SIMPLE LINEAR REGRESSION

DAVAR KHOSHNEVISAN

1. Line-Fitting

Points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are given; e.g. on a scatterplot.
What is "the best line" that describes the relationship between the x 's and the y 's?

To understand this better, let us focus on a line $L(x)=\alpha+\beta x$ where $\alpha, \beta \in \mathbf{R}$ are fixed but otherwise arbitrary.
"Fitting L to the points $\left(x_{i}, y_{i}\right)$ " means estimating y_{i} by $L\left(x_{i}\right)$ for all $i=1, \ldots, n$. The error, e_{i}, in estimating y_{i} by $L\left(x_{i}\right)$ is called the i th residual.

We choose "the best line of fit" according to the least squares principle of C. Gauss: ${ }^{1}$ Minimize $\sum_{i=1}^{n} e_{i}^{2}$ among all possible lines of the form $L(x)=$ $\alpha+\beta x$. This is done by doing a little calculus: For a fixed line $L(x)=\alpha+\beta x$,

$$
\begin{equation*}
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(L\left(x_{i}\right)-y_{i}\right)^{2}=\sum_{i=1}^{n}\left(\alpha+\beta x_{i}-y_{i}\right)^{2} . \tag{1}
\end{equation*}
$$

Call this $\mathscr{H}(\alpha, \beta)$. Then we are asked to find a and b that minimize \mathscr{H}. But this is a two-variable calculus problem. It turns out to be enough to solve:

$$
\begin{equation*}
\frac{\partial \mathscr{H}(\alpha, \beta)}{\partial \alpha}=0 \quad \text { and } \quad \frac{\partial \mathscr{H}(\alpha, \beta)}{\partial \beta}=0 . \tag{2}
\end{equation*}
$$

[^0]First,

$$
\begin{align*}
\frac{\partial \mathscr{H}(\alpha, \beta)}{\partial \alpha} & =\sum_{i=1}^{n} 2\left(\alpha+\beta x_{i}-y_{i}\right) \\
& =2 \alpha n+2 \beta \sum_{i=1}^{n} x_{i}-2 \sum_{i=1}^{n} y_{i}, \text { and } \tag{3}\\
\frac{\partial \mathscr{H}(\alpha, \beta)}{\partial \beta} & =\sum_{i=1}^{n} 2\left(\alpha+\beta x_{i}-y_{i}\right) x_{i} \\
& =2 \alpha \sum_{i=1}^{n} x_{i}+2 \beta \sum_{i=1}^{n} x_{i}^{2}-2 \sum_{i=1}^{n} x_{i} y_{i} .
\end{align*}
$$

These are called the normal equations. Now (2) is transformed into two equations in two unknowns [α and β]:

$$
\begin{align*}
\alpha \bar{x}+\beta \overline{x^{2}} & =\overline{x y} \tag{4}\\
\alpha+\beta \bar{x} & =\bar{y} .
\end{align*}
$$

Multiply the second equation of (4) by \bar{x}, and then subtract from the first equation to find that $\beta\left(\overline{x^{2}}-(\bar{x})^{2}\right)=\overline{x y}-\bar{x} \cdot \bar{y}$. You should recognize this, in statistical terms, as $\beta \operatorname{Var}(x)=\operatorname{Cov}(x, y)$. Equivalently, $\beta=\operatorname{Cov}(x, y) / \operatorname{Var}(x)=\operatorname{Corr}(x, y) \mathrm{SD}_{y} / \mathrm{SD}_{x}$. Plug this into the second equation of (4) to find that $\alpha=\bar{y}-\beta \bar{x}$ for the computed β. To summarize,

Theorem 1.1. The least-squares line through $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ is unique and defined by

$$
\begin{equation*}
L(x)=\bar{y}+\widehat{\beta}(x-\bar{x}), \quad \text { where } \quad \widehat{\beta}=\operatorname{Corr}(x, y) \frac{\mathrm{SD}_{y}}{\mathrm{SD}_{x}} . \tag{5}
\end{equation*}
$$

2. The Measurement-Error Model

Let $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be a random sample of n i.i.d. copies of the response variable. The measurement-error model posits the following:

$$
\begin{equation*}
Y_{i}=\alpha+\beta X_{i}+\varepsilon_{i} \quad i=1, \ldots, n . \tag{6}
\end{equation*}
$$

Here, $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is a non-random vector of constants-the explanatory variables - and α and β are unknown parameters. This model also assumes that the ε_{i} 's are i.i.d. $N\left(0, \sigma^{2}\right)$ for an unknown parameter $\sigma>0$. The Y_{i} 's are random only because the ε_{i} 's are (and not the X_{i} 's).

According to the principle of least squares (Theorem 1.1), the best leastsquares estimates of α and β are, respectively,

$$
\begin{equation*}
\widehat{\beta}=\frac{\frac{1}{n} \sum_{i=1}^{n} X_{i} Y_{i}-\bar{X} \cdot \bar{Y}}{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \quad \text { and } \quad \widehat{\alpha}=\bar{Y}-\widehat{\alpha} \bar{X} . \tag{7}
\end{equation*}
$$

The more imortant parameter is β. For instance, consider the test,

$$
\begin{equation*}
H_{0}: \beta=0 \quad \text { vs. } \quad H_{1}: \beta \neq 0 . \tag{8}
\end{equation*}
$$

This is testing the hypothesis that the explanatory variable X has a (linear) effect on Y.

So we need the distribution of $\widehat{\beta}$. Note that

$$
\begin{equation*}
\widehat{\beta}=\frac{\sum_{i=1}^{n} Y_{i}\left(X_{i}-\bar{X}\right)}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}=\sum_{i=1}^{n} b_{i} Y_{i}, \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{i}=\frac{X_{i}-\bar{X}}{n s_{\mathbf{X}}^{2}} \quad \text { for } \quad s_{\mathbf{X}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} . \tag{10}
\end{equation*}
$$

Recall that the X_{i} 's are not random. Therefore, neither are the b_{i} 's. Also recall,
Lemma 2.1. If V_{1}, \ldots, V_{n} are independent and $V_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, then for all non-random $c_{1}, \ldots, c_{n}, \sum_{i=1}^{n} c_{i} V_{i} \sim N\left(\mu, \sigma^{2}\right)$ where $\mu=\mu_{1}+\cdots+\mu_{n}$ and $\sigma^{2}=\sigma_{1}^{2}+\cdots+\sigma_{2}^{2}$.

Consequently, $\widehat{\beta} \sim N\left(\sum_{i=1}^{n} b_{i} E\left[Y_{i}\right], \sum_{i=1}^{n} b_{i}^{2} \operatorname{Var}\left(Y_{i}\right)\right)$. But $Y_{i}=\alpha+\beta X_{i}+$ ε_{i}. So, $E\left[Y_{i}\right]=\alpha+\beta X_{i}$, and $\operatorname{Var}\left(Y_{i}\right)=\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$. It is easy to check that: (i) $\sum_{i=1}^{n} b_{i}=0$; (ii) $\sum_{i=1}^{n} b_{i} X_{i}=1$; and (iii) $\sum_{i=1}^{n} b_{i}^{2}=1 /\left(n s_{\mathbf{X}}^{2}\right)$. This proves that

$$
\begin{equation*}
\widehat{\beta} \sim N\left(\beta, \frac{\sigma^{2}}{n s_{\mathbf{X}}^{2}}\right) . \tag{11}
\end{equation*}
$$

Therefore, $E[\widehat{\beta}]=\beta$. That is, $\widehat{\beta}$ is an unbiased estimator of β. Moreover, if we knew σ^{2}, then we could perform the test of hypothesis (8) at any predescribed level, say at 95%. The trouble is that we generally do not know σ^{2}.

Because the Y_{i}^{\prime} 's have variance σ^{2}, we can estimate σ^{2} by $s_{\mathbf{Y}}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\right.$ $\bar{Y})^{2}$. But then we need the joint distribution of $\left(\widehat{\beta}, s_{\mathbf{Y}}^{2}\right)$. The key to this theory is that $\widehat{\beta}$ is independent of $s_{\mathbf{Y}}^{2}$. We just determined the distribution of $\widehat{\beta}$, and we will see later on that the H_{0}-distribution of $s_{\mathbf{Y}}^{2}$ is essentially χ^{2}. The rest will be smooth sailing.

To recap, we need to accomplish two things:
(1) Derive the independence of $\widehat{\beta}$ and $s_{\mathbf{Y}}^{2}$; and
(2) Honestly compute the distribution of $s_{\mathbf{Y}}^{2}$ under H_{0}.

Just about all of this semester's work is concerned with accomplishing these two goals (for more general models).

[^0]: Date: August 30, 2004.
 ${ }^{1}$ Sometimes, people have reason to use other, more "robust," principles. A common alternative in such a case is the principle of "least absolute deviation." It seeks to find a line that minimizes $\sum_{i=1}^{n}\left|e_{i}\right|$. Occasionally, this is also called the " \mathscr{L}^{1} method"; this is to distinguish it from least squares which is also sometimes called the " \mathscr{L}^{2} method."

