Tutorial on Additive Lévy Processes Lecture \#1

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar
International Conference on Stochastic Analysis and Its Applications August 7-11, 2006

Some Terminology

- An " (N, d) random field" X has N parameters and takes values in \mathbf{R}^{d} (Adler, 1981); i.e., $X(\mathbf{t}) \in \mathbf{R}^{d}$ for all $\mathbf{t}:=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}^{N}$.

Some Terminology

- An " (N, d) random field" X has N parameters and takes values in \mathbf{R}^{d} (Adler, 1981); i.e., $X(\mathbf{t}) \in \mathbf{R}^{d}$ for all $\mathbf{t}:=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}^{N}$.
- Could have \mathbf{R}_{+}^{N} in place of \mathbf{R}^{N}, etc.

Some Terminology

- An " (N, d) random field" X has N parameters and takes values in \mathbf{R}^{d} (Adler, 1981); i.e., $X(\mathbf{t}) \in \mathbf{R}^{d}$ for all $\mathbf{t}:=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}^{N}$.
- Could have \mathbf{R}_{+}^{N} in place of \mathbf{R}^{N}, etc.
- X_{1}, \ldots, X_{N} independent Brownian motions in \mathbf{R}^{d}. "Additive Brownian motion":

$$
X(\mathbf{t}):=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}
$$

Some Terminology

- An " (N, d) random field" X has N parameters and takes values in \mathbf{R}^{d} (Adler, 1981); i.e., $X(\mathbf{t}) \in \mathbf{R}^{d}$ for all $\mathbf{t}:=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}^{N}$.
- Could have \mathbf{R}_{+}^{N} in place of \mathbf{R}^{N}, etc.
- X_{1}, \ldots, X_{N} independent Brownian motions in \mathbf{R}^{d}. "Additive Brownian motion":

$$
X(\mathbf{t}):=X_{1}\left(t_{1}\right)+\cdots+X_{N}\left(t_{N}\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}
$$

- Likewise, can have "additive stable," "additive Lévy," etc.

ABM and the Local Dynamics of Brownian Sheet

$\dot{W}:=$ white noise on \mathbf{R}_{+}^{N}.

ABM and the Local Dynamics of Brownian Sheet

$\dot{W}:=$ white noise on \mathbf{R}_{+}^{N}. I.e., Gaussian, and

- If $A \cap B=\varnothing$ then $\dot{W}(A)$ and $\dot{W}(B)$ are indept.

ABM and the Local Dynamics of Brownian Sheet

$\dot{W}:=$ white noise on \mathbf{R}_{+}^{N}. I.e., Gaussian, and

- If $A \cap B=\varnothing$ then $\dot{W}(A)$ and $\dot{W}(B)$ are indept.
- $E \dot{W}(A)=0$ and $\operatorname{Var} \dot{W}(A)=\operatorname{meas}(A)$.

ABM and the Local Dynamics of Brownian Sheet

$\dot{W}:=$ white noise on \mathbf{R}_{+}^{N}. I.e., Gaussian, and

- If $A \cap B=\varnothing$ then $\dot{W}(A)$ and $\dot{W}(B)$ are indept.
- $E \dot{W}(A)=0$ and $\operatorname{Var} \dot{W}(A)=\operatorname{meas}(A)$.

ABM and the Local Dynamics of Brownian Sheet

$\dot{W}:=$ white noise on \mathbf{R}_{+}^{N}. I.e., Gaussian, and

- If $A \cap B=\varnothing$ then $\dot{W}(A)$ and $\dot{W}(B)$ are indept.
- $E \dot{W}(A)=0$ and $\operatorname{Var} \dot{W}(A)=\operatorname{meas}(A)$.

Lemma

If A_{1}, A_{2}, \ldots are nonrandom and disjoint then a.s.,

$$
\dot{W}\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \dot{W}\left(A_{n}\right),
$$

as long as meas $\left(A_{n}\right)<\infty$ for all n.

ABM and the Local Dynamics of Brownian Sheet

- $(N, 1)$ "Brownian sheet" $B:=$ the dF of \dot{W}; i.e.,

$$
B(\mathbf{t}):=\dot{W}\left(\left[0, t_{1}\right] \times \cdots \times\left[0, t_{N}\right]\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N} .
$$

ABM and the Local Dynamics of Brownian Sheet

- $(N, 1)$ "Brownian sheet" $B:=$ the dF of \dot{W}; i.e.,

$$
B(\mathbf{t}):=\dot{W}\left(\left[0, t_{1}\right] \times \cdots \times\left[0, t_{N}\right]\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}
$$

- Could also index B by \mathbf{R}^{N}, etc.

ABM and the Local Dynamics of Brownian Sheet

- $(N, 1)$ "Brownian sheet" $B:=$ the dF of \dot{W}; i.e.,

$$
B(\mathbf{t}):=\dot{W}\left(\left[0, t_{1}\right] \times \cdots \times\left[0, t_{N}\right]\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}
$$

- Could also index B by \mathbf{R}^{N}, etc.
- B is the noise in many SPDEs.

ABM and the Local Dynamics of Brownian Sheet

- $(N, 1)$ "Brownian sheet" $B:=$ the dF of \dot{W}; i.e.,

$$
B(\mathbf{t}):=\dot{W}\left(\left[0, t_{1}\right] \times \cdots \times\left[0, t_{N}\right]\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}
$$

- Could also index B by \mathbf{R}^{N}, etc.
- B is the noise in many SPDEs.
- In many cases, "SPDEs look like B." [Girsanov]

ABM and the Local Dynamics of Brownian Sheet

- $(N, 1)$ "Brownian sheet" $B:=$ the dF of \dot{W}; i.e.,

$$
B(\mathbf{t}):=\dot{W}\left(\left[0, t_{1}\right] \times \cdots \times\left[0, t_{N}\right]\right) \quad \text { for all } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in \mathbf{R}_{+}^{N}
$$

- Could also index B by \mathbf{R}^{N}, etc.
- B is the noise in many SPDEs.
- In many cases, "SPDEs look like B." [Girsanov]
- (N, d) Brownian sheet $B(\mathbf{t}):=\left(B_{1}(\mathbf{t}), \ldots, B_{d}(\mathbf{t})\right)$, where B_{1}, \ldots, B_{d} are indept. $(N, 1)$ Brownian sheets.

ABM and the Local Dynamics of Brownian Sheet

$(2,1)$ Brownian sheet

ABM and the Local Dynamics of Brownian Sheet

- Let $B\left(t_{1}, t_{2}\right)$ denote 2-parameter Brownian sheet in \mathbf{R}^{d}.

ABM and the Local Dynamics of Brownian Sheet

- Let $B\left(t_{1}, t_{2}\right)$ denote 2-parameter Brownian sheet in \mathbf{R}^{d}.
- $B\left(t_{1}+\epsilon, t_{2}+\delta\right)=\dot{W}(\square)+\dot{W}(\quad)+\dot{W}(\square)+\dot{W}(\square)$

ABM and the Local Dynamics of Brownian Sheet

- Let $B\left(t_{1}, t_{2}\right)$ denote 2-parameter Brownian sheet in \mathbf{R}^{d}.
- $B\left(t_{1}+\epsilon, t_{2}+\delta\right)=\dot{W}(\square)+\dot{W}(\quad)+\dot{W}(\square)+\dot{W}(\square)$

- all four independent

ABM and the Local Dynamics of Brownian Sheet

- Let $B\left(t_{1}, t_{2}\right)$ denote 2-parameter Brownian sheet in \mathbf{R}^{d}.
- $B\left(t_{1}+\epsilon, t_{2}+\delta\right)=\dot{W}(\square)+\dot{W}(\quad)+\dot{W}(\square)+\dot{W}(\square)$

- all four independent
- $X(\epsilon):=\dot{W}(\square)=B M$

ABM and the Local Dynamics of Brownian Sheet

- Let $B\left(t_{1}, t_{2}\right)$ denote 2-parameter Brownian sheet in \mathbf{R}^{d}.
- $B\left(t_{1}+\epsilon, t_{2}+\delta\right)=\dot{W}(\square)+\dot{W}(\quad)+\dot{W}(\square)+\dot{W}(\square)$

- all four independent
- $X(\epsilon):=\dot{W}(\square)=B M$
- $Y(\delta):=\dot{W}(\quad)=B M$

ABM and the Local Dynamics of Brownian Sheet

- Let $B\left(t_{1}, t_{2}\right)$ denote 2-parameter Brownian sheet in \mathbf{R}^{d}.
- $B\left(t_{1}+\epsilon, t_{2}+\delta\right)=\dot{W}(\square)+\dot{W}()+\dot{W}(\square)+\dot{W}(\square)$

- all four independent
- $X(\epsilon):=\dot{W}(\square)=B M$
- $Y(\delta):=\dot{W}()=$.
- $Z(\epsilon, \delta):=W(\square)=\mathrm{BS}$

ABM and the Local Dynamics of Brownian Sheet

$$
B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}^{\dot{W}(\mathbf{(})}=\overbrace{X(\epsilon)+Y(\delta)}^{\dot{W}(\stackrel{\rightharpoonup}{2})+\dot{W}()=A B M}+\overbrace{Z(\epsilon, \delta)}^{\dot{W}([)=\text { BS }}
$$

ABM and the Local Dynamics of Brownian Sheet

$$
\begin{aligned}
B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}^{\dot{W}(\mathbb{(})} & =\overbrace{X(\epsilon)+Y(\delta)}^{\dot{W}(\amalg)+\dot{W}()=A B M}+\overbrace{Z(\epsilon, \delta)}^{\dot{W}(-)=B S} \\
& =A B M+\text { indept } \mathrm{BS}
\end{aligned}
$$

ABM and the Local Dynamics of Brownian Sheet

$$
\begin{aligned}
& \dot{\dot{w}(■) \quad \dot{W}(\amalg)+\dot{w}()=A B M \quad \dot{w}(\square)=B S} \\
& B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}=\overbrace{X(\epsilon)+Y(\delta)}+\overbrace{Z(\epsilon, \delta)} \\
& =A B M+\text { indept } B S \\
& \operatorname{Var}(X(\epsilon)+Y(\delta))=\epsilon+\delta
\end{aligned}
$$

ABM and the Local Dynamics of Brownian Sheet

$$
\begin{aligned}
B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}^{\dot{W}(■)} & =\overbrace{X(\epsilon)+Y(\delta)}^{\dot{W}(\square)+\dot{W}())=\mathrm{ABM}}+\overbrace{Z(\epsilon, \delta)}^{\dot{W}(\square)=\mathrm{BS}} \\
& =\mathrm{ABM}+\text { indept } \mathrm{BS} \\
\operatorname{Var}(X(\epsilon)+Y(\delta)) & =\epsilon+\delta \\
\operatorname{Var} Z(\epsilon, \delta) & =\epsilon \delta
\end{aligned}
$$

ABM and the Local Dynamics of Brownian Sheet

$$
\begin{aligned}
B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}^{\dot{W}\left(\|_{)}\right)} & =\overbrace{X(\epsilon)+Y(\delta)}^{\dot{W}\left(\nabla_{)}+\dot{W}()=\right.\text { ABM }}+\overbrace{Z(\epsilon, \delta)}^{\dot{W}(-)=\text { BS }} \\
& =A B M+\text { indept BS } \\
\operatorname{Var}(X(\epsilon)+Y(\delta)) & =\epsilon+\delta \\
\operatorname{Var} Z(\epsilon, \delta) & =\epsilon \delta \ll \epsilon+\delta \text { for small } \epsilon, \delta
\end{aligned}
$$

ABM and the Local Dynamics of Brownian Sheet

$$
\begin{aligned}
B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}^{\dot{W}(\mathbf{I})} & =\overbrace{X(\epsilon)+Y(\delta)}^{\dot{W}(})+\dot{W}()=\mathrm{ABM} \\
& =\mathrm{ABM}+\overbrace{Z(\epsilon, \delta)}^{\dot{W}(\mathbb{\text { indept }} \mathrm{BS}}) \\
\operatorname{Var}(X(\epsilon)+Y(\delta)) & =\epsilon+\delta \\
\operatorname{Var} Z(\epsilon, \delta) & =\epsilon \delta<\epsilon+\delta \text { for small } \epsilon, \delta \\
B(1+\epsilon, 1+\delta)-B(1,1) & \approx \text { ABM for small } \epsilon, \delta .
\end{aligned}
$$

ABM and the Local Dynamics of Brownian Sheet

$$
\begin{aligned}
B(1+\epsilon, 1+\delta)-\overbrace{B(1,1)}^{\dot{W}(\mathbf{L})} & =\overbrace{X(\epsilon)+Y(\delta)}^{\dot{W}(\boldsymbol{\Pi})+\dot{W}()=\mathrm{ABM}}+\overbrace{Z(\epsilon, \delta)}^{\dot{W}(())=\mathrm{BS}} \\
& =\mathrm{ABM}+\operatorname{indept} \mathrm{BS} \\
\operatorname{Var}(X(\epsilon)+Y(\delta)) & =\epsilon+\delta \\
\operatorname{Var} Z(\epsilon, \delta) & =\epsilon \delta<\epsilon+\delta \text { for small } \epsilon, \delta \\
B(1+\epsilon, 1+\delta)-B(1,1) & \approx \mathrm{ABM} \text { for small } \epsilon, \delta .
\end{aligned}
$$

References: Orey and Pruitt (1973), Kendall (1980), Ehm (1981), Dalang and Walsh (1992; 1993; 1996), Kh. (1995; 1999; 2003), Dalang and Mountford (1996; 1997; 2001), Kh. and Shi (1999), Kh. Xiao (2005), Kh. Xiao, and Wu (2006)

First Application: Contours of Brownian Sheet

Kendall's Theorem

Let $B=(2,1) \mathrm{BS}$; choose and fix $s, t>0$.

First Application: Contours of Brownian Sheet

Kendall's Theorem

Let $B=(2,1) \mathrm{BS}$; choose and fix $s, t>0$.

Theorem (Kendall, 1980)

The connected component of $\{(u, v): B(u, v)=B(s, t)\}$ that contains (s, t) is a.s. $\{(s, t)\}$.

First Application: Contours of Brownian Sheet

Kendall's Theorem

Let $B=(2,1) \mathrm{BS}$; choose and fix $s, t>0$.

Theorem (Kendall, 1980)

The connected component of $\{(u, v): B(u, v)=B(s, t)\}$ that contains (s, t) is a.s. $\{(s, t)\}$.

- "A.e. point in a.e. level-set is totally disconnected from the rest."

First Application: Contours of Brownian Sheet

Kendall's Theorem

Let $B=(2,1) \mathrm{BS}$; choose and fix $s, t>0$.

Theorem (Kendall, 1980)

The connected component of $\{(u, v): B(u, v)=B(s, t)\}$ that contains (s, t) is a.s. $\{(s, t)\}$.

- "A.e. point in a.e. level-set is totally disconnected from the rest."
- WLOG $s=t=1$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C(r):=\left\{(x, y) \in \mathbf{R}^{2}:|x-1| \vee|y-1| \leq r\right\}$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C(r):=\left\{(x, y) \in \mathbf{R}^{2}:|x-1| \vee|y-1| \leq r\right\}$.
- $J(r):=\left\{B(1,1)>\sup _{\partial C(r)} B\right\}$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C(r):=\left\{(x, y) \in \mathbf{R}^{2}:|x-1| \vee|y-1| \leq r\right\}$.
- $J(r):=\left\{B(1,1)>\sup _{\partial C(r)} B\right\}$.
- Goal: $\liminf _{r \downarrow 0} P(J(r))>0$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C(r):=\left\{(x, y) \in \mathbf{R}^{2}:|x-1| \vee|y-1| \leq r\right\}$.
- $J(r):=\left\{B(1,1)>\sup _{\partial C(r)} B\right\}$.
- Goal: $\liminf _{r \downarrow 0} P(J(r))>0$.
- 0-1 law (Orey and Pruitt, 1973): $J(r)$ infinitely often $r \downarrow 0$ a.s.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C(r):=\left\{(x, y) \in \mathbf{R}^{2}:|x-1| \vee|y-1| \leq r\right\}$.
- $J(r):=\left\{B(1,1)>\sup _{\partial C(r)} B\right\}$.
- Goal: $\liminf _{r \downarrow 0} P(J(r))>0$.
- 0-1 law (Orey and Pruitt, 1973): $J(r)$ infinitely often $r \downarrow 0$ a.s.
- I will sketch the proof of a slightly weaker variant. [In fact it is equivalent.]

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C^{\prime}(r):=(\{1+r\} \times[1, r]) \cup([1, r] \times\{1+r\})$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C^{\prime}(r):=(\{1+r\} \times[1, r]) \cup([1, r] \times\{1+r\})$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued
$(1,1)$

- $C^{\prime}(r):=(\{1+r\} \times[1, r]) \cup([1, r] \times\{1+r\})$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C^{\prime}(r):=(\{1+r\} \times[1, r]) \cup([1, r] \times\{1+r\})$.
- $J^{\prime}(r):=\left\{B(1,1)>\sup _{C^{\prime}(r)} B\right\}$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C^{\prime}(r):=(\{1+r\} \times[1, r]) \cup([1, r] \times\{1+r\})$.
- $J^{\prime}(r):=\left\{B(1,1)>\sup _{C^{\prime}(r)} B\right\}$.
- Goal: $\lim _{r \downarrow 0} P\left(J^{\prime}(r)\right)>0$.

First Application: Contours of Brownian Sheet

Kendall's Theorem, Continued

- $C^{\prime}(r):=(\{1+r\} \times[1, r]) \cup([1, r] \times\{1+r\})$.
- $J^{\prime}(r):=\left\{B(1,1)>\sup _{C^{\prime}(r)} B\right\}$.
- Goal: $\lim _{r \downarrow 0} P\left(J^{\prime}(r)\right)>0$.
- Local dynamics + scaling \Rightarrow

$$
P\left(J^{\prime}(r)\right) \rightarrow P\left\{X(1)+Y(1)>\sup _{(u, v) \in C^{\prime}(1)}(X(u)+Y(v))\right\}>0
$$

The Zero-Set of B

Kendall's theorem holds for "most" points in the zero-set too. Can you see it?

The Zero-Set of B

Kendall's theorem holds for "most" points in the zero-set too. Can you see it?

(Kh., Révész, and Shi, 2005)

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem
X and $Y=$ independent BMs in \mathbf{R}^{d}. Then: "Two BM paths can cross only in dim ≤ 3."

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem
X and $Y=$ independent BMs in \mathbf{R}^{d}. Then: "Two BM paths can cross only in dim ≤ 3."

Theorem (Dvoretzky, Erdős, and Kakutani, 1950)
TFAE:

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem
X and $Y=$ independent BMs in \mathbf{R}^{d}. Then: "Two BM paths can cross only in dim ≤ 3."

Theorem (Dvoretzky, Erdős, and Kakutani, 1950)

TFAE:
$X((0, \infty)) \cap Y((0, \infty)) \neq \varnothing$;

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem
X and $Y=$ independent BMs in \mathbf{R}^{d}. Then: "Two BM paths can cross only in dim ≤ 3."

Theorem (Dvoretzky, Erdős, and Kakutani, 1950)

TFAE:
$X((0, \infty)) \cap Y((0, \infty)) \neq \varnothing$;

- $d \leq 3$.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Equivalently, TFAE:

$$
\begin{equation*}
X([1,2]) \cap Y([1,2]) \neq \varnothing \quad \Leftrightarrow \quad d \leq 3 . \tag{1}
\end{equation*}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Equivalently, TFAE:

$$
\begin{equation*}
X([1,2]) \cap Y([1,2]) \neq \varnothing \quad \Leftrightarrow \quad d \leq 3 . \tag{1}
\end{equation*}
$$

There are now several proofs; most involve potential theory and/or PDEs. I will describe a relatively recent, very elementary, proof that is based on ABM (Kh., 2003).

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Equivalently, TFAE:

$$
\begin{equation*}
X([1,2]) \cap Y([1,2]) \neq \varnothing \quad \Leftrightarrow \quad d \leq 3 . \tag{1}
\end{equation*}
$$

There are now several proofs; most involve potential theory and/or PDEs. I will describe a relatively recent, very elementary, proof that is based on ABM (Kh., 2003). Key idea: $X([1,2]) \cap Y([1,2]) \neq \varnothing \Leftrightarrow$

$$
\overbrace{X(s)-Y(t)}^{A(s, t)=A B M}=0 \text { for some }(s, t) \in[1,2]^{2},
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Equivalently, TFAE:

$$
\begin{equation*}
X([1,2]) \cap Y([1,2]) \neq \varnothing \quad \Leftrightarrow \quad d \leq 3 . \tag{1}
\end{equation*}
$$

There are now several proofs; most involve potential theory and/or PDEs. I will describe a relatively recent, very elementary, proof that is based on ABM (Kh., 2003). Key idea: $X([1,2]) \cap Y([1,2]) \neq \varnothing \Leftrightarrow$

$$
\overbrace{X(s)-Y(t)}^{A(s, t)=A B M}=0 \text { for some }(s, t) \in[1,2]^{2},
$$

\Leftrightarrow

$$
0 \in A\left([1,2]^{2}\right)
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \leq 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\}=\left\{(s, t) \in[1,2]^{2}: X(s)=Y(t)\right\}$. Therefore, $0 \in A\left([1,2]^{2}\right)$ a.s.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \leq 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\}=\left\{(s, t) \in[1,2]^{2}: X(s)=Y(t)\right\}$. Therefore, $0 \in A\left([1,2]^{2}\right)$ a.s.
- We prove that if $d \geq 5$ then $A(s, t)=X(s)-Y(t) \neq 0$ for all $s, t \in[1,2]$. This proof can be pushed through when $d=4$ but needs more care; see the original paper (Kh., Expos. Math., 2003).

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \leq 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\}=\left\{(s, t) \in[1,2]^{2}: X(s)=Y(t)\right\}$. Therefore, $0 \in A\left([1,2]^{2}\right)$ a.s.
- We prove that if $d \geq 5$ then $A(s, t)=X(s)-Y(t) \neq 0$ for all $s, t \in[1,2]$. This proof can be pushed through when $d=4$ but needs more care; see the original paper (Kh., Expos. Math., 2003).

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

- When $d \leq 3$ one can directly construct a "local time." This is an a.s.-nontrivial random measure on the set $A^{-1}\{0\}=\left\{(s, t) \in[1,2]^{2}: X(s)=Y(t)\right\}$. Therefore, $0 \in A\left([1,2]^{2}\right)$ a.s.
- We prove that if $d \geq 5$ then $A(s, t)=X(s)-Y(t) \neq 0$ for all $s, t \in[1,2]$. This proof can be pushed through when $d=4$ but needs more care; see the original paper (Kh., Expos. Math., 2003).

Exercise

Prove that $A\left([1,2]^{2}\right)=A(1,1)+\bar{A}\left([0,1]^{2}\right)$, where \bar{A} is a copy of A, independent of $A(1,1)$, and $a+S=\{a+s: s \in S\}$ for all $a \in \mathbf{R}^{d}$ and $S \subset \mathbf{R}^{d}$.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. By the Exercise,

$$
P\left\{0 \in A\left([1,2]^{2}\right)\right\}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. By the Exercise,

$$
P\left\{0 \in A\left([1,2]^{2}\right)\right\}=\int_{\mathbf{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} \underbrace{P\{A(1,1) \in-d x\}}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. By the Exercise,

$$
P\left\{0 \in A\left([1,2]^{2}\right)\right\}=\int_{\mathbf{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} \underbrace{P\{A(1,1) \in-d x\}}_{=\varphi(x) d x, \varphi>0}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. By the Exercise,

$$
\begin{aligned}
P\left\{0 \in A\left([1,2]^{2}\right)\right\} & =\int_{\mathbf{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} \underbrace{P\{A(1,1) \in-d x\}}_{=\varphi(x) d x, \varphi>0} \\
& \asymp \int_{\mathbf{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} d x
\end{aligned}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. By the Exercise,

$$
\begin{aligned}
P\left\{0 \in A\left([1,2]^{2}\right)\right\} & =\int_{\mathbf{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} \underbrace{P\{A(1,1) \in-d x\}}_{=\varphi(x) d x, \varphi>0} \\
& \asymp \int_{\mathbf{R}^{d}} P\left\{x \in A\left([0,1]^{2}\right)\right\} d x \\
& =E\left\{m\left(A\left([0,1]^{2}\right)\right)\right\} .
\end{aligned}
$$

(Lévy, 1940; Kahane, 1983) " $a \asymp b$ " means " $a>0 \Leftrightarrow b>0$."

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. Goal: $\operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. Goal: $\operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$.

By Brownian scaling,
$A\left([0,2]^{2}\right)$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. Goal: $\operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$.

By Brownian scaling,
$\underbrace{A\left([0,2]^{2}\right)}_{\sim X(2 s)-Y(2 t)}$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. Goal: $\operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$.

By Brownian scaling,
$\underbrace{A\left([0,2]^{2}\right)}_{\sim X(2 s)-Y(2 t)} \stackrel{\mathscr{O}}{=} \sqrt{2} A\left([0,1]^{2}\right)$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. Goal: $\operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$.

By Brownian scaling,

$$
\begin{aligned}
& \underbrace{A\left([0,2]^{2}\right)}_{\sim X(2 s)-Y(2 t)} \stackrel{\mathscr{O}}{=} \sqrt{2} A\left([0,1]^{2}\right) \\
& \quad \Leftrightarrow m\left(A\left([0,2]^{2}\right) \stackrel{\mathscr{O}}{=} 2^{d / 2} m\left(A[0,1]^{2}\right)\right.
\end{aligned}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}.
Goal: $\operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$.

By Brownian scaling,

$$
\begin{aligned}
& \underbrace{A\left([0,2]^{2}\right)}_{\sim X(2 s)-Y(2 t)} \stackrel{\mathscr{D}}{=} \sqrt{2} A\left([0,1]^{2}\right) \\
& \Leftrightarrow m\left(A\left([0,2]^{2}\right) \stackrel{\mathscr{O}}{=} 2^{d / 2} m\left(A[0,1]^{2}\right)\right. \\
& \Leftrightarrow E m\left(A\left([0,2]^{2}\right)=2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right.\right.
\end{aligned}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdás-Kakutani Theorem, Continued
Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}. We know: $\operatorname{Em}\left(A\left([0,2]^{2}\right)=2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right.\right.$.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}.
We know: $\operatorname{Em}\left(A\left([0,2]^{2}\right)=2^{d / 2} \operatorname{Em}\left(A\left([0,1]^{2}\right)\right.\right.$.
We want: $\operatorname{Em}\left(A\left([0,1]^{2}\right)=0\right.$.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}.
We know: $\operatorname{Em}\left(A\left([0,2]^{2}\right)=2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right.\right.$.
We want: $\operatorname{Em}\left(A\left([0,1]^{2}\right)=0\right.$.
Note that

$$
\begin{aligned}
A\left([0,2]^{2}\right)=A & \left([0,1]^{2}\right) \cup A([0,1] \times[1,2]) \\
& \cup A([1,2] \times[0,1]) \cup A\left([1,2]^{2}\right) .
\end{aligned}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued
Let $A(s, t):=X(s)-Y(t), d \geq 5 ; m:=$ Leb. meas. on \mathbf{R}^{d}.
We know: $\operatorname{Em}\left(A\left([0,2]^{2}\right)=2^{d / 2} \operatorname{Em}\left(A\left([0,1]^{2}\right)\right.\right.$.
We want: $\operatorname{Em}\left(A\left([0,1]^{2}\right)=0\right.$.
Note that

$$
\begin{aligned}
A\left([0,2]^{2}\right)= & A\left([0,1]^{2}\right) \cup A([0,1] \times[1,2]) \\
& \cup A([1,2] \times[0,1]) \cup A\left([1,2]^{2}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
m\left(A\left([0,2]^{2}\right)\right) \leq m & \left(A\left([0,1]^{2}\right)\right)+m(A([0,1] \times[1,2])) \\
& +m(A([1,2] \times[0,1]))+m\left(A\left([1,2]^{2}\right)\right) .
\end{aligned}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

We know:

$$
\begin{aligned}
m\left(A\left([0,2]^{2}\right)\right) \leq m & \left(A\left([0,1]^{2}\right)\right)+m(A([0,1] \times[1,2])) \\
& +m(A([1,2] \times[0,1]))+m\left(A\left([1,2]^{2}\right)\right) .
\end{aligned}
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

We know:

$$
\begin{aligned}
m\left(A\left([0,2]^{2}\right)\right) \leq m & \left(A\left([0,1]^{2}\right)\right)+m(A([0,1] \times[1,2])) \\
& +m(A([1,2] \times[0,1]))+m\left(A\left([1,2]^{2}\right)\right)
\end{aligned}
$$

By the Exercise,

$$
\Rightarrow m\left(A\left([1,2]^{2}\right)\right) \stackrel{\mathscr{D}}{=} m\left(A\left([0,1]^{2}\right)\right)
$$

Same with the other terms in the first display.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdós-Kakutani Theorem, Continued

Thus,

$$
\operatorname{Em}\left(A\left([0,2]^{2}\right)\right) \leq 4 \operatorname{Em}\left(A\left([0,1]^{2}\right)\right)
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdb̋s-Kakutani Theorem, Continued

Thus,

$$
\operatorname{Em}\left(A\left([0,2]^{2}\right)\right) \leq 4 \operatorname{Em}\left(A\left([0,1]^{2}\right)\right)
$$

\Rightarrow

$$
2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right)
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$
\operatorname{Em}\left(A\left([0,2]^{2}\right)\right) \leq 4 \operatorname{Em}\left(A\left([0,1]^{2}\right)\right)
$$

\Rightarrow

$$
2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right) \leq 4 E m\left(A\left([0,1]^{2}\right)\right)
$$

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$
\operatorname{Em}\left(A\left([0,2]^{2}\right)\right) \leq 4 \operatorname{Em}\left(A\left([0,1]^{2}\right)\right)
$$

\Rightarrow

$$
2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right) \leq 4 E m\left(A\left([0,1]^{2}\right)\right) .
$$

$d \geq 5 \Rightarrow E m\left(A\left([0,1]^{2}\right)\right)=0$, as desired.

Second Application: Intersections of Brownian Motions

The Dvoretzky-Erdős-Kakutani Theorem, Continued

Thus,

$$
\operatorname{Em}\left(A\left([0,2]^{2}\right)\right) \leq 4 \operatorname{Em}\left(A\left([0,1]^{2}\right)\right)
$$

\Rightarrow

$$
2^{d / 2} E m\left(A\left([0,1]^{2}\right)\right) \leq 4 E m\left(A\left([0,1]^{2}\right)\right) .
$$

$d \geq 5 \Rightarrow \operatorname{Em}\left(A\left([0,1]^{2}\right)\right)=0$, as desired.

Exercise

Prove that $\operatorname{Em}\left(A\left([0,1]^{2}\right)<\infty\right.$.

In Memory of Ron Pyke (1931-2005)

