A Probability Primer Math 6070, Spring 2006

Davar Khoshnevisan University of Utah

January 30, 2006

Contents

1	Pro	babilities	2		
2	2.1	tribution Functions Discrete Random Variables	3 3		
3	Expectations				
	3.1	Moments	5		
	3.2	A (Very) Partial List of Discrete Distributions	6		
	3.3	A (Very) Partial List of Continuous Distributions	7		
4	Random Vectors 8				
	4.1	Distribution Functions	8		
	4.2	Expectations	8		
	4.3		9		
5	Ind	ependence 1	10		
6	Convergence Criteria				
	6.1	_	11		
	6.2	~	11		
7	Moment Generating Functions 12				
	7.1	——————————————————————————————————————	12		
	7.2		13		
8	Cha	aracteristic Functions	14		
	8.1	Some Examples	14		

9	Classical Limit Theorems			
	9.1	The Central Limit Theorem	15	
	9.2	(Weak) Law of Large Numbers	16	
	9.3	Variance-Stabilization	17	
	94	Refinements to the CLT	17	

1 Probabilities

Let \mathcal{F} be a collection of sets. A *probability* P is a function, on \mathcal{F} , that has the following properties:

- 1. $P(\emptyset) = 0$ and $P(\Omega) = 1$;
- 2. If $A \subset B$ then $P(A) \leq P(B)$;
- 3. (Finite additivity). If A and B are disjoint then $P(A \cup B) = P(A) + P(B)$;
- 4. For all $A, B \in \mathcal{F}$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$;
- 5. (Countable Additivity). If $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

2 Distribution Functions

Let X denote a random variable. It distribution function is the function

$$F(x) = P\{X \le x\},\tag{1}$$

defined for all real numbers x. It has the following properties:

- 1. $\lim_{x \to -\infty} F(x) = 0;$
- 2. $\lim_{x\to\infty} F(x) = 1$;
- 3. F is right-continuous; i.e., $\lim_{x\downarrow y} F(x) = F(y)$, for all real y;
- 4. F has left-limits; i.e., $F(y-) := \lim_{x \uparrow y} F(x)$ exists for all real y. In fact, $F(y-) = P\{X < y\}$;
- 5. F is non-decreasing; i.e., $F(x) \leq F(y)$ whenever $x \leq y$.

It is possible to prove that (1)–(5) are always valid for all what random variables X. There is also a converse. If F is a function that satisfies (1)–(5), then there exists a random variable X whose distribution function is F.

2.1 Discrete Random Variables

We will mostly study two classes of random variables: discrete, and continuous. We say that X is a *discrete* random variable if its possible values form a countable or finite set. In other words, X is discrete if and only if there exist x_1, x_2, \ldots such that: $P\{X = x_i \text{ for some } i \geq 1\} = 1$. In this case, we are interested in the mass function of X, defined as the function p such that

$$p(x_i) = P\{X = x_i\} \quad (i \ge 1).$$
 (2)

Implicitly, this means that p(x) = 0 if $x \neq x_i$ for some i. By countable additivity, $\sum_{i=1}^{\infty} p(x_i) = \sum_{x} p(x) = 1$. By countable additivity, the distribution function of F can be computed via the following: For all x,

$$F(x) = \sum_{y \le x} p(y). \tag{3}$$

Occasionally, there are several random variables around and we identify the mass function of X by p_X to make the structure clear.

2.2 Continuous Random Variables

A random variable is said to be (absolutely) continuous if there exists a non-negative function f such that $P\{X \in A\} = \int_A f(x) dx$ for all A. The function f is said to be the density function of X, and has the properties that:

- 1. $f(x) \ge 0$ for all x;
- $2. \int_{-\infty}^{\infty} f(x) dx = 1.$

The distribution function of F can be computed via the following: For all x,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy. \tag{4}$$

By the fundamental theorem of calculus,

$$\frac{dF}{dx} = f. (5)$$

Occasionally, there are several random variables around and we identify the density function of X by f_X to make the structure clear.

Continuous random variables have the peculiar property that $P\{X = x\} = 0$ for all x. Equivalently, F(x) = F(x-), so that F is continuous (not just right-continuous with left-limits).

3 Expectations

The (mathematical) expectation of a discrete random variable X is defined as

$$EX = \sum_{x} xp(x), \tag{6}$$

where p is the mass function. Of course, this is well defined only if $\sum_{x} |x| p(x) < \infty$. In this case, we say that X is *integrable*. Occasionally, EX is also called the *moment*, *first moment*, or the *mean* of X.

Proposition 1 For all functions g,

$$Eg(X) = \sum_{x} g(x)p(x), \tag{7}$$

provided that g(X) is integrable, and/or $\sum_{x} |g(x)|p(x) < \infty$.

This is not a trivial result if you read things carefully, which you should. Indeed, the definition of expectation implies that

$$Eg(X) = \sum_{y} yP\{g(X) = y\} = \sum_{y} yp_{g(X)}(y).$$
 (8)

The (mathematical) $\it expectation$ of a continuous random variable $\it X$ is defined as

$$EX = \int_{-\infty}^{\infty} x f(x) \, dx,\tag{9}$$

where f is the density function. This is well defined when $\int_{-\infty}^{\infty} |x| f(x) dx$ is finite. In this case, we say that X is *integrable*. Some times, we write E[X] and/or $E\{X\}$ in place of EX.

Proposition 2 For all functions g,

$$Eg(X) = \int_{-\infty}^{\infty} g(x)f(x) dx,$$
(10)

provided that g(X) is integrable, and/or $\int_{-\infty}^{\infty} |g(x)| f(x) dx < \infty$.

As was the case in the discrete setting, this is not a trivial result if you read things carefully. Indeed, the definition of expectation implies that

$$Eg(X) = \int_{-\infty}^{\infty} y f_{g(X)}(y) \, dy. \tag{11}$$

Here is a result that is sometimes useful, and not so well-known to students of probability:

Proposition 3 Let X be a non-negative integrable random variable with distribution function F. Then,

$$\mathbf{E}X = \int_0^\infty (1 - F(x)) \, dx. \tag{12}$$

Proof. Let us prove it for continuous random variables. The discrete case is proved similarly. We have

$$\int_{0}^{\infty} (1 - F(x)) dx = \int_{0}^{\infty} P\{X > x\} dx = \int_{0}^{\infty} \left(\int_{x}^{\infty} f(y) dy \right) dx.$$
 (13)

Change the order of integration to find that

$$\int_{0}^{\infty} (1 - F(x)) dx = \int_{0}^{\infty} \left(\int_{0}^{y} dx \right) f(y) dy = \int_{0}^{\infty} y f(y) dy.$$
 (14)

Because f(y) = 0 for all y < 0, this proves the result.

It is possible to prove that for all integrable random variables X and Y, and for all reals a and b,

$$E[aX + bY] = aEX + bEY. (15)$$

This justifies the buzz-phrase, "expectation is a linear operation."

3.1 Moments

Note that any random variable X is integrable if and only if $E|X| < \infty$. For all r > 0, the rth moment of X is $E\{X^r\}$, provided that the rth absolute moment $E\{|X|^r\}$ is finite.

In the discrete case,

$$E[X^r] = \sum x^r p(x), \tag{16}$$

and in the continuous case,

$$E[X^r] = \int_{-\infty}^{\infty} x^r f(X) \, dx. \tag{17}$$

When it makes sense, we can consider negative moments as well. For instance, if $X \ge 0$, then $\mathrm{E}[X^r]$ makes sense for r < 0 as well, but it may be infinite.

Proposition 4 If r > 0 and X is a non-negative random variable with $E[X^r] < \infty$, then

$$E[X^r] = r \int_0^\infty x^{r-1} (1 - F(x)) dx.$$
 (18)

Proof. When r=1 this is Proposition 3. The proof works similarly. For instance, when X is continuous,

$$E[X^{r}] = \int_{0}^{\infty} x^{r} f(x) dx = \int_{0}^{\infty} \left(r \int_{0}^{x} y^{r-1} dy \right) f(x) dx$$

$$= r \int_{0}^{\infty} y^{r-1} \left(\int_{y}^{\infty} f(x) dx \right) dy = r \int_{0}^{\infty} y^{r-1} P\{X > y\} dy.$$
(19)

This verifies the proposition in the continuous case.

A quantity of interest to us is the *variance* of X. If is defined as

$$Var X = E\left[(X - EX)^2 \right], \qquad (20)$$

and is equal to

$$Var X = E[X^2] - (EX)^2$$
. (21)

Variance is finite if and only if X has two finite moments.

3.2 A (Very) Partial List of Discrete Distributions

You are expected to be familiar with the following discrete distributions:

1. Binomial (n, p). Here, $0 and <math>n = 1, 2, \ldots$ are fixed, and the mass function is

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 if $x = 0, ..., n$. (22)

- EX = np and VarX = np(1-p).
- The binomial (1, p) distribution is also known as Bernoulli (p).
- 2. Poisson (λ). Here, $\lambda > 0$ is fixed, and the mass function is:

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 $x = 0, 1, 2, \dots$ (23)

- $EX = \lambda$ and $VarX = \lambda$.
- 3. Negative binomial (n, p). Here, $0 and <math>n = 1, 2, \ldots$ are fixed, and the mass function is:

$$p(x) = {x-1 \choose n-1} p^n (1-p)^{x-n} \qquad x = n, n+1, \dots$$
 (24)

• $EX = n/p \text{ and } Var X = n(1-p)/p^2.$

3.3 A (Very) Partial List of Continuous Distributions

You are expected to be familiar with the following continuous distributions:

1. Uniform $(a\,,b)$. Here, $-\infty < a < b < \infty$ are fixed, and the density function is

$$f(x) = \frac{1}{b-a} \quad \text{if } a \le x \le b. \tag{25}$$

- EX = (a+b)/2 and $VarX = (b-a)^2/12$.
- 2. Gamma (α, β) . Here, $\alpha, \beta > 0$ are fixed, and the density function is

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} \qquad -\infty < x < \infty.$$
 (26)

Here, $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$ is the (Euler) gamma function. It is defined for all $\alpha > 0$, and has the property that $\Gamma(1+\alpha) = \alpha\Gamma(\alpha)$. Also, $\Gamma(1+n) = n!$ for all integers $n \ge 0$, whereas $\Gamma(1/2) = \sqrt{\pi}$.

- $EX = \alpha/\beta$ and $VarX = \alpha/\beta^2$.
- Gamma $(1,\beta)$ is also known as Exp (β) . [The *Exponential distribution*.]
- When $n \ge 1$ is an integer, Gamma (n/2, 1/2) is also known as $\chi^2(n)$. [The *chi-squared* distribution with n degrees of freedom.]
- 3. $N(\mu, \sigma^2)$. [The normal distribution] Here, $-\infty < \mu < \infty$ and $\sigma > 0$ are fixed, and the density function is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)} - \infty < x < \infty.$$
 (27)

- $EX = \mu$ and $VarX = \sigma^2$.
- N(0,1) is called the *standard normal* distribution.
- We have the distributional identity, $\mu + \sigma N(0, 1) = N(\mu, \sigma^2)$. Equivalently,

$$\frac{N(\mu, \sigma^2) - \mu}{\sigma} = N(0, 1). \tag{28}$$

• The distribution function of a N(0,1) is an important object, and is always denoted by Φ . That is, for all $-\infty < a < \infty$,

$$\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-x^2/2} dx.$$
 (29)

4 Random Vectors

Let X_1, \ldots, X_n be random variables. Then, $\boldsymbol{X} := (X_1, \ldots, X_n)$ is a random vector.

4.1 Distribution Functions

Let $\mathbf{X} = (X_1, \dots, X_n)$ be an N-dimensional random vector. Its distribution function is defined by

$$F(x_1, \dots, x_n) = P\{X_1 \le x_1, \dots, X_n \le x_n\},$$
 (30)

valid for all real numbers x_1, \ldots, x_n .

If X_1, \ldots, X_n are all discrete, then we say that X is discrete. On the other hand, we say that X is (absolutely) *continuous* when there exists a non-negative function f, of n variables, such that for all n-dimensional sets A,

$$P\{\boldsymbol{X} \in A\} = \int \cdots \int_{A} f(x_1, \dots, x_n) dx_1 \dots dx_n.$$
 (31)

The function f is called the *density function* of X. It is also called the *joint density function* of X_1, \ldots, X_n .

Note, in particular, that

$$F(x_1, \dots, x_n) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f(u_1, \dots, u_n) \, du_n \, \dots \, du_1. \tag{32}$$

By the fundamental theorem of calculus,

$$\frac{\partial^n F}{\partial x_1 \partial x_2 \dots \partial x_n} = f. \tag{33}$$

4.2 Expectations

If g is a real-valued function of n variables, then

$$Eg(X_1, \dots, X_n) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_1 \dots dx_n. \quad (34)$$

An important special case is when n = 2 and $g(x_1, x_2) = x_1x_2$. In this case, we obtain

$$E[X_1 X_2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_1 u_2 f(u_1, u_2) du_1 du_2.$$
 (35)

The *covariance* between X_1 and X_2 is defined as

$$Cov(X_1, X_2) := E[(X_1 - EX_1)(X_2 - EX_2)].$$
(36)

It turns out that

$$Cov(X_1, X_2) = E[X_1 X_2] - E[X_1]E[X_2].$$
(37)

This is well defined if both X_1 and X_2 have two finite moments. In this case, the *correlation* between X_1 and X_2 is

$$\rho(X_1, X_2) := \frac{\text{Cov}(X_1, X_2)}{\sqrt{\text{Var}X_1 \cdot \text{Var}X_2}},$$
(38)

provided that $0 < \text{Var} X_1, \text{Var} X_2 < \infty$.

The expectation of $X = (X_1, ..., X_n)$ is defined as the vector $\mathbf{E}X$ whose jth coordinate is $\mathbf{E}X_j$.

Given a random vector $\boldsymbol{X}=(X_1,\ldots,X_n)$, its covariance matrix is defined as $\boldsymbol{C}=(C_{ij})_{1\leq i,j\leq n}$, where $C_{ij}:=\operatorname{Cov}(X_i\,X_j)$. This makes sense provided that the X_i 's have two finite moments.

Lemma 5 Every covariance matrix C is positive semi-definite. That is, $x'Cx \ge 0$ for all $x \in \mathbb{R}^n$. Conversely, every positive semi-definite $(n \times n)$ matrix is the covariance matrix of some random vector.

4.3 Multivariate Normals

Let $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$ be an *n*-dimensional vector, and \boldsymbol{C} an $(n \times n)$ -dimensional matrix that is *positive definite*. The latter means that $\boldsymbol{x}'\boldsymbol{C}\boldsymbol{x} > 0$ for all non-zero vectors $\boldsymbol{x} = (x_1, \dots, x_n)$. This implies, for instance, that \boldsymbol{C} is invertible, and the inverse is also positive definite.

We say that $X = (X_1, ..., X_n)$ has the multivariate normal distribution $N_n(\boldsymbol{\mu}, \boldsymbol{C})$ if the density function of \boldsymbol{X} is

$$f(x_1, \dots, x_n) = \frac{1}{\sqrt{2\pi \det C}} e^{-\frac{1}{2}(x-\mu)'C^{-1}(x-\mu)},$$
 (39)

for all $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$.

- $\mathbf{E}\mathbf{X} = \boldsymbol{\mu}$ and $\mathbf{Cov}(\mathbf{X}) = \mathbf{C}$.
- $X \sim N_n(\mu, C)$ if and only if there exists a positive definite matrix A, and n i.i.d. standard normals Z_1, \ldots, Z_n such that $X = \mu + AZ$. In addition, A'A = C.

When n=2, a multivariate normal is called a bivariate normal.

Warning. Suppose X and Y are each normally distributed. Then it is *not* true in general that (X,Y) is bivariate normal. A similar caveat holds for the n-dimensional case.

5 Independence

Random variables X_1, \ldots, X_n are (statistically) independent if

$$P\{X_1 \in A_1, \dots, X_n \in A_n\} = P\{X_1 \in A_1\} \times \dots \times P\{X_n \in A_n\},$$
 (40)

for all one-dimensional sets A_1, \ldots, A_n . It can be shown that X_1, \ldots, X_n are independent if and only if for all real numbers x_1, \ldots, x_n ,

$$P\{X_1 \le x_1, \dots, X_n \le x_n\} = P\{X_1 \le x_1\} \times \dots \times P\{X_n \le x_n\}.$$
 (41)

That is, the coordinates of $X = (X_1, \ldots, X_n)$ are independent if and only if $F_X(x_1, \ldots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$. Another equivalent formulation of independence is this: For all functions g_1, \ldots, g_n such that $g_i(X_i)$ is integrable,

$$E[g(X_1) \times \ldots \times g(X_n)] = E[g_1(X_1)] \times \cdots \times E[g_n(X_n)]. \tag{42}$$

A ready consequence is this: If X_1 and X_2 are independent, then they are uncorrelated provided that their correlation exists. Uncorrelated means that $\rho(X_1, X_2) = 0$. This is equivalent to $\text{Cov}(X_1, X_2) = 0$.

If X_1, \ldots, X_n are (pairwise) uncorrelated with two finite moments, then

$$Var(X_1 + \dots + X_n) = Var X_1 + \dots + Var X_n. \tag{43}$$

Significantly, this is true when the X_i 's are independent. In general, the formula is messier:

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var} X_{i} + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j}). \tag{44}$$

In general, uncorrelated random variables are not *independent*. An exception is made for multivariate normals.

Theorem 6 Suppose $(X, Y) \sim N_{n+k}(\mu, C)$, where X and Y are respectively n-dimensional and k-dimensional random vectors. Then:

- 1. X is multivariate normal.
- 2. Y is multivariate normal.
- 3. If $EX_iY_i = 0$ for all i, j, then X and Y are independent.

For example, suppose (X,Y) is bivariate normal. Then, X and Y are normally distributed. If, in addition, Cov(X,Y)=0 then X and Y are independent.

6 Convergence Criteria

Let X_1, X_2, \ldots be a countably-infinite sequence of random variables. There are several ways to make sense of the statement that $X_n \to X$ for a random variable X. We need a few of these criteria.

6.1 Convergence in Distribution

We say that X_n converges to X in distribution if

$$F_{X_n}(x) \to F_X(x),$$
 (45)

for all $x \in \mathbf{R}$ at which F_X is continuous. We write this as $X_n \stackrel{d}{\to} X$.

Very often, F_X is continuous. In such cases, $X_n \xrightarrow{d} X$ if and only if $F_{X_n}(x) \to F_X(x)$ for all x. Note that if $X_n \xrightarrow{d} X$ and X has a continuous distribution then also

$$P\{a \le X_n \le b\} \to P\{a \le X \le b\},\tag{46}$$

for all a < b.

Similarly, we say that the random vectors X_1, X_2, \ldots converge in distribution to the random vector X when $F_{X_n}(a) \to F_X(a)$ for all a at which F_X is continuous. This convergence is also denoted by $X_n \stackrel{d}{\to} X$.

6.2 Convergence in Probability

We say that X_n converges to X in probability if for all $\epsilon > 0$,

$$P\{|X_n - X| > \epsilon\} \to 0. \tag{47}$$

We denote this by $X_n \stackrel{\mathrm{P}}{\to} X$.

It is the case that if $X_n \xrightarrow{P} X$ then $X_n \xrightarrow{d} X$, but the converse is patently false. There is one exception to this rule.

Lemma 7 Suppose $X_n \stackrel{d}{\to} c$ where c is a non-random constant. Then, $X_n \stackrel{P}{\to} c$.

Proof. Fix $\epsilon > 0$. Then,

$$P\{|X_n - c| \le \epsilon\} \ge P\{c - \epsilon < X_n \le c + \epsilon\} = F_{X_n}(c + \epsilon) - F_{X_n}(c - \epsilon). \tag{48}$$

But $F_c(x) = 0$ if x < c, and $F_c(x) = 1$ if $x \ge c$. Therefore, F_c is continuous at $c \pm \epsilon$, whence we have $F_{X_n}(c+\epsilon) - F_{X_n}(c-\epsilon) \to F_c(c+\epsilon) - F_c(c-\epsilon) = 1$. This proves that $P\{|X_n - c| \le \epsilon\} \to 1$, which is another way to write the lemma. \square

Similar considerations lead us to the following.

Theorem 8 (Slutsky's theorem) Suppose $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$ for a constant c. If g is a continuous function of two variables, then $g(X_n, Y_n) \xrightarrow{d} g(X, c)$. [For instance, $try\ g(x, y) = ax + by,\ g(x, y) = xye^x,\ etc.$]

When c is a random variable this is no longer valid in general.

7 Moment Generating Functions

We say that X has a moment generating function if there exists $t_0 > 0$ such that

$$M(t) := M_X(t) = \mathbb{E}[e^{tX}]$$
 is finite for all $t \in [-t_0, t_0]$. (49)

If this condition is met, then M is the moment generating function of X.

If and when it exists, the moment generating function of X determines its entire distribution. Here is a more precise statement.

Theorem 9 (Uniqueness) Suppose X and Y have moment generating functions, and $M_X(t) = M_Y(t)$ for all t sufficiently close to 0. Then, X and Y have the same distribution.

7.1 Some Examples

1. Binomial (n, p). Then, M(t) exists for all $-\infty < t < \infty$, and

$$M(t) = \left(1 - p + pe^t\right)^n. \tag{50}$$

2. Poisson (λ). Then, M(t) exists for all $-\infty < t < \infty$, and

$$M(t) = e^{\lambda(e^t - 1)}. (51)$$

3. Negative Binomial (n,p). Then, M(t) exists if and only if $-\infty < t < |\log(1-p)|$. In that case, we have also that

$$M(t) = \left(\frac{pe^t}{1 - (1 - p)e^t}\right)^n. \tag{52}$$

4. Uniform (a, b). Then, M(t) exists for all $-\infty < t < \infty$, and

$$M(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}. (53)$$

5. Gamma (α, β) . Then, M(t) exists if and only if $-\infty < t < \beta$. In that case, we have also that

$$M(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}. (54)$$

Set $\alpha=1$ to find the moment generating function of an exponential (β) . Set $\alpha=n/2$ and $\beta=1/2$ —for a positive integer n—to obtain the moment generating function of a chi-squared (n).

6. $N(\mu, \sigma^2)$. The moment generating function exists for all $-\infty < t < \infty$. Moreover,

$$M(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right). \tag{55}$$

7.2 Properties

Beside the uniqueness theorem, moment generating functions have two more properties that are of interest in mathematical statistics.

Theorem 10 (Convergence Theorem) Suppose X_1, X_2, \ldots is a sequence of random variables whose moment generating functions all exists in an interval $[-t_0, t_0]$ around the origin. Suppose also that for all $t \in [-t_0, t_0]$, $M_{X_n}(t) \to M_X(t)$ as $n \to \infty$, where M is the moment generating function of a random variable X. Then, $X_n \stackrel{d}{\to} X$.

Example 11 (Law of Rare Events) Let X_n have the $Bin(n, \lambda/n)$ distribution, where $\lambda > 0$ is independent of n. Then, for all $-\infty < t < \infty$,

$$M_{X_n}(t) = \left(1 - \frac{\lambda}{n} + \frac{\lambda}{n}e^t\right)^n. \tag{56}$$

We claim that for all real numbers c,

$$\left(1 + \frac{c}{n}\right)^n \to e^c \text{ as } n \to \infty.$$
 (57)

Let us take this for granted for the time being. Then, it follows at once that

$$M_{X_n}(t) \to \exp\left(-\lambda + \lambda e^t\right) = e^{\lambda(e^t - 1)}.$$
 (58)

That is,

Bin
$$(n, \lambda/n) \stackrel{d}{\to} \text{Poisson } (\lambda).$$
 (59)

This is Poisson's "law of rare events" (also known as "the law of small numbers"). Now we wrap up this example by verifying (57). Let $f(x) = (1+x)^n$, and Taylor-expand it to find that $f(x) = 1 + nx + \frac{1}{2}n(n-1)x^2 + \cdots$. Replace x by c/n, and compute to find that

$$\left(1 + \frac{c}{n}\right)^n = 1 + c + \frac{(n-1)c^2}{2n} + \dots \to \sum_{j=0}^{\infty} \frac{c^j}{j!},$$
 (60)

and this is the Taylor-series expansion of e^c . [There is a little bit more one has to do to justify the limiting procedure.]

The second property of moment generating functions is that if and when it exists for a random variable X, then all moments of X exist, and can be computed from M_X .

Theorem 12 (Moment-Generating Property) Suppose X has a finite moment generating function in a neighborhood of the origin. Then, $E(|X|^n)$ exists for all n, and $M^{(n)}(0) = E[X^n]$, where $f^{(n)}(x)$ denotes the nth derivative of function f at x.

Example 13 Let X be a $N(\mu, 1)$ random variable. Then we know that $M(t) = \exp(\mu t + \frac{1}{2}t^2)$. Consequently,

$$M'(t) = (\mu + t)e^{\mu t + (t^2/2)}, \text{ and } M''(t) = [1 + (\mu + t)^2]e^{\mu t + (t^2/2)}$$
 (61)

Set t = 0 to find that $EX = M'(0) = \mu$ and $E[X^2] = M''(0) = 1 + \mu^2$, so that $VarX = E[X^2] - (EX)^2 = 1$.

8 Characteristic Functions

The characteristic function of a random variable X is the function

$$\phi(t) := \mathbf{E}\left[e^{itX}\right] \qquad -\infty < t < \infty. \tag{62}$$

Here, the "i" refers to the complex unit, $i = \sqrt{-1}$. We may write ϕ as ϕ_X , for example, when there are several random variables around.

In practice, you often treat e^{itX} as if it were a real exponential. However, the correct way to think of this definition is via the Euler formula, $e^{i\theta} = \cos \theta + i \sin \theta$ for all real numbers θ . Thus,

$$\phi(t) = E[\cos(tX)] + iE[\sin(tX)]. \tag{63}$$

If X has a moment generating function M, then it can be shown that $M(it) = \phi(t)$. [This uses the technique of "analytic continuation" from complex analysis.] In other words, the naive replacement of t by it does what one may guess it would. However, one advantage of working with ϕ is that it is always well-defined. The reason is that $|\cos(tX)| \leq 1$ and $|\sin(tX)| \leq 1$, so that the expectations in (63) exist. In addition to having this advantage, ϕ shares most of the properties of M as well! For example,

Theorem 14 The following hold:

- 1. (Uniqueness Theorem) Suppose there exists $t_0 > 0$ such that for all $t \in (-t_0, t_0)$, $\phi_X(t) = \phi_Y(t)$. Then X and Y have the same distribution.
- 2. (Convergence Theorem) If $\phi_{X_n}(t) \to \phi_X(t)$ for all $t \in (-t_0, t_0)$, then $X_n \xrightarrow{d} X$. Conversely, if $X_n \xrightarrow{d} X$, then $\phi_{X_n}(t) \to \phi_X(t)$ for all t.

8.1 Some Examples

1. Binomial (n, p). Then,

$$\phi(t) = M(it) = (1 - p + pe^{it})^n$$
 (64)

2. Poisson (λ) . Then,

$$\phi(t) = M(it) = e^{\lambda(e^{it} - 1)}.$$
(65)

3. Negative Binomial (n, p). Then,

$$\phi(t) = M(it) = \left(\frac{pe^{it}}{1 - (1 - p)e^{it}}\right)^n.$$
 (66)

4. Uniform (a, b). Then,

$$\phi(t) = M(it) = \frac{e^{itb} - e^{ita}}{t(b-a)}.$$
(67)

5. Gamma (α, β) . Then,

$$\phi(t) = M(it) = \left(\frac{\beta}{\beta - it}\right)^{\alpha}.$$
 (68)

6. $N(\mu, \sigma^2)$. Then, because $(it)^2 = -t^2$,

$$\phi(t) = M(it) = \exp\left(i\mu t - \frac{\sigma^2 t^2}{2}\right). \tag{69}$$

9 Classical Limit Theorems

9.1 The Central Limit Theorem

Theorem 15 (The CLT) Let $X_1, X_2, ...$ be i.i.d. random variables with two finite moments. Let $\mu := EX_1$ and $\sigma^2 = Var X_1$. Then,

$$\frac{\sum_{j=1}^{n} X_j - n\mu}{\sigma\sqrt{n}} \xrightarrow{d} N(0, 1). \tag{70}$$

Elementary probability texts prove this by appealing to the convergence theorem for moment generating functions. This approach does not work if we know only that X_1 has two finite moments, however. However, by using characteristic functions, we can relax the assumptions to the finite mean and variance case, as stated.

Proof of the CLT. Define

$$T_n := \frac{\sum_{j=1}^n X_j - n\mu}{\sigma\sqrt{n}}. (71)$$

Then,

$$\phi_{T_n}(t) = \mathbf{E} \left[\prod_{j=1}^n \exp\left(it\left(\frac{X_j - \mu}{\sigma\sqrt{n}}\right)\right) \right]$$

$$= \prod_{j=1}^n \mathbf{E} \left[\exp\left(it\left(\frac{X_j - \mu}{\sigma\sqrt{n}}\right)\right) \right],$$
(72)

thanks to independence; see (42) on page 10. Let $Y_j := (X_j - \mu)/\sigma$ denote the standardization of X_j . Then, it follows that

$$\phi_{T_n}(t) = \prod_{j=1}^n \phi_{Y_j} \left(t / \sqrt{n} \right) = \left[\phi_{Y_1} \left(t / \sqrt{n} \right) \right]^n, \tag{73}$$

because the Y_j 's are i.i.d. Recall the Taylor expansion, $e^{ix}=1+ix-\frac{1}{2}x^2+\cdots$, and write $\phi_{Y_1}(s)$ as $\mathrm{E}[e^{itY_1}]=1+it\mathrm{E}Y_1-\frac{1}{2}t^2\mathrm{E}[Y_1^2]+\cdots=1-\frac{1}{2}t^2+\cdots$. Thus,

$$\phi_{T_n}(t) = \left[1 - \frac{t^2}{2n} + \dots\right]^n \to e^{-t^2/2}.$$
 (74)

See (57) on page 13. Because $e^{-t^2/2}$ is the characteristic function of N(0,1), this and the convergence theorem (Theorem 15 on page 15) together prove the CLT.

The CLT has a multidimensional counterpart as well. Here is the statement.

Theorem 16 Let X_1, X_2, \ldots be i.i.d. k-dimensional random vectors with mean vector $\boldsymbol{\mu} := \mathbf{E}X_1$ and covariance matrix $\mathbf{Q} := \mathbf{Cov}X$. If \mathbf{Q} is non-singular, then

$$\frac{\sum_{j=1}^{n} \boldsymbol{X}_{j} - n\boldsymbol{\mu}}{\sqrt{n}} \xrightarrow{d} N_{k}(\boldsymbol{0}, \boldsymbol{Q}). \tag{75}$$

9.2 (Weak) Law of Large Numbers

Theorem 17 (Law of Large Numbers) Suppose X_1, X_2, \ldots are i.i.d. and have a finite first moment. Let $\mu := EX_1$. Then,

$$\frac{\sum_{j=1}^{n} X_j}{n} \xrightarrow{P} \mu. \tag{76}$$

Proof. We will prove this in case there is also a finite variance. The general case is beyond the scope of these notes. Thanks to the CLT (Theorem 15, page 15), $(X_1 + \cdots + X_n)/n$ converges in distribution to μ . Slutsky's theorem (Theorem 8, page 11) proves that convergence holds also in probability.

9.3 Variance-Stabilization

Let X_1, X_2, \ldots be i.i.d. with $\mu = EX_1$ and $\sigma^2 = Var X_1$ both defined and finite. Define the partial sums,

$$S_n := X_1 + \dots + X_n. \tag{77}$$

We know that: (i) $S_n \approx n\mu$ in probability; and (ii) $(S_n - n\mu) \stackrel{d}{\approx} N(0, n\sigma^2)$. Now use Taylor expansions: For any smooth function h,

$$h(S_n/n) \approx h(\mu) + \left(\frac{S_n}{n} - \mu\right) h'(\mu),$$
 (78)

in probability. By the CLT, $(S_n/n) - \mu \stackrel{d}{\approx} N(0, \sigma^2/n)$. Therefore, Slutsky's theorem (Theorem 8, page 11) proves that

$$\sqrt{n} \left[h\left(\frac{S_n}{n}\right) - h(\mu) \right] \stackrel{d}{\to} N\left(0, \sigma^2 |h'(\mu)|^2\right). \tag{79}$$

[Technical conditions: h' should be continuously-differentiable in a neighborhood of μ .]

9.4 Refinements to the CLT

There are many refinements to the CLT. Here is a particularly well-known one. It gives a description of the farthest the distribution function of normalized sums is from the normal.

Theorem 18 (Berry–Esseen) If $\rho := \mathbb{E}\{|X_1|^3\} < \infty$, then

$$\max_{-\infty < a < \infty} \left| P\left\{ \frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} \le a \right\} - \Phi(a) \right| \le \frac{3\rho}{\sigma^3 \sqrt{n}}. \tag{80}$$