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1. Line-Fitting

Points (x1, y1), . . . , (xn, yn) are given; e.g. on a scatterplot.

What is “the best line” that describes the relationship be-
tween the x’s and the y’s?

To understand this better, let us focus on a line L(x) = α + βx where
α, β ∈ R are fixed but otherwise arbitrary.

“Fitting L to the points (xi, yi)” means estimating yi by L(xi) for all
i = 1, . . . , n. The error, ei, in estimating yi by L(xi) is called the ith residual.

We choose “the best line of fit” according to the least squares principle
of C. Gauss:1 Minimize

∑n
i=1 e2

i among all possible lines of the form L(x) =
α+βx. This is done by doing a little calculus: For a fixed line L(x) = α+βx,

(1)
n∑

i=1

e2
i =

n∑
i=1

(L(xi)− yi)
2 =

n∑
i=1

(α + βxi − yi)
2 .

Call this H (α, β). Then we are asked to find a and b that minimize H .
But this is a two-variable calculus problem. It turns out to be enough to
solve:

(2)
∂H (α, β)

∂α
= 0 and

∂H (α, β)
∂β

= 0.
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1Sometimes, people have reason to use other, more “robust,” principles. A common

alternative in such a case is the principle of “least absolute deviation.” It seeks to find a
line that minimizes

Pn
i=1 |ei|. Occasionally, this is also called the “L 1 method”; this is

to distinguish it from least squares which is also sometimes called the “L 2 method.”
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First,

∂H (α, β)
∂α

=
n∑

i=1

2(α + βxi − yi)

= 2αn + 2β
n∑

i=1

xi − 2
n∑

i=1

yi, and

∂H (α, β)
∂β

=
n∑

i=1

2(α + βxi − yi)xi

= 2α
n∑

i=1

xi + 2β
n∑

i=1

x2
i − 2

n∑
i=1

xiyi.

(3)

These are called the normal equations. Now (2) is transformed into two
equations in two unknowns [α and β]:

αx + βx2 = xy

α + βx = y.
(4)

Multiply the second equation of (4) by x, and then subtract from the
first equation to find that β(x2 − (x)2) = xy − x · y. You should rec-
ognize this, in statistical terms, as βVar(x) = Cov(x, y). Equivalently,
β = Cov(x, y)/Var(x) = Corr(x, y)SDy/SDx. Plug this into the second equa-
tion of (4) to find that α = y − βx for the computed β. To summarize,

Theorem 1.1. The least-squares line through (x1, y1), . . . , (xn, yn) is unique
and defined by

(5) L(x) = y + β̂(x− x), where β̂ = Corr(x, y)
SDy

SDx
.

2. The Measurement-Error Model

Let Y = (Y1, . . . , Yn) be a random sample of n i.i.d. copies of the response
variable. The measurement-error model posits the following:

(6) Yi = α + βXi + εi i = 1, . . . , n.

Here, X = (X1, . . . ,Xn) is a non-random vector of constants—the explana-
tory variables—and α and β are unknown parameters. This model also
assumes that the εi’s are i.i.d. N(0, σ2) for an unknown parameter σ > 0.
The Yi’s are random only because the εi’s are (and not the Xi’s).

According to the principle of least squares (Theorem 1.1), the best least-
squares estimates of α and β are, respectively,

(7) β̂ =
1
n

∑n
i=1 XiYi −X · Y

1
n

∑n
i=1(Xi −X)2

and α̂ = Y − α̂X.

The more imortant parameter is β. For instance, consider the test,

(8) H0 : β = 0 vs. H1 : β 6= 0.
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This is testing the hypothesis that the explanatory variable X has a (linear)
effect on Y .

So we need the distribution of β̂. Note that

β̂ =
∑n

i=1 Yi

(
Xi −X

)
∑n

i=1(Xi −X)2
=

n∑
i=1

biYi,(9)

where

(10) bi =
Xi −X

ns2
X

for s2
X =

1
n

n∑
i=1

(Xi −X)2.

Recall that the Xi’s are not random. Therefore, neither are the bi’s. Also
recall,

Lemma 2.1. If V1, . . . , Vn are independent and Vi ∼ N(µi, σ
2
i ), then for all

non-random c1, . . . , cn,
∑n

i=1 ciVi ∼ N(µ, σ2) where µ = µ1 + · · · + µn and
σ2 = σ2

1 + · · ·+ σ2
2.

Consequently, β̂ ∼ N(
∑n

i=1 biE[Yi],
∑n

i=1 b2
i Var(Yi)). But Yi = α+βXi +

εi. So, E[Yi] = α + βXi, and Var(Yi) = Var(εi) = σ2. It is easy to check
that: (i)

∑n
i=1 bi = 0; (ii)

∑n
i=1 biXi = 1; and (iii)

∑n
i=1 b2

i = 1/(ns2
X). This

proves that

(11) β̂ ∼ N

(
β,

σ2

ns2
X

)
.

Therefore, E[β̂] = β. That is, β̂ is an unbiased estimator of β. Moreover,
if we knew σ2, then we could perform the test of hypothesis (8) at any
predescribed level, say at 95%. The trouble is that we generally do not
know σ2.

Because the Yi’s have variance σ2, we can estimate σ2 by s2
Y = 1

n

∑n
i=1(Yi−

Y )2. But then we need the joint distribution of (β̂, s2
Y). The key to this

theory is that β̂ is independent of s2
Y. We just determined the distribution

of β̂, and we will see later on that the H0-distribution of s2
Y is essentially

χ2. The rest will be smooth sailing.
To recap, we need to accomplish two things:
(1) Derive the independence of β̂ and s2

Y; and
(2) Honestly compute the distribution of s2

Y under H0.
Just about all of this semester’s work is concerned with accomplishing these
two goals (for more general models).


