LEAST-SQUARES ESTIMATORS IN LINEAR MODELS

DAVAR KHOSHNEVISAN

1. The General Linear Model

Let Y be the response variable and X_{1}, \ldots, X_{m} be the explanatory variables. The following is the linear model of interest to us:

$$
\begin{equation*}
Y=\beta_{1} X_{1}+\cdots+\beta_{m} X_{m}+\varepsilon, \tag{1}
\end{equation*}
$$

where $\beta_{1}, \ldots, \beta_{m}$ are unknown parameters, and ε is "noise."
Now we take a sample Y_{1}, \ldots, Y_{n}. The linear model becomes

$$
\begin{equation*}
Y_{i}=\beta_{1} X_{i 1}+\cdots+\beta_{m} X_{i m}+\varepsilon_{i} \quad i=1, \ldots n . \tag{2}
\end{equation*}
$$

Define

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
X_{11} & \cdots & X_{1 m} \tag{3}\\
\vdots & \ddots & \vdots \\
X_{n 1} & \cdots & X_{n m}
\end{array}\right) \quad \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)
$$

Note that

$$
\boldsymbol{X} \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{1} X_{11}+\cdots+\beta_{m} X_{1 m} \tag{4}\\
\vdots \\
\beta_{m} X_{n 1}+\cdots+\beta_{m} X_{n m}
\end{array}\right) .
$$

Therefore, the linear model (2) can be written more neatly as

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \tag{5}
\end{equation*}
$$

where $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\prime}$. To be sure, \boldsymbol{Y} is $n \times 1, \boldsymbol{X}$ is $n \times m, \boldsymbol{\beta}$ is $m \times 1$, and ε is $n \times 1$.

The matrix \boldsymbol{X} is treated as if it were non-random; it is called the "design matrix" or the "regression matrix."

2. Least Squares

Let $\boldsymbol{\theta}=\boldsymbol{X} \boldsymbol{\beta}$, and minimize, over all $\boldsymbol{\beta}$, the following quantity:

$$
\begin{equation*}
\|\boldsymbol{Y}-\boldsymbol{\theta}\|^{2}=(\boldsymbol{Y}-\boldsymbol{\theta})^{\prime}(\boldsymbol{Y}-\boldsymbol{\theta})=\boldsymbol{\varepsilon}^{\prime} \boldsymbol{\varepsilon}=\sum_{i=1}^{n} \varepsilon_{i}^{2} . \tag{6}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\boldsymbol{\theta}=\beta_{1} \boldsymbol{X}_{1}+\cdots+\beta_{m} \boldsymbol{X}_{m}, \tag{7}
\end{equation*}
$$

[^0]

Figure 1. The projection $\widehat{\boldsymbol{\theta}}$ of \boldsymbol{Y} onto the subspace $\mathscr{C}(\boldsymbol{X})$
where \boldsymbol{X}_{i} denotes the i th column of the matrix \boldsymbol{X}. That is, $\boldsymbol{\theta} \in \mathscr{C}(\boldsymbol{X})$-the column space of \boldsymbol{X}. So our problem has become: Minimize $\|\boldsymbol{Y}-\boldsymbol{\theta}\|$ over all $\boldsymbol{\theta} \in \mathscr{C}(\boldsymbol{X})$.

A look at Figure 1 will convince you that the closest point $\widehat{\boldsymbol{\theta}} \in \mathscr{C}(\boldsymbol{X})$ is the projection of \boldsymbol{Y} onto the subspace $\mathscr{C}(\boldsymbol{X})$. To find a formula for this projection we first work more generally.

3. Some Geometry

Let S be a subspace of \boldsymbol{R}^{n}. Recall that this means that:
(1) If $x, y \in S$ and $\alpha, \beta \in \boldsymbol{R}$, then $\alpha x+\beta y \in S$; and
(2) $\mathbf{0} \in S$.

Suppose $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ forms a basis for S; that is, any $x \in S$ can be represented as a linear combination of the \boldsymbol{v}_{i} 's. Define \boldsymbol{V} to be the matrix whose i th column is \boldsymbol{v}_{i}; that is,

$$
\begin{equation*}
\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right] . \tag{8}
\end{equation*}
$$

Then any $\boldsymbol{x} \in \boldsymbol{R}^{n}$ is orthogonal to S if and only if \boldsymbol{x} is orthogonal to every \boldsymbol{v}_{i}; that is, $\boldsymbol{x}^{\prime} \boldsymbol{v}_{i}=0$. Equivalently, \boldsymbol{x} is orthogonal to S if and only if $\boldsymbol{x}^{\prime} \boldsymbol{V}=\mathbf{0}$. In summary,

$$
\begin{equation*}
\boldsymbol{x} \perp S \Longleftrightarrow \boldsymbol{x}^{\prime} \boldsymbol{V}=\mathbf{0} \tag{9}
\end{equation*}
$$

Now the question is: If $\boldsymbol{x} \in \boldsymbol{R}^{n}$ then how can we find its projection \boldsymbol{u} onto S ? Consider Figure 3. From this it follwos that \boldsymbol{u} has two properties.
(1) First of all, \boldsymbol{u} is perpendicular S, so that $(\boldsymbol{u}-\boldsymbol{x})^{\prime} \boldsymbol{V}=0$. Equivalently, $\boldsymbol{u}^{\prime} \boldsymbol{V}=\boldsymbol{x}^{\prime} \boldsymbol{V}$.

(2) Secondly, $\boldsymbol{u} \in S$, so there exist $\alpha_{1}, \ldots, \alpha_{k} \in \boldsymbol{R}^{k}$ such that $\boldsymbol{u}=$ $\alpha_{1} \boldsymbol{v}_{1}+\cdots+\alpha_{k} \boldsymbol{v}_{k}$. Equivalently,

$$
\begin{equation*}
u=V \boldsymbol{\alpha} \tag{10}
\end{equation*}
$$

Plug (2) into (1) to find that $\boldsymbol{\alpha}^{\prime} \boldsymbol{V}^{\prime} \boldsymbol{V}=\boldsymbol{x}^{\prime} \boldsymbol{V}$. Therefore, if $\boldsymbol{V}^{\prime} \boldsymbol{V}$ is invertible, then $\boldsymbol{\alpha}^{\prime}=\left(\boldsymbol{x}^{\prime} \boldsymbol{V}\right)\left(\boldsymbol{V}^{\prime} \boldsymbol{V}\right)^{-1}$. Equivalently,

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{V}\left(\boldsymbol{V}^{\prime} \boldsymbol{V}\right)^{-1} \boldsymbol{V} \boldsymbol{x} \tag{11}
\end{equation*}
$$

Define

$$
\begin{equation*}
\mathbf{P}_{S}=\boldsymbol{V}\left(\boldsymbol{V}^{\prime} \boldsymbol{V}\right)^{-1} \boldsymbol{V}^{\prime} \tag{12}
\end{equation*}
$$

Then, $\boldsymbol{u}=\mathbf{P}_{S} \boldsymbol{x}$ is the projection of \boldsymbol{x} onto the subspace S.
Note that \mathbf{P}_{S} is idempotent (i.e., $\left.\mathbf{P}_{S}^{2}=\mathbf{P}_{S}\right)$ and symmetric $\left(\mathbf{P}_{S}=\mathbf{P}_{S}^{\prime}\right)$.

4. Application to Linear Models

Let $S=\mathscr{C}(\boldsymbol{X})$ be the subspace spanned by the columns of \boldsymbol{X}-this is the column space of \boldsymbol{X}. Then, provided that $\boldsymbol{X}^{\prime} \boldsymbol{X}$ is invertible,

$$
\begin{equation*}
\mathbf{P}_{\mathscr{C}(\boldsymbol{X})}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \tag{13}
\end{equation*}
$$

Therefore, the LSE $\widehat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ is given by

$$
\begin{equation*}
\widehat{\boldsymbol{\theta}}=\mathbf{P}_{\mathscr{C}(\boldsymbol{X})} \boldsymbol{Y}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y} \tag{14}
\end{equation*}
$$

This is equal to $\boldsymbol{X}^{\prime} \widehat{\boldsymbol{\beta}}$. So $\boldsymbol{X}^{\prime} \boldsymbol{X} \widehat{\boldsymbol{\beta}}=\boldsymbol{X}^{\prime} \boldsymbol{Y}$. Equivalently,

$$
\begin{equation*}
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{Y} \tag{15}
\end{equation*}
$$

[^0]: Date: August 30, 2004.

