A Probability Primer
 Math 6070, Spring 2006

Davar Khoshnevisan
University of Utah
January 30, 2006

Contents

1 Probabilities 2
2 Distribution Functions 2
2.1 Discrete Random Variables 3
2.2 Continuous Random Variables 3
3 Expectations 4
3.1 Moments 5
3.2 A (Very) Partial List of Discrete Distributions 6
3.3 A (Very) Partial List of Continuous Distributions 7
4 Random Vectors 8
4.1 Distribution Functions 8
4.2 Expectations 8
4.3 Multivariate Normals 9
5 Independence 10
6 Convergence Criteria 10
6.1 Convergence in Distribution 11
6.2 Convergence in Probability 11
7 Moment Generating Functions 12
7.1 Some Examples 12
7.2 Properties 13
8 Characteristic Functions 14
8.1 Some Examples 14
9 Classical Limit Theorems 15
9.1 The Central Limit Theorem 15
9.2 (Weak) Law of Large Numbers 16
9.3 Variance-Stabilization 17
9.4 Refinements to the CLT 17

1 Probabilities

Let \mathcal{F} be a collection of sets. A probability P is a function, on \mathcal{F}, that has the following properties:

1. $\mathrm{P}(\varnothing)=0$ and $\mathrm{P}(\Omega)=1$;
2. If $A \subset B$ then $\mathrm{P}(A) \leq \mathrm{P}(B)$;
3. (Finite additivity). If A and B are disjoint then $\mathrm{P}(A \cup B)=\mathrm{P}(A)+P(B)$;
4. For all $A, B \in \mathcal{F}, \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$;
5. (Countable Additivity). If $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are disjoint, then $\mathrm{P}\left(\cup_{i=1}^{\infty} A_{i}\right)=$ $\sum_{i=1}^{\infty} \mathrm{P}\left(A_{i}\right)$.

2 Distribution Functions

Let X denote a random variable. It distribution function is the function

$$
\begin{equation*}
F(x)=\mathrm{P}\{X \leq x\} \tag{1}
\end{equation*}
$$

defined for all real numbers x. It has the following properties:

1. $\lim _{x \rightarrow-\infty} F(x)=0$;
2. $\lim _{x \rightarrow \infty} F(x)=1$;
3. F is right-continuous; i.e., $\lim _{x \downarrow y} F(x)=F(y)$, for all real y;
4. F has left-limits; i.e., $F(y-):=\lim _{x \uparrow y} F(x)$ exists for all real y. In fact, $F(y-)=\mathrm{P}\{X<y\} ;$
5. F is non-decreasing; i.e., $F(x) \leq F(y)$ whenever $x \leq y$.

It is possible to prove that (1)-(5) are always valid for all what random variables X. There is also a converse. If F is a function that satisfies $(1)-(5)$, then there exists a random variable X whose distribution function is F.

2.1 Discrete Random Variables

We will mostly study two classes of random variables: discrete, and continuous. We say that X is a discrete random variable if its possible values form a countable or finite set. In other words, X is discrete if and only if there exist x_{1}, x_{2}, \ldots such that: $\mathrm{P}\left\{X=x_{i}\right.$ for some $\left.i \geq 1\right\}=1$. In this case, we are interested in the mass function of X, defined as the function p such that

$$
\begin{equation*}
p\left(x_{i}\right)=\mathrm{P}\left\{X=x_{i}\right\} \quad(i \geq 1) . \tag{2}
\end{equation*}
$$

Implicitly, this means that $p(x)=0$ if $x \neq x_{i}$ for some i. By countable additivity, $\sum_{i=1}^{\infty} p\left(x_{i}\right)=\sum_{x} p(x)=1$. By countable additivity, the distribution function of F can be computed via the following: For all x,

$$
\begin{equation*}
F(x)=\sum_{y \leq x} p(y) \tag{3}
\end{equation*}
$$

Occasionally, there are several random variables around and we identify the mass function of X by p_{X} to make the structure clear.

2.2 Continuous Random Variables

A random variable is said to be (absolutely) continuous if there exists a nonnegative function f such that $\mathrm{P}\{X \in A\}=\int_{A} f(x) d x$ for all A. The function f is said to be the density function of X, and has the properties that:

1. $f(x) \geq 0$ for all x;
2. $\int_{-\infty}^{\infty} f(x) d x=1$.

The distribution function of F can be computed via the following: For all x,

$$
\begin{equation*}
F(x)=\int_{\infty}^{x} f(y) d y \tag{4}
\end{equation*}
$$

By the fundamental theorem of calculus,

$$
\begin{equation*}
\frac{d F}{d x}=f \tag{5}
\end{equation*}
$$

Occasionally, there are several random variables around and we identify the density function of X by f_{X} to make the structure clear.

Continuous random variables have the peculiar property that $\mathrm{P}\{X=x\}=0$ for all x. Equivalently, $F(x)=F(x-)$, so that F is continuous (not just rightcontinuous with left-limits).

3 Expectations

The (mathematical) expectation of a discrete random variable X is defined as

$$
\begin{equation*}
\mathrm{E} X=\sum_{x} x p(x) \tag{6}
\end{equation*}
$$

where p is the mass function. Of course, this is well defined only if $\sum_{x}|x| p(x)<$ ∞. In this case, we say that X is integrable. Occasionally, $\mathrm{E} X$ is also called the moment, first moment, or the mean of X.

Proposition 1 For all functions g,

$$
\begin{equation*}
\mathrm{E} g(X)=\sum_{x} g(x) p(x) \tag{7}
\end{equation*}
$$

provided that $g(X)$ is integrable, and/or $\sum_{x}|g(x)| p(x)<\infty$.
This is not a trivial result if you read things carefully, which you should. Indeed, the definition of expectation implies that

$$
\begin{equation*}
\mathrm{E} g(X)=\sum_{y} y \mathrm{P}\{g(X)=y\}=\sum_{y} y p_{g(X)}(y) \tag{8}
\end{equation*}
$$

The (mathematical) expectation of a continuous random variable X is defined as

$$
\begin{equation*}
\mathrm{E} X=\int_{-\infty}^{\infty} x f(x) d x \tag{9}
\end{equation*}
$$

where f is the density function. This is well defined when $\int_{-\infty}^{\infty}|x| f(x) d x$ is finite. In this case, we say that X is integrable. Some times, we write $\mathrm{E}[X]$ and/or $\mathrm{E}\{X\}$ in place of $\mathrm{E} X$.

Proposition 2 For all functions g,

$$
\begin{equation*}
\mathrm{E} g(X)=\int_{-\infty}^{\infty} g(x) f(x) d x \tag{10}
\end{equation*}
$$

provided that $g(X)$ is integrable, and/or $\int_{-\infty}^{\infty}|g(x)| f(x) d x<\infty$.
As was the case in the discrete setting, this is not a trivial result if you read things carefully. Indeed, the definition of expectation implies that

$$
\begin{equation*}
\mathrm{E} g(X)=\int_{-\infty}^{\infty} y f_{g(X)}(y) d y \tag{11}
\end{equation*}
$$

Here is a result that is sometimes useful, and not so well-known to students of probability:

Proposition 3 Let X be a non-negative integrable random variable with distribution function F. Then,

$$
\begin{equation*}
\mathrm{E} X=\int_{0}^{\infty}(1-F(x)) d x \tag{12}
\end{equation*}
$$

Proof. Let us prove it for continuous random variables. The discrete case is proved similarly. We have

$$
\begin{equation*}
\int_{0}^{\infty}(1-F(x)) d x=\int_{0}^{\infty} \mathrm{P}\{X>x\} d x=\int_{0}^{\infty}\left(\int_{x}^{\infty} f(y) d y\right) d x \tag{13}
\end{equation*}
$$

Change the order of integration to find that

$$
\begin{equation*}
\int_{0}^{\infty}(1-F(x)) d x=\int_{0}^{\infty}\left(\int_{0}^{y} d x\right) f(y) d y=\int_{0}^{\infty} y f(y) d y \tag{14}
\end{equation*}
$$

Because $f(y)=0$ for all $y<0$, this proves the result.
It is possible to prove that for all integrable random variables X and Y, and for all reals a and b,

$$
\begin{equation*}
\mathrm{E}[a X+b Y]=a \mathrm{E} X+b \mathrm{E} Y \tag{15}
\end{equation*}
$$

This justifies the buzz-phrase, "expectation is a linear operation."

3.1 Moments

Note that any random variable X is integrable if and only if $\mathrm{E}|X|<\infty$. For all $r>0$, the r th moment of X is $\mathrm{E}\left\{X^{r}\right\}$, provided that the r th absolute moment $\mathrm{E}\left\{|X|^{r}\right\}$ is finite.

In the discrete case,

$$
\begin{equation*}
\mathrm{E}\left[X^{r}\right]=\sum_{x} x^{r} p(x) \tag{16}
\end{equation*}
$$

and in the continuous case,

$$
\begin{equation*}
\mathrm{E}\left[X^{r}\right]=\int_{-\infty}^{\infty} x^{r} f(X) d x \tag{17}
\end{equation*}
$$

When it makes sense, we can consider negative moments as well. For instance, if $X \geq 0$, then $\mathrm{E}\left[X^{r}\right]$ makes sense for $r<0$ as well, but it may be infinite.

Proposition 4 If $r>0$ and X is a non-negative random variable with $\mathrm{E}\left[X^{r}\right]<$ ∞, then

$$
\begin{equation*}
\mathrm{E}\left[X^{r}\right]=r \int_{0}^{\infty} x^{r-1}(1-F(x)) d x \tag{18}
\end{equation*}
$$

Proof. When $r=1$ this is Proposition 3. The proof works similarly. For instance, when X is continuous,

$$
\begin{align*}
\mathrm{E}\left[X^{r}\right] & =\int_{0}^{\infty} x^{r} f(x) d x=\int_{0}^{\infty}\left(r \int_{0}^{x} y^{r-1} d y\right) f(x) d x \\
& =r \int_{0}^{\infty} y^{r-1}\left(\int_{y}^{\infty} f(x) d x\right) d y=r \int_{0}^{\infty} y^{r-1} \mathrm{P}\{X>y\} d y \tag{19}
\end{align*}
$$

This verifies the proposition in the continuous case.
A quantity of interest to us is the variance of X. If is defined as

$$
\begin{equation*}
\operatorname{Var} X=\mathrm{E}\left[(X-\mathrm{E} X)^{2}\right] \tag{20}
\end{equation*}
$$

and is equal to

$$
\begin{equation*}
\operatorname{Var} X=\mathrm{E}\left[X^{2}\right]-(\mathrm{E} X)^{2} \tag{21}
\end{equation*}
$$

Variance is finite if and only if X has two finite moments.

3.2 A (Very) Partial List of Discrete Distributions

You are expected to be familar with the following discrete distributions:

1. Binomial (n, p). Here, $0<p<1$ and $n=1,2, \ldots$ are fixed, and the mass function is

$$
\begin{equation*}
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \text { if } x=0, \ldots, n \tag{22}
\end{equation*}
$$

- $\mathrm{E} X=n p$ and $\operatorname{Var} X=n p(1-p)$.
- The binomial $(1, p)$ distribution is also known as Bernoulli (p).

2. Poisson (λ). Here, $\lambda>0$ is fixed, and the mass function is:

$$
\begin{equation*}
p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad x=0,1,2, \ldots \tag{23}
\end{equation*}
$$

- $\mathrm{E} X=\lambda$ and $\operatorname{Var} X=\lambda$.

3. Negative binomial (n, p). Here, $0<p<1$ and $n=1,2, \ldots$ are fixed, and the mass function is:

$$
\begin{equation*}
p(x)=\binom{x-1}{n-1} p^{n}(1-p)^{x-n} \quad x=n, n+1, \ldots \tag{24}
\end{equation*}
$$

- $\mathrm{E} X=n / p$ and $\operatorname{Var} X=n(1-p) / p^{2}$.

3.3 A (Very) Partial List of Continuous Distributions

You are expected to be familar with the following continuous distributions:

1. Uniform (a, b). Here,$-\infty<a<b<\infty$ are fixed, and the density function is

$$
\begin{equation*}
f(x)=\frac{1}{b-a} \quad \text { if } a \leq x \leq b \tag{25}
\end{equation*}
$$

- $\mathrm{E} X=(a+b) / 2$ and $\operatorname{Var} X=(b-a)^{2} / 12$.

2. Gamma (α, β). Here, $\alpha, \beta>0$ are fixed, and the density function is

$$
\begin{equation*}
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \quad-\infty<x<\infty \tag{26}
\end{equation*}
$$

Here, $\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$ is the (Euler) gamma function. It is defined for all $\alpha>0$, and has the property that $\Gamma(1+\alpha)=\alpha \Gamma(\alpha)$. Also, $\Gamma(1+n)=$ n ! for all integers $n \geq 0$, whereas $\Gamma(1 / 2)=\sqrt{\pi}$.

- $\mathrm{E} X=\alpha / \beta$ and $\operatorname{Var} X=\alpha / \beta^{2}$.
- Gamma $(1, \beta)$ is also known as $\operatorname{Exp}(\beta)$. [The Exponential distribution.]
- When $n \geq 1$ is an integer, $\operatorname{Gamma}(n / 2,1 / 2)$ is also known as $\chi^{2}(n)$. [The chi-squared distribution with n degrees of freedom.]

3. $N\left(\mu, \sigma^{2}\right)$. [The normal distribution] Here, $-\infty<\mu<\infty$ and $\sigma>0$ are fixed, and the density function is:

$$
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \quad-\infty<x<\infty \tag{27}
\end{equation*}
$$

- $\mathrm{E} X=\mu$ and $\operatorname{Var} X=\sigma^{2}$.
- $N(0,1)$ is called the standard normal distribution.
- We have the distributional identity, $\mu+\sigma N(0,1)=N\left(\mu, \sigma^{2}\right)$. Equivalently,

$$
\begin{equation*}
\frac{N\left(\mu, \sigma^{2}\right)-\mu}{\sigma}=N(0,1) \tag{28}
\end{equation*}
$$

- The distribution function of a $N(0,1)$ is an important object, and is always denoted by Φ. That is, for all $-\infty<a<\infty$,

$$
\begin{equation*}
\Phi(a):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{a} e^{-x^{2} / 2} d x \tag{29}
\end{equation*}
$$

4 Random Vectors

Let X_{1}, \ldots, X_{n} be random variables. Then, $\boldsymbol{X}:=\left(X_{1}, \ldots, X_{n}\right)$ is a random vector.

4.1 Distribution Functions

Let $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ be an N-dimensional random vector. Its distribution function is defined by

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=\mathrm{P}\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right\} \tag{30}
\end{equation*}
$$

valid for all real numbers x_{1}, \ldots, x_{n}.
If X_{1}, \ldots, X_{n} are all discrete, then we say that \boldsymbol{X} is discrete. On the other hand, we say that \boldsymbol{X} is (absolutely) continuous when there exists a non-negative function f, of n variables, such that for all n-dimensional sets A,

$$
\begin{equation*}
\mathrm{P}\{\boldsymbol{X} \in A\}=\int \ldots \int_{A} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \tag{31}
\end{equation*}
$$

The function f is called the density function of \boldsymbol{X}. It is also called the joint density function of X_{1}, \ldots, X_{n}.

Note, in particular, that

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{x_{1}} \cdots \int_{-\infty}^{x_{n}} f\left(u_{1}, \ldots, u_{n}\right) d u_{n} \cdots d u_{1} \tag{32}
\end{equation*}
$$

By the fundamental theorem of calculus,

$$
\begin{equation*}
\frac{\partial^{n} F}{\partial x_{1} \partial x_{2} \ldots \partial x_{n}}=f \tag{33}
\end{equation*}
$$

4.2 Expectations

If g is a real-valued function of n variables, then

$$
\begin{equation*}
\mathrm{E} g\left(X_{1}, \ldots, X_{n}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \tag{34}
\end{equation*}
$$

An important special case is when $n=2$ and $g\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. In this case, we obtain

$$
\begin{equation*}
\mathrm{E}\left[X_{1} X_{2}\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_{1} u_{2} f\left(u_{1}, u_{2}\right) d u_{1} d u_{2} \tag{35}
\end{equation*}
$$

The covariance between X_{1} and X_{2} is defined as

$$
\begin{equation*}
\operatorname{Cov}\left(X_{1}, X_{2}\right):=\mathrm{E}\left[\left(X_{1}-\mathrm{E} X_{1}\right)\left(X_{2}-\mathrm{E} X_{2}\right)\right] \tag{36}
\end{equation*}
$$

It turns out that

$$
\begin{equation*}
\operatorname{Cov}\left(X_{1}, X_{2}\right)=\mathrm{E}\left[X_{1} X_{2}\right]-\mathrm{E}\left[X_{1}\right] \mathrm{E}\left[X_{2}\right] . \tag{37}
\end{equation*}
$$

This is well defined if both X_{1} and X_{2} have two finite moments. In this case, the correlation between X_{1} and X_{2} is

$$
\begin{equation*}
\rho\left(X_{1}, X_{2}\right):=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var} X_{1} \cdot \operatorname{Var} X_{2}}} \tag{38}
\end{equation*}
$$

provided that $0<\operatorname{Var} X_{1}, \operatorname{Var} X_{2}<\infty$.
The expectation of $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is defined as the vector $\mathrm{E} \boldsymbol{X}$ whose j th coordinate is $\mathrm{E} X_{j}$.

Given a random vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$, its covariance matrix is defined as $\boldsymbol{C}=\left(C_{i j}\right)_{1 \leq i, j \leq n}$, where $C_{i j}:=\operatorname{Cov}\left(X_{i} X_{j}\right)$. This makes sense provided that the X_{i} 's have two finite moments.

Lemma 5 Every covariance matrix \boldsymbol{C} is positive semi-definite. That is, $\boldsymbol{x}^{\prime} \boldsymbol{C} \boldsymbol{x} \geq$ 0 for all $\boldsymbol{x} \in \mathbf{R}^{n}$. Conversely, every positive semi-definite $(n \times n)$ matrix is the covariance matrix of some random vector.

4.3 Multivariate Normals

Let $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ be an n-dimensional vector, and \boldsymbol{C} an $(n \times n)$-dimensional matrix that is positive definite. The latter means that $\boldsymbol{x}^{\prime} \boldsymbol{C} \boldsymbol{x}>0$ for all non-zero vectors $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$. This implies, for instance, that \boldsymbol{C} is invertible, and the inverse is also positive definite.

We say that $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ has the multivariate normal distribution $N_{n}(\boldsymbol{\mu}, \boldsymbol{C})$ if the density function of \boldsymbol{X} is

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{\sqrt{2 \pi \operatorname{det} \boldsymbol{C}}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})} \tag{39}
\end{equation*}
$$

for all $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$.

- $\mathrm{E} \boldsymbol{X}=\boldsymbol{\mu}$ and $\operatorname{Cov}(\boldsymbol{X})=\boldsymbol{C}$.
- $\boldsymbol{X} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{C})$ if and only if there exists a positive definite matrix \boldsymbol{A}, and n i.i.d. standard normals Z_{1}, \ldots, Z_{n} such that $\boldsymbol{X}=\boldsymbol{\mu}+\boldsymbol{A} \boldsymbol{Z}$. In addition, $\boldsymbol{A}^{\prime} \boldsymbol{A}=\boldsymbol{C}$.

When $n=2$, a multivariate normal is called a bivariate normal.

Warning. Suppose X and Y are each normally distributed. Then it is not true in general that (X, Y) is bivariate normal. A similar caveat holds for the n-dimensional case.

5 Independence

Random variables X_{1}, \ldots, X_{n} are (statistically) independent if

$$
\begin{equation*}
\mathrm{P}\left\{X_{1} \in A_{1}, \ldots, X_{n} \in A_{n}\right\}=\mathrm{P}\left\{X_{1} \in A_{1}\right\} \times \cdots \times \mathrm{P}\left\{X_{n} \in A_{n}\right\}, \tag{40}
\end{equation*}
$$

for all one-dimensional sets A_{1}, \ldots, A_{n}. It can be shown that X_{1}, \ldots, X_{n} are independent if and only if for all real numbers x_{1}, \ldots, x_{n},

$$
\begin{equation*}
\mathrm{P}\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right\}=\mathrm{P}\left\{X_{1} \leq x_{1}\right\} \times \cdots \times \mathrm{P}\left\{X_{n} \leq x_{n}\right\} \tag{41}
\end{equation*}
$$

That is, the coordinates of $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ are independent if and only if $F_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \cdots F_{X_{n}}\left(x_{n}\right)$. Another equivalent formulation of independence is this: For all functions g_{1}, \ldots, g_{n} such that $g_{i}\left(X_{i}\right)$ is integrable,

$$
\begin{equation*}
\mathrm{E}\left[g\left(X_{1}\right) \times \ldots \times g\left(X_{n}\right)\right]=\mathrm{E}\left[g_{1}\left(X_{1}\right)\right] \times \cdots \times \mathrm{E}\left[g_{n}\left(X_{n}\right)\right] \tag{42}
\end{equation*}
$$

A ready consequence is this: If X_{1} and X_{2} are independent, then they are uncorrelated provided that their correlation exists. Uncorrelated means that $\rho\left(X_{1}, X_{2}\right)=0$. This is equivalent to $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.

If X_{1}, \ldots, X_{n} are (pairwise) uncorrelated with two finite moments, then

$$
\begin{equation*}
\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\operatorname{Var} X_{1}+\cdots+\operatorname{Var} X_{n} \tag{43}
\end{equation*}
$$

Significantly, this is true when the $X_{i}{ }^{\prime}$'s are independent. In general, the formula is messier:

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var} X_{i}+2 \sum_{1 \leq i<j \leq n} \sum \operatorname{Cov}\left(X_{i}, X_{j}\right) \tag{44}
\end{equation*}
$$

In general, uncorrelated random variables are not independent. An exception is made for multivariate normals.

Theorem 6 Suppose $(\boldsymbol{X}, \boldsymbol{Y}) \sim N_{n+k}(\boldsymbol{\mu}, \boldsymbol{C})$, where \boldsymbol{X} and \boldsymbol{Y} are respectively n-dimensional and k-dimensional random vectors. Then:

1. \boldsymbol{X} is multivariate normal.
2. \boldsymbol{Y} is multivariate normal.
3. If $\mathrm{E} X_{i} Y_{j}=0$ for all i, j, then \boldsymbol{X} and \boldsymbol{Y} are independent.

For example, suppose (X, Y) is bivariate normal. Then, X and Y are normally distributed. If, in addition, $\operatorname{Cov}(X, Y)=0$ then X and Y are independent.

6 Convergence Criteria

Let X_{1}, X_{2}, \ldots be a countably-infinite sequence of random variables. There are several ways to make sense of the statement that $X_{n} \rightarrow X$ for a random variable X. We need a few of these criteria.

6.1 Convergence in Distribution

We say that X_{n} converges to X in distribution if

$$
\begin{equation*}
F_{X_{n}}(x) \rightarrow F_{X}(x) \tag{45}
\end{equation*}
$$

for all $x \in \mathbf{R}$ at which F_{X} is continuous. We write this as $X_{n} \xrightarrow{d} X$.
Very often, F_{X} is continuous. In such cases, $X_{n} \xrightarrow{d} X$ if and only if $F_{X_{n}}(x) \rightarrow$ $F_{X}(x)$ for all x. Note that if $X_{n} \xrightarrow{d} X$ and X has a continuous distribution then also

$$
\begin{equation*}
\mathrm{P}\left\{a \leq X_{n} \leq b\right\} \rightarrow \mathrm{P}\{a \leq X \leq b\} \tag{46}
\end{equation*}
$$

for all $a<b$.
Similarly, we say that the random vectors $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$ converge in distribution to the random vector \boldsymbol{X} when $F_{\boldsymbol{X}_{n}}(\boldsymbol{a}) \rightarrow F_{\boldsymbol{X}}(\boldsymbol{a})$ for all \boldsymbol{a} at which $F_{\boldsymbol{X}}$ is continuous. This convergence is also denoted by $\boldsymbol{X}_{n} \xrightarrow{d} \boldsymbol{X}$.

6.2 Convergence in Probability

We say that X_{n} converges to X in probability if for all $\epsilon>0$,

$$
\begin{equation*}
\mathrm{P}\left\{\left|X_{n}-X\right|>\epsilon\right\} \rightarrow 0 . \tag{47}
\end{equation*}
$$

We denote this by $X_{n} \xrightarrow{\mathrm{P}} X$.
It is the case that if $X_{n} \xrightarrow{\mathrm{P}} X$ then $X_{n} \xrightarrow{d} X$, but the converse is patently false. There is one exception to this rule.

Lemma 7 Suppose $X_{n} \xrightarrow{d} c$ where c is a non-random constant. Then, $X_{n} \xrightarrow{\mathrm{P}} c$.
Proof. Fix $\epsilon>0$. Then,

$$
\begin{equation*}
\mathrm{P}\left\{\left|X_{n}-c\right| \leq \epsilon\right\} \geq \mathrm{P}\left\{c-\epsilon<X_{n} \leq c+\epsilon\right\}=F_{X_{n}}(c+\epsilon)-F_{X_{n}}(c-\epsilon) \tag{48}
\end{equation*}
$$

But $F_{c}(x)=0$ if $x<c$, and $F_{c}(x)=1$ if $x \geq c$. Therefore, F_{c} is continuous at $c \pm \epsilon$, whence we have $F_{X_{n}}(c+\epsilon)-F_{X_{n}}(c-\epsilon) \rightarrow F_{c}(c+\epsilon)-F_{c}(c-\epsilon)=1$. This proves that $\mathrm{P}\left\{\left|X_{n}-c\right| \leq \epsilon\right\} \rightarrow 1$, which is another way to write the lemma.

Similar considerations lead us to the following.
Theorem 8 (Slutsky's theorem) Suppose $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d}$ c for a constant c. If g is a continuous function of two variables, then $g\left(X_{n}, Y_{n}\right) \xrightarrow{d}$ $g(X, c)$. [For instance, try $g(x, y)=a x+b y, g(x, y)=x y e^{x}$, etc.]

When c is a random variable this is no longer valid in general.

7 Moment Generating Functions

We say that X has a moment generating function if there exists $t_{0}>0$ such that

$$
\begin{equation*}
M(t):=M_{X}(t)=\mathrm{E}\left[e^{t X}\right] \text { is finite for all } t \in\left[-t_{0}, t_{0}\right] \tag{49}
\end{equation*}
$$

If this condition is met, then M is the moment generating function of X.
If and when it exists, the moment generating function of X determines its entire distribution. Here is a more precise statement.

Theorem 9 (Uniqueness) Suppose X and Y have moment generating functions, and $M_{X}(t)=M_{Y}(t)$ for all t sufficiently close to 0 . Then, X and Y have the same distribution.

7.1 Some Examples

1. Binomial (n, p). Then, $M(t)$ exists for all $-\infty<t<\infty$, and

$$
\begin{equation*}
M(t)=\left(1-p+p e^{t}\right)^{n} \tag{50}
\end{equation*}
$$

2. Poisson (λ). Then, $M(t)$ exists for all $-\infty<t<\infty$, and

$$
\begin{equation*}
M(t)=e^{\lambda\left(e^{t}-1\right)} \tag{51}
\end{equation*}
$$

3. Negative Binomial (n, p). Then, $M(t)$ exists if and only if $-\infty<t<$ $|\log (1-p)|$. In that case, we have also that

$$
\begin{equation*}
M(t)=\left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{n} \tag{52}
\end{equation*}
$$

4. Uniform (a, b). Then, $M(t)$ exists for all $-\infty<t<\infty$, and

$$
\begin{equation*}
M(t)=\frac{e^{t b}-e^{t a}}{t(b-a)} \tag{53}
\end{equation*}
$$

5. Gamma (α, β). Then, $M(t)$ exists if and only if $-\infty<t<\beta$. In that case, we have also that

$$
\begin{equation*}
M(t)=\left(\frac{\beta}{\beta-t}\right)^{\alpha} \tag{54}
\end{equation*}
$$

Set $\alpha=1$ to find the moment generating function of an exponential (β). Set $\alpha=n / 2$ and $\beta=1 / 2$-for a positive integer n - to obtain the moment generating function of a chi-squared (n).
6. $N\left(\mu, \sigma^{2}\right)$. The moment generating function exists for all $-\infty<t<\infty$. Moreover,

$$
\begin{equation*}
M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right) \tag{55}
\end{equation*}
$$

7.2 Properties

Beside the uniqueness theorem, moment generating functions have two more properties that are of interest in mathematical statistics.

Theorem 10 (Convergence Theorem) Suppose X_{1}, X_{2}, \ldots is a sequence of random variables whose moment generating functions all exists in an interval $\left[-t_{0}, t_{0}\right]$ around the origin. Suppose also that for all $t \in\left[-t_{0}, t_{0}\right], M_{X_{n}}(t) \rightarrow$ $M_{X}(t)$ as $n \rightarrow \infty$, where M is the moment generating function of a random variable X. Then, $X_{n} \xrightarrow{d} X$.

Example 11 (Law of Rare Events) Let X_{n} have the $\operatorname{Bin}(n, \lambda / n)$ distribution, where $\lambda>0$ is independent of n. Then, for all $-\infty<t<\infty$,

$$
\begin{equation*}
M_{X_{n}}(t)=\left(1-\frac{\lambda}{n}+\frac{\lambda}{n} e^{t}\right)^{n} \tag{56}
\end{equation*}
$$

We claim that for all real numbers c,

$$
\begin{equation*}
\left(1+\frac{c}{n}\right)^{n} \rightarrow e^{c} \text { as } n \rightarrow \infty \tag{57}
\end{equation*}
$$

Let us take this for granted for the time being. Then, it follows at once that

$$
\begin{equation*}
M_{X_{n}}(t) \rightarrow \exp \left(-\lambda+\lambda e^{t}\right)=e^{\lambda\left(e^{t}-1\right)} \tag{58}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\operatorname{Bin}(n, \lambda / n) \xrightarrow{d} \text { Poisson }(\lambda) . \tag{59}
\end{equation*}
$$

This is Poisson's "law of rare events" (also known as "the law of small numbers").
Now we wrap up this example by verifying (57). Let $f(x)=(1+x)^{n}$, and Taylor-expand it to find that $f(x)=1+n x+\frac{1}{2} n(n-1) x^{2}+\cdots$. Replace x by c / n, and compute to find that

$$
\begin{equation*}
\left(1+\frac{c}{n}\right)^{n}=1+c+\frac{(n-1) c^{2}}{2 n}+\cdots \rightarrow \sum_{j=0}^{\infty} \frac{c^{j}}{j!} \tag{60}
\end{equation*}
$$

and this is the Taylor-series expansion of e^{c}. [There is a little bit more one has to do to justify the limiting procedure.]

The second property of moment generating functions is that if and when it exists for a random variable X, then all moments of X exist, and can be computed from M_{X}.

Theorem 12 (Moment-Generating Property) Suppose X has a finite moment generating function in a neighborhood of the origin. Then, $\mathrm{E}\left(|X|^{n}\right)$ exists for all n, and $M^{(n)}(0)=\mathrm{E}\left[X^{n}\right]$, where $f^{(n)}(x)$ denotes the nth derivative of function f at x.

Example 13 Let X be a $N(\mu, 1)$ random variable. Then we know that $M(t)=$ $\exp \left(\mu t+\frac{1}{2} t^{2}\right)$. Consequently,

$$
\begin{equation*}
M^{\prime}(t)=(\mu+t) e^{\mu t+\left(t^{2} / 2\right)}, \quad \text { and } \quad M^{\prime \prime}(t)=\left[1+(\mu+t)^{2}\right] e^{\mu t+\left(t^{2} / 2\right)} \tag{61}
\end{equation*}
$$

Set $t=0$ to find that $\mathrm{E} X=M^{\prime}(0)=\mu$ and $\mathrm{E}\left[X^{2}\right]=M^{\prime \prime}(0)=1+\mu^{2}$, so that $\operatorname{Var} X=\mathrm{E}\left[X^{2}\right]-(\mathrm{E} X)^{2}=1$.

8 Characteristic Functions

The characteristic function of a random variable X is the function

$$
\begin{equation*}
\phi(t):=\mathrm{E}\left[e^{i t X}\right] \quad-\infty<t<\infty \tag{62}
\end{equation*}
$$

Here, the " i " refers to the complex unit, $i=\sqrt{-1}$. We may write ϕ as ϕ_{X}, for example, when there are several random variables around.

In practice, you often treat $e^{i t X}$ as if it were a real exponential. However, the correct way to think of this definition is via the Euler formula, $e^{i \theta}=\cos \theta+i \sin \theta$ for all real numbers θ. Thus,

$$
\begin{equation*}
\phi(t)=\mathrm{E}[\cos (t X)]+i \mathrm{E}[\sin (t X)] \tag{63}
\end{equation*}
$$

If X has a moment generating function M, then it can be shown that $M(i t)=$ $\phi(t)$. [This uses the technique of "analytic continuation" from complex analysis.] In other words, the naive replacement of t by it does what one may guess it would. However, one advantage of working with ϕ is that it is always welldefined. The reason is that $|\cos (t X)| \leq 1$ and $|\sin (t X)| \leq 1$, so that the expectations in (63) exist. In addition to having this advantage, ϕ shares most of the properties of M as well! For example,

Theorem 14 The following hold:

1. (Uniqueness Theorem) Suppose there exists $t_{0}>0$ such that for all $t \in\left(-t_{0}, t_{0}\right), \phi_{X}(t)=\phi_{Y}(t)$. Then X and Y have the same distribution.
2. (Convergence Theorem) If $\phi_{X_{n}}(t) \rightarrow \phi_{X}(t)$ for all $t \in\left(-t_{0}, t_{0}\right)$, then $X_{n} \xrightarrow{d} X$. Conversely, if $X_{n} \xrightarrow{d} X$, then $\phi_{X_{n}}(t) \rightarrow \phi_{X}(t)$ for all t.

8.1 Some Examples

1. Binomial (n, p). Then,

$$
\begin{equation*}
\phi(t)=M(i t)=\left(1-p+p e^{i t}\right)^{n} \tag{64}
\end{equation*}
$$

2. Poisson (λ). Then,

$$
\begin{equation*}
\phi(t)=M(i t)=e^{\lambda\left(e^{i t}-1\right)} \tag{65}
\end{equation*}
$$

3. Negative Binomial (n, p). Then,

$$
\begin{equation*}
\phi(t)=M(i t)=\left(\frac{p e^{i t}}{1-(1-p) e^{i t}}\right)^{n} \tag{66}
\end{equation*}
$$

4. Uniform (a, b). Then,

$$
\begin{equation*}
\phi(t)=M(i t)=\frac{e^{i t b}-e^{i t a}}{t(b-a)} \tag{67}
\end{equation*}
$$

5. Gamma (α, β). Then,

$$
\begin{equation*}
\phi(t)=M(i t)=\left(\frac{\beta}{\beta-i t}\right)^{\alpha} \tag{68}
\end{equation*}
$$

6. $N\left(\mu, \sigma^{2}\right)$. Then, because $(i t)^{2}=-t^{2}$,

$$
\begin{equation*}
\phi(t)=M(i t)=\exp \left(i \mu t-\frac{\sigma^{2} t^{2}}{2}\right) . \tag{69}
\end{equation*}
$$

9 Classical Limit Theorems

9.1 The Central Limit Theorem

Theorem 15 (The CLT) Let X_{1}, X_{2}, \ldots be i.i.d. random variables with two finite moments. Let $\mu:=\mathrm{E} X_{1}$ and $\sigma^{2}=\operatorname{Var} X_{1}$. Then,

$$
\begin{equation*}
\frac{\sum_{j=1}^{n} X_{j}-n \mu}{\sigma \sqrt{n}} \xrightarrow{d} N(0,1) . \tag{70}
\end{equation*}
$$

Elementary probability texts prove this by appealing to the convergence theorem for moment generating functions. This approach does not work if we know only that X_{1} has two finite moments, however. However, by using characteristic functions, we can relax the assumptions to the finite mean and variance case, as stated.

Proof of the CLT. Define

$$
\begin{equation*}
T_{n}:=\frac{\sum_{j=1}^{n} X_{j}-n \mu}{\sigma \sqrt{n}} \tag{71}
\end{equation*}
$$

Then,

$$
\begin{align*}
\phi_{T_{n}}(t) & =\mathrm{E}\left[\prod_{j=1}^{n} \exp \left(i t\left(\frac{X_{j}-\mu}{\sigma \sqrt{n}}\right)\right)\right] \tag{72}\\
& =\prod_{j=1}^{n} \mathrm{E}\left[\exp \left(i t\left(\frac{X_{j}-\mu}{\sigma \sqrt{n}}\right)\right)\right]
\end{align*}
$$

thanks to independence; see (42) on page 10. Let $Y_{j}:=\left(X_{j}-\mu\right) / \sigma$ denote the standardization of X_{j}. Then, it follows that

$$
\begin{equation*}
\phi_{T_{n}}(t)=\prod_{j=1}^{n} \phi_{Y_{j}}(t / \sqrt{n})=\left[\phi_{Y_{1}}(t / \sqrt{n})\right]^{n} \tag{73}
\end{equation*}
$$

because the Y_{j} 's are i.i.d. Recall the Taylor expansion, $e^{i x}=1+i x-\frac{1}{2} x^{2}+\cdots$, and write $\phi_{Y_{1}}(s)$ as $\mathrm{E}\left[e^{i t Y_{1}}\right]=1+i t \mathrm{E} Y_{1}-\frac{1}{2} t^{2} \mathrm{E}\left[Y_{1}^{2}\right]+\cdots=1-\frac{1}{2} t^{2}+\cdots$. Thus,

$$
\begin{equation*}
\phi_{T_{n}}(t)=\left[1-\frac{t^{2}}{2 n}+\cdots\right]^{n} \rightarrow e^{-t^{2} / 2} \tag{74}
\end{equation*}
$$

See (57) on page 13. Because $e^{-t^{2} / 2}$ is the characteristic function of $N(0,1)$, this and the convergence theorem (Theorem 15 on page 15) together prove the CLT.

The CLT has a multidimensional counterpart as well. Here is the statement.
Theorem 16 Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots$ be i.i.d. k-dimensional random vectors with mean vector $\boldsymbol{\mu}:=\mathrm{E} \boldsymbol{X}_{1}$ and covariance matrix $\boldsymbol{Q}:=\operatorname{Cov} \boldsymbol{X}$. If \boldsymbol{Q} is non-singular, then

$$
\begin{equation*}
\frac{\sum_{j=1}^{n} \boldsymbol{X}_{j}-n \boldsymbol{\mu}}{\sqrt{n}} \xrightarrow{d} N_{k}(\mathbf{0}, \boldsymbol{Q}) . \tag{75}
\end{equation*}
$$

9.2 (Weak) Law of Large Numbers

Theorem 17 (Law of Large Numbers) Suppose X_{1}, X_{2}, \ldots are i.i.d. and have a finite first moment. Let $\mu:=\mathrm{E} X_{1}$. Then,

$$
\begin{equation*}
\frac{\sum_{j=1}^{n} X_{j}}{n} \xrightarrow{\mathrm{P}} \mu \tag{76}
\end{equation*}
$$

Proof. We will prove this in case there is also a finite variance. The general case is beyond the scope of these notes. Thanks to the CLT (Theorem 15, page 15), $\left(X_{1}+\cdots+X_{n}\right) / n$ converges in distribution to μ. Slutsky's theorem (Theorem 8 , page 11) proves that convergence holds also in probability.

9.3 Variance-Stabilization

Let X_{1}, X_{2}, \ldots be i.i.d. with $\mu=\mathrm{E} X_{1}$ and $\sigma^{2}=\operatorname{Var} X_{1}$ both defined and finite. Define the partial sums,

$$
\begin{equation*}
S_{n}:=X_{1}+\cdots+X_{n} \tag{77}
\end{equation*}
$$

We know that: (i) $S_{n} \approx n \mu$ in probability; and (ii) $\left(S_{n}-n \mu\right) \stackrel{d}{\approx} N\left(0, n \sigma^{2}\right)$. Now use Taylor expansions: For any smooth function h,

$$
\begin{equation*}
h\left(S_{n} / n\right) \approx h(\mu)+\left(\frac{S_{n}}{n}-\mu\right) h^{\prime}(\mu) \tag{78}
\end{equation*}
$$

in probability. By the $\operatorname{CLT},\left(S_{n} / n\right)-\mu \stackrel{d}{\approx} N\left(0, \sigma^{2} / n\right)$. Therefore, Slutsky's theorem (Theorem 8, page 11) proves that

$$
\begin{equation*}
\sqrt{n}\left[h\left(\frac{S_{n}}{n}\right)-h(\mu)\right] \xrightarrow{d} N\left(0, \sigma^{2}\left|h^{\prime}(\mu)\right|^{2}\right) . \tag{79}
\end{equation*}
$$

[Technical conditions: h^{\prime} should be continuously-differentiable in a neighborhood of μ.]

9.4 Refinements to the CLT

There are many refinements to the CLT. Here is a particularly well-known one. It gives a description of the farthest the distribution function of normalized sums is from the normal.

Theorem 18 (Berry-Esseen) If $\rho:=\mathrm{E}\left\{\left|X_{1}\right|^{3}\right\}<\infty$, then

$$
\begin{equation*}
\max _{-\infty<a<\infty}\left|\mathrm{P}\left\{\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}} \leq a\right\}-\Phi(a)\right| \leq \frac{3 \rho}{\sigma^{3} \sqrt{n}} \tag{80}
\end{equation*}
$$

