If the null hypothesis is correct, then $\hat{p} := S_n/n$ is close to p = 1/2 with high probability. Fix $\alpha \in (0, 1)$, and consider the confidence interval $C_n(z_{\alpha/2})$ from Example 11 on page 8. It is more convenient to write P_{H_0} here instead of P_p . With this in mind, we know then that for large n,

$$P_{H_0}\left\{p \notin C_n(z_{\alpha/2})\right\} \approx \alpha. \tag{41}$$

Here is how we make an inference about H_0 : If $p \notin C_n(z_{\alpha/2})$, then we reject the null hypothesis H_0 . Else, we accept H_0 , but only in the sense that we do not reject it. There are two sources of error in testing statistical hypotheses:

- 1. Type-I Error: This is the probability of incorrect rejection of H_0 . In our example, (41) shows that the type-I error is asymptotically α .
- 2. Type-II Error: This is the probability of incorrect acceptance of H_1 . In our example, type-II error is

$$\beta = \mathcal{P}_{H_1} \left\{ p \in C_n(z_{\alpha/2}) \right\},\tag{42}$$

which goes to zero as $n \to \infty$.

A slightly more general parametric testing problem is to decide between $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$, where Θ_0 and Θ_1 are subsets of Θ . It need not be the case that $\Theta_0 \cup \Theta_1 = \Theta$, but it must be that $\Theta_0 \cap \Theta_1 = \emptyset$. Our answer is typically found by finding a confidence interval (or set, or ...) C of a predescribed asymptotic level $(1 - \alpha)$ such that $P_{H_0}\{\theta \in C\} \approx 1 - \alpha$, and hopefully $P_{H_1}\{\theta \in C\}$ is small. If $C \cap \Theta_0 = \emptyset$ then reject H_0 , else accept H_1 .