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1 Introduction

The basic problem in density estimation is this: Suppésge.., X, is an independent sample from a density functfothat is
unknown. In many caseg, is unknown only because it depends on unknown parameter(s). In such cases, we proceed by using
methods that are discussed in Math 5080-5090. For examplg, if., Xo ~ N(u, 2), then the density is

1 (x—u)?
T exp(— 552 .

. 1 _h2
f(X) = C,\T\/Eexp<_ (ch":ZL) )7

f(x) =

Then, we estimaté by




wherefl = X, and6? = (1/n) S (X — X,)? are the usual (maximum likelihood) estimates of mean and variance.

Here, we are studying the more interesting case fhiat generally unknown. In this more general case, there are several
different approaches to density estimation. Later on we shall concentrate our efforts on the socalled “kernel density estimators.
But for now, let us begin with a discussion of the most commonly-used, quick-and-dirty approach: The histogram.

1.1 The Histogram

A standard histogram of dabé, ..., X, starts with agreeing on a poirg—called theorigin—and a positive numbdr—called
bandwidth Then, we defindins B; for all integersj = 0,+1,+2, ... as follows:

Bj = [0+ jh,xo+ (j +1)h].
The ensuindnistogramis the plot of the density estimator,

10 .. .
f(x) = Eljzll {X; is in the same bin as} .

Note that for allx € By, f(X) is equal to(1/h) times the fraction of the data that falls in din The bandwidth is a “smoothing
parameter” Ash is increased, the plot of becomes “smoother,” and converselyhais decreasedf starts to look “rougher.”
Fine-tuningh is generally something that one does manually. This is a skill that is honed by being thoughtful and after some
experimentation.

Warnings:

1. Generally the graph dfis also very sensitive to our choice xf

2. The resulting picture/histogram is jagged by design. More often than not, density estimation is needed to decide on the
“shape” of f. In such cases, it is more helpful to have a “smooth” function estimator.

3. There are estimators défthat have better mathematical properties than the histogram.

Example 1 Consider the following hypothetical data set:
1,1,2,3,4,4,4,2,15,1.4,2.3,4.8.
Here,n = 12. Suppose we sgp := 0 andh := 1.5. Then, the bins of interest are

[0,15), [15,3), [3,4.5), [4.5,6).

Therefore,
3 if0<x<15,
fA(x)—ix 4  if15<x<3,
© 187 )4, if3<x<4b5,
1, if45<x<6,

1/6 if0<x<15,
2/9 if1.5<x<3,
2/9, if3<x<4b5,
1/18 if4.5<x<6.

In order to see how changing can change the picture consider instege- 1. Then,

4 ifl<x<25
f(x):l—sx 4, if2.5<x<4,
1, if4<x<b55.

)

The preceding example showcases the problem with the choice of the origin: By changwen a little bit we can change
the entire shape of. Nevertheless, the histogram can be a useful (i.e., fast) starting-point for the data analyst. For insRnce, in

you first type the expressioX* = ¢(1,1,2,3,4,4,4,2,1.5,1.4,2.3,4.8) " to get X to denote the data vector of the
previous example. Then, you typRist(X) " to produce Figure 1. Th& commandchist has several parameters that you can
use to fine-tune your histogram plotting. For instartgst(X,breaks=6) produces Figure 2. [Figure 1 can be produced also

with hist(X,breaks=3) ]



Fre

Histogram of X

Figure 1: Histogram of the data of Example 1.
Three breaks (automatic).

Histogram of X

Figure 2: Histogram of the data of Example 1.
Six breaks (manual).



1.2 The Kernel Density Estimator

Kernel density estimators are a smoother substitute for histograms. We start with a heuristic argumisrat:sihall number, and
if f is continuous ax, then

f(x) ~ 2—1hP{x— h <X <x+h}.
Here, X ~ f, of course. On the other hand, by the law of large nhumbersisifarge then
1 n
P{x—h<X<x+ht~—% 1 {x—h<Xj <x+h},
n&
in probability. So we can consider the density estimator
R 10

HIXj —x| <h}
2h

wherew is the “kernel,” L
wW(X) 1= §|{|X| <1}.

This definition of f(x) yields a variant of the histogram. In order to obtain a smoother estimator, note thit #mall then

Wh(X) := (1/h)w((x—Xj)/h) is approximately a “delta function " That is: (1)wj is highly peaked aX;, and (2) the area under

W, is fixed to be one. So our strategy is to replace the rolelmf a smoother function so that a smoother delta function is obtained.
So now consider a “kerneK. It is a function such that (x) > 0 and[®, K(x)dx= 1. Then, define

w5

The parameteh is used to tune the estimator. It is alternatively calledwlirdow width the bandwidth and/or thesmoothing
parameter Roughly speaking, the kernel desnity estimator puts a smooth but concentrated “bump function” over each observation,
and then averages over the bumps.

1.3 The Nearest-Neighborhood Density Estimator

Let us choose and fix some intedewith the property thak < n [usually,k ~ /n.] Then, defing(t) < p2(t) <--- < pn(t) to be
the ordered distances fraino the sampléy, ..., X%,.2 Then, we can consider
- k—1
f(x) = .
* 2npk(x)

This is called thenearest-neighbor density estimaf@also known as the “NN density estimator.”) In order to see why it is sensible
first note that iff is continuous ax andr is sufficiently small, then

1)

E Jil {x—=r<Xj<x+r}| =nP{x—r <Xy <x+r}~2mf(x).
Therefore, by the law of large numbersnifs large then one might expect that
éll {x—r <Xj <x+r}~2rf(x),
in probability. Thus, one might expect that iotarge, the following has high probability:

Zl{x Pr(X) < Xj < X+ p(X) } &~ 2pk(X)nf(x).

1For instance, i%; = 1,X; = 0,X3 = 2, thenp; (0.6) = 0.4, p2(0.6) = 0.6, andps(t) = 1.4.



[This is not obvious becaug®(x) is a random variable. But remember that we are merely developing a heuristic argument here.]
Because

n
Z I {X—p(X) < Xj <x+pc(x)} =k—1,
this leads us to (1).
NN density estimators have some well-known setbacks. Here are two:
1. f is not smooth. Typically, this problem is addressed by using instead
- 1

n X — X
””‘nmwm;K<mMD'

This one performs somewhere between the NN-estimator and the kernel estimator.

2. fis a better estimator df “locally.” For instance, this is a better method if we are interested in the values/shapeaf a
pointx. Indeed, we can check easily that

L k—1 r* dx
f(x)dx= 7/ . —
./700 ( ) 2n J —o00 pk(X)

The reason is thai(x) ~ |X| as|x| — . Therefore, the NN estimator is not itself a density function.

1.4 Variable Kernel Density Estimation

LetK be a nice kernel, and choose and fix a positive int&g&efined; « to be the distance betweed and thekth nearest point

in {Xg,..., %} \ {X}. Formally speaking,
6j.k = r);imxj fXg|.
(#]

Then we consider theariable kernel density estimator

X— XJ

The “window width” h determines the degree of “smoothing,” dndetermines how strongly the window width responds to “local
detail.”

1.5 The Orthogonal Series Method
Supposéef is a density o0, «). Define

¢o(1):=1
$1(x) := V2 cog2nx),
$2(X) := V25sin(27x),

$2j-1(X) 1= V2cog2r jx),
92j(X) 1= V2sin(27jx),

for j > 1. Then, the theory of Fourier series tells us that

X)~ S £6/(%)

J;)JJ
1

fii= [ 100609 dx

and “f ~ 37 fj¢;” means that the infinite sum converges#?(R) to f. That s,

where

2
dx=0.

N

FOO = > fi(x)9;(x)
X J;)Jx i (x

(oo}
lim
N—>oo 0

5
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Figure 3: Histogram of the variable “GD".
Thirty breaks.

Now supposeX ~ f. Then,f; is nothing but Eg¢; (X)], and we are led to the law-of-large-numbers estimator

. 120
= ﬁglfl’i (Xe).
Therefore, we are led to the estimator
N
foo =5 figi(x),
2,
whereM is a large, pre-determined, and fixed constant. This estimator has a serious setback: In fleeréd not be> 0!

1.6 Maximum Penalized Likelihood Estimation
Define the “likelihood” ofg to be

L) =2 (%0 o) = [T90X).
1 JI:L j

Then we can try to findy that maximizes#(g). Unfortunately, this is doomed to fail. Indeed, I&tx) denote the histogram
with origin xo = 0 and bandwidtth > 0. Then it is evident thaf (X;) > (nh)~%, whence it follows thaf]}_, f(X) > (nh)™.
Consequently, mgxZ(g) > (nh)~" for allh > 0. Leth — 0 to find that may.#(g) = .

Although the preceding attempt failed, it is not without its merits. The reason that our first attempt failed was that we are
maximizing-#(g) over too many functiong. Therefore, we can restrict the classy& over which the maximization is taken. For
instance, consider the “penalized log-likelihood,”

(g =S Ing(X) - AF(g),
g J;ngj g

whereA > 0 is a smoothing parameter afidg) measures the roughnessgf{say!). An example to have in mind 5(g) :=
[%.(g"(x))2dx Then, we can try and find that solves the maximization problem, ngax.1£(9), whereW!! denotes the class
of all functionsg such that/*, (g(x))2dx < e and [, (g"(x))?dx < .

The statisticz’j‘zlln 9(Xj) corresponds to the goodness offi{ig) to smoothness; antl to how much of each (goodness of fit
versus smoothness) we wish to opt for. The major setback of this method is that it is technically (and computatenyddgrd
and intensive.

2 Kernel Density Estimation in One Dimension

Recall thatXy, ..., X, are i.i.d. with density functiorf. We choose and fix a probability density functikrand a binwidthh, and
then define our kernel density estimate as




density estimate using double exponential

Figure 4: Kernel density estimate using DE
(h=0.5).

density estimate using N(0,1)

R

Figure 5: Kernel density estimate usirig(0, 1)
(h=0.5).

density estimate using N(0,1)

R

Figure 6: Kernel density estimate usirig(0,1)
(h=10.1).



Before we start our analysis, let us see how kernel density estimators looks for a certain data set whose variable | call “GD.” In
order to have a reasonable starting point, | have drawn up the histogram of the data. This appears in Figure 3. The number of
breaks was 30. This number was obtained after a little experimentation.

Figures 4, 5, and 6 depict three different kernel density estimates of the unknown denghgy are all based on the same
dataset.

1. Figure 4 shows the kernel density estimator of “GD” with bandwidtk 0.5 andK := the double-exponential density; i.e.,
K(x) = 2e~X. The density is plotted in Figure 7.

2. Figure 5 shows the kernel density estimator for the same bandwid#0.5), but nowK := (2)~Y2exp—x?/2) is the
N(0,1) density. The densiti is plotted in Figure 8 for the purposes of comparison.

3. Figure 6 shows the kernel density estimator for the smaller bandtvidtB.1, but stillK is still theN(0, 1) density.

Before we analyse kernel density estimators in some depth, let us try and understand the general notion of “smoothing,” which
translates to the mathematical “convolution.” In actual practice, you reis@rder to obtain a smoother kernel density estimator;
you lowerh to obtain a rougher one. Figures 5 and 6 show this principle for the variable “GD.”

2.1 Convolutions

If f andg are two non-negative functions & then theirconvolutionis defined as

(f*g)(x / f(y)g(x—y)dy,

provided that the integral exists, of course. A change of variables show$ #gt= g« f, so that convolution is a symmetric
operation. You have seen convolutions in undergraduate probability alreadyariflY are independent random variables with
respective densitieandg, thenX +Y is a continuous random variable also, and its density is ex#etly.

Quite generally, iff andg are probability densities then sofis<g. Indeed,(f xg)(x) > 0 and

/_ ()69 dx= //f g(x—y)dydx= /i(/_ig(xy)dx)f(y)dyl,

after a change of the order of integration.
Quite generally, convolution is a “smoothing operation.” One way to make this precise is this: Sdippubgare probability
densitiesg is continuously differentiable with a bounded derivative. Thieng is also differentiable and

(F+g)( / Fy y)dx

The continuity and boundednessgbfensure that we can differentiate under the integral sign. Similar remarks apply to the higher
derivatives off x g, etc.

In other words, if we start with a generic density functioband a smooth ong, thenf x g is in general not less smooth thgn
By symmetry, it follows thaff x g is at least as smooth as the smoother oné afidg.

2.2 Approximation to the Identity

LetK be a real-valued function dR such thaK (x) > 0 for allx € R, and /%, K(x) dx= 1. That isK is a density function itself.
But it is one that we choose according to taste, experience, etc. Definelias &)

Kn(X) := %K (%) .

For example, iK is the standard-normal density, thiépis theN(0, h) density. In this case;, concentrates more and more
around 0 a$ | 0. This property is valid more generally, e.g.Kiflooks” like a normal, Cauchy, etc.
Recall thai is a density function. This implies thi, is a density also. Indee#(x) > 0, and

/::Kh( / ) dx= / K(y)dy=1,

after a change of variables. The collectigf, }n~0 of functions is sometimes called approximation to the identityT he following
justifies this terminology.

Theorem 2 Let f be a density function. Suppose that either:



1. fis bounded; i.e., there exists B such thidix)| < B for all x; or
2. K vanishes at infinity; i.elim;_.., K(z)=0.

Then, whenever f is continuous in an open neighborhood=dRx

r|1iLr23<Kh* f)(x) = f(x).

In many applications, our kern#l is infinitely differentiable and vanishes at infinity. The preceding then proved tban be
approximated, at all its “continuity points,” by an infinitely-differentiable function.

Proof of Theorem 2: Becausey, is a density function, we havi(x) = [*, f(x)Kn(y)dyfor all x € R. Therefore,
f (%) — (fxKn)(x / Kn(y X)dy—/_iKn(y)f(X—y)dy
_ / Kn(y ~f(x— y)} dy.
We apply the triangle inequality for integrals to find that
00— (FKn) Xl dx< [ Kn(y) f(x)—f(x—y)\dy
/ X)—f(x—y ‘dy
/ ~ f(x—zh|dz
Fix € > 0, and choosé > 0 such thatf(x) — f(y)| < € whenevelly —x| < §. We split the last integral up in two pieces:

/mK(z)‘f(x)— f(x—2h)|dz

X) — f(x—zh)|dz+ K(2)|f(x) — f(x—zh)|dz
/h\>5 ‘ ’ |zh<§ ()’ ) ( )
(2)
/ ‘ X) — f(x—zh) ’dz+e/ K(z)dz
|zh>6 |zh<é
/ ‘ X) — f (x— zh‘dz+e
|zh>6

We estimate the other integral in the two cases separately. First suggoge< B for all x. Then,

/\Zh\>6 K(Z)’f(x) - f(X_Zh)‘dZS /\zu>5 K(2) (f(X) + f(x—zh)) dz

<[ K@dz
J|Z>6/h
Combine this with (2) to find that
/ K(2)| (0 - f(x—2h|dz< 28 K(2)dz+e.
o 1Z>6/h

As h — 0, the second integral vanishes. BecausétheO-limit of the left-hand side is independent®ft must be zero.
Next, suppos& vanishes at infinity. Choose and fix> 0 small. ThenK(z) < n whenevelz is sufficiently large. Thus, for
all h small,

/IZHNSK(Z)’f(X)ff(x—zh)‘dzg /‘Zh‘>5K(z)(f(x)+f(xfzh))dz
<7 /\z|>5/h (f(X) + f(x—zh)) dz< 2n.

Therefore,

00

lim K(z)’f(x) . f(x—zh)‘dzg 20 +e.



The left-hand side is independentooandn. Therefore it must be zero. O
Theorem 2 really requires some form of smoothness on the pdrtldbwever, there are versions of this theorem that require

nothing more than the fact thétis a density. Here is one such version. Roughly speaking, it states that for “most” value$0f
(Kn* f)(X) =~ f(x) ash — 0. The proof is similar to that of Theorem 2.

Theorem 3 Suppose f and K are density functions. Then,

lim [ (Ko ) () — £(x)] dx=0.

h—0J/ -
There is also a “uniform” version of this. Recall thiats uniformly continuousf
lim max| f (x+¢) — f(x)| =0.
e—0 X
Then, the following can also be proved along the lines of Theorem 2.

Theorem 4 Suppose f and K are density functions, and f is uniformly continuous. Titmgn,o Ky x f = f uniformly; i.e.,

lim ma (Ko « ) (x) — £(x)| =

3 The Kernel Density Estimator

Now supposey, ..., X, are i.i.d. with densityf. Choose and fix a bandwidth> 0 (small), and define
12 X—X; 12
= 2 () =5 et

We can easily compute the mean and variancg(gf, viz.,

Ef(x) = E[Kn(x—X1)]

Varf (x) = }Var (Kn(x—X1))

nhz/()

= 2[5+ )00~ (Kn* £)7(0)].

) dy— T |(Kn+ D)9

Now recall themean-squared error
MSEf(x) = E[|f(x) — f(9|*] = Varf(x) + [Biasf(x)|.

The bias is
Biasf(x) = E[f(x)] — f(X) = (Kn* ) (x) — f(X).

Thus, we note that for a relatively nice kertel
1. Varf(x) — 0 ash — co; whereas
2. Biasf(x) — 0 ash — 0; see Theorem 2.

The question arises: Can we tet= h, — 0 andn — « in such a way that MSE(x) — 0? We have seen that, in one form or
another, all standard density estimators have a sort of “bandwidth” parameter. Optimal choice of the bandwidth is the single-most
important question in density estimation, and there are no absolute answers! We will study two concrete cases next.

10



4 Asymptotically Optimal Bandwidth Selection

Suppose the unknown densitys smooth (three bounded and continuous derivatives, say!). Suppose akaglsgtmmetric [i.e.,
K(a) = K(—a)] and vanishes at infinity. Then it turns out that we can “find” the asymptotically-best value of the bandwitith
Several times in the future, we will appeal to Taylor’s formula in the following form: Fan athall,

f(X*Zh)%f(X)*th()‘Fﬁf "(X). (3)

4.1 Local Estimation

Suppose we are interested in estimatfripcally.” Say, we wish to knowf (x) for a fixed, given value of.
We have seen already that

Biasf(x) = (K f)(x) — f(X)

- ( S RCETR

—/ K(2)f(x—zhdz— f(x).

Therefore, by (3),

Biasf(x)z/_m K(z){f(x)—zhf’( )+227hf ( )}dz—f(x)
— f(x /K 2)dz— hf()[ zK()dz+—f” /ZZK )dz— (%) (4)
L / 2K(2) £(x) 0.

We have used the facts that: (i, K(z)dz=1 (K is a density); and (||)f zK(z)dz= 0 (symmetry).
Now we turn our attention to the variance ffx). Recall that Vaf (x) = (K& £)(x) — (K x f)2(x). We begin by estimating

the first term.
2
X—Uu
K P
—o < h )

(Kﬁ*f)(x):h—lz/m f(u)du

_ %/m K?(2)f (x— zh) dz
Nf'/ K2( { —zhf’()+22hf”()}dz
/K2 dz—f’(x)/ zKZ()dz+ f( /22K2

1
1) [~ K2@)dz= LT IKIE

:)'\H:T\

BecauséKy * f)(x) ~ f(x) (Theorem 2), this yields the following:
~ 1
Var f(x) ~ — f(x)||K][3.
arf(x) ~ — ()| [K3
Consequently, as = h, — 0 andn — oo,
~ 1 h# 2
MSEf (x) & — F(x)[K[|3+ 5 [T (x)| ok ()

Thus, we can choode= h, as the solution to the minimization problem:

min 100 Kk 3+ 170 o

2We are writing||h|3 := /%, h?(z)dzando? := [, %h(z) dzfor any reasonable functidn

11



Figure 7: A plot of the double-exponential density.

Let w(h) denote the terms in brackets. Then,
1 2
v (h) = =5 TOO[K[I3+°[ 1700 oi.

Sety’ = 0 to find the asymptotically-optimal value bf

ok
hn — nl/5 3

where
(F(x)° KIS (K22 d2)

= B = - .
(f//(x))2/5 GI‘(‘/5 (fjooozzK(z)dZ)Z/S
The asymptotically optimal MSE is obtained upon plugging in tiigto (5). That is,

L K13+ ) 7 ot
nl,.h 2 4 K

_ L [TO0lKIE
75 | e
_IKIEP® T109 (9P
B n#/5 (07 4 '

MSEop: f(X) ~

1
oA 00t

Example 5 A commonly-used kernel is the double exponential density. It is described by

1

K(x) = Ee*"“.
See Figure 7 for a plot. By symmetry,
00 1 [ 1 471/5
2 2 A—X 2 _Jx
O '/O xe dx=2, IK15 2./0 e “dx 2 Bk I
Therefore, c
(04;
Similarly,
MSEop: f(X) & D \here =t f9 , [P"0Fef
o F0~ “9E | T8 |

12

(6)

()

(8)

9)

(10)
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Figure 8: A plot of theN(0, 1) density.

Example 6 Let 7 > 0 be fixed. Then, th&l(0, t?) density is another commonly-used example; i.e.,

K(x) = — /)

RNz '
See Figure 8. In this case? = [, 22K (2)dz= 72, and
1 © 2.2 1 1
Kzzi/ _X/Td = — = —\
K2 2772 -’ *= o~ VT 2t\/w
Consequently,
1
Pk=—"rr. (11)
(2ty/m)"®
This yields,
hn = 5 where C= ey (12)
Similarly,

A D
MSEopt f(X) ~ 75 where D= (2rﬁ)4/5

1 [WX) + 7406?””()()'2] : (13)

o 4

4.2 Global Estimation

If we are interested in estimating“globally,” then we need a more global notion of mean-squared error. A useful and easy-to-use
notion is the “mean-integrated-squared error” or “MISE.” It is defined as

MISE]‘A::E[/00 1f(x) - f(x)|2dx} .

—00

It is easy to see that
MISEf:/ MSE(f(x)) dx

Therefore, under the present smoothness assumptions,

. o0 4 oo 0 2
MISEfz:n—lh/ Kz(z)dz+hz/ 1£7(x)|? dx- (/ zZK(z)dz>

(14)
. 1 2 h* 2 ~4
= mHKHZ‘Fan 120K -

See (5). Set
. 1 2 h4 "2 4
y(h) = %HKHz‘*‘ Z”f 120K s

13



so that 1
v(h) =~ KB+ £ 308,
Sety’ = 0 to find the asymptotically optimal bandwidth size for the minimum-MISE:

. C B
h,:= i where = W (15)
See (7) for the notation ofik. The asymptotically optimal MISE is obtained upon plugging in thignto (14). That is,
MISEqp F(X) ~ — [IK|2 hj1f”24
Eopt () = - K[+ 1150k
b c (16)
2/5 8/5 _4/5
= s where D = ZHf”Hz/ HKHz/ GK/ .
Example 7 (Example 5, Continued)In the special case whekeis the double-exponential density,
C 1
hh = ST where C= W. a7
Also,
~ D 5 2/5
MISEop: (x) ~ 7z where D= an”nz/ . (18)
Example 8 (Example 6, Continued)In the special case whekeis theN(0, 72) density,
C 1
hh=—= where C= . (19)
s (20vm) | 17)13°
Also,
cn. D 5 2/5

5 Problems and Some Remedies for Kernel Density Estimators

The major drawback of the preceding computations is lthatepends orf. Typically, one picks a related value bfwhere the
dependence ohis replaced by a similar dependency, but on a known family of densities. But there are other available methods as
well. | will address two of them next.

1. The Subjective MethodChoose various “sensible” values lofe.g., seh = cn %/ and varyc). Plot the resulting density
estimators, and choose the one whose general shape matches up best with your prior belief. This can be an effective way to
obtain a density estimate some times.

2. Reference to Another Densityo be concrete, considéty, for the global estimate. Thus, the optimfalhas the form,
hn = BK||f”|\£2/5n‘1/5. Now replace||f”H§/5 by |\g”||§/5 for a nice density functio. A commonly-used example is
g := N(0,7?) density. Leto(x) = (2r)~Y2exp(—x?/2) be the standard-normal density. Note thyat) = v 1o(x/1).
Thereforeg”(x) = t~3¢" (x/), whence it follows that

lol3= [ [0 ()] ax= [ [0 0P dy=oos [ ¥ (P - 1) dy= oo

75 ) o 2wt - 851’
This is about ®115/7°. So we can choose the bandwidith= [3K||g”||2’2/5n—1/5; ie.,

781/5711/10 Bk
T35 s

To actually use this we need to knaw But our replacement of by g tacitly assumes that the variance of the date?is
i.e., thatt? = [ x? f(x)dx— (%, xf(x)dx)%. So we can estimate? by traditional methods, plug, and proceed to use the
resultingh. If f is truly normal, then this method works very well. Of course, you should also a normal denagtywell

in such cases. However, ffis “far” from normal, then|| f”||> tends to be a lot larger thaiy”||2. Therefore, ouh is much
larger than the asymptotically optimia]. This results irover smoothing

SWe may note that by choosirig correctly, we can ensure thhl(H% is small. In this way we can reduce the size of MbaEf, for instance. But the stated
problem with the bandwidth is much more serious.
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6 Bias Reduction via Signed Estimators

One of the attractive features of kernel density estimators is the property that they are themselves probability densities. In particular,
they have the positivity propertf,(x) > 0 for all x. If we did not need this to hold, then we can get better results. In such a case
the end-result needs to be examined with extra care, but could still be useful.

So now we suppose that the kerkehas the following properties:

e [SymmetryK(x) = K(—Xx) for all x;
o [T K(X)dx=1;

o ux(K) =0, whereu,(K) := [© x‘K(x)dx;

o uy(K) #0.
Then, we proceed with a four-term Taylor series expansionidfsmall then we would expect that
h?a? h3a® h*a* |,
N ~ o / e en A 1/ A c(iv)
f(x—ha) = f(x) — haf'(x) + 5 f"(x) 5 f7(x) + 24f (X).
Therefore,

Biasf(x) = (Kn+ £)(x) — f () = /m %K (X - “) F(u) du— f(x)

—00

_ /m K(a)f(x—ah)da— f(x)

g 22 3,3 4 4
N/ [ —haf(x)+ hza f”(x)—h; f’”(x)+h2f‘1 V()| da— f(x)

— ) 10

Thus, the bias is of the ordéf. This is a substantial gain from before when we insistedkhia¢ a density function. In that case,

the bias was of the ordér see (4).
We continue as before and compute the asymptotic variance, as well:

(K2 * ) (x) = h—lz/ Kz( h) / K2(a)f(x—ah)da
H/ K%(a { haf/()+hf()]da

i [ kane o KB
h
as before. Thus, as before, )
oy L2 2] o IKIZF(X)
Var f(x) = = [(Kh*f)(x)_(Kh*f) (x)} e
Therefore, )
ey o IKIZFO0 o B Ty 02
MSEf(x) ~ 1= 2 +u4(K)576[f (x)} . 1)
Write this, as before, ag(h), and compute
O IKIEFOO 2 N T o2
y() = - EI2T00 2 0 Trog]

Sety/(h) = 0 to find that there exist constar@sD, andE, such thah, = Cn~/9, MSEf(x) ~ Dn~#/®, and MISEf ~ En~#/9, |
will leave up to you to work out the remaining details (e.g., com@t®, andE). Instead, let us state a few examples of kernels
K that satisfy the assumptions of this section.

Example 9 A classical example is

K(x) = 3(3-5x2), if |x <1,
o, otherwise

A few lines of calculations reveal that: (K is symmetric; (i) [, K(x)dx = 1; (iii) [~ x°K(x)dx = 0; and (iv) us(K) =
[2.X*K(X)dx= —3/35+# 0.
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Example 10 We obtain another family of classical examples, due to W. R. Schucany and J. P. Sdhibydisst choosing a
(proper probability density) kerné&l, and then modifiying it as follows: Lat > 1 be fixed, and define

Ky (X) = (VZVZ 1) {K(x)—vlaK (t)} .

SupposeK is symmetric and has four finite moments. Then, a few lines of calculations reve# treattisfies the conditions
of the kernels of this section. Namely: &), is symmetric; (i) [, Ky (x)dx = 1; (iii) [“ x?°K,(x)dx=0; and (iv) us(Ky) =
L2, X* Ky (x) dx = —v2u4(Ky) # 0. Schucany and Sommers recommend using valuesiudt are> 1, but very close to one.

7 Cross-Validation

Let f denote the kernel density estimatorfobased on a reasonable (density) keieDefine the integrated squared error as

/w |f"(x)_f(x)|2dx:/°° |f(x)|2dx_2/°° f(x)f(x)dx+/°° £ (02 dx

One way to find an optimdi, then, is to minimize this over dfl, and find the (an?) that minimizes the mentioned error. Because
the last term in the display depends bfand not onh], our problem is reduced to the following:

inR(f
minR(f),
where

R() ::Li|f(x)|2dx—2[i £00f (x)dx

Of course, this containg, and so need to be estimate first. The naive thing to do is to estiffiate(x) f (x) dx by [, |f(x)[2dx
and then minimize oven. But then our estimate fd®(f) becomes- [ |f(x)|2dx, whose minimum is nearly alwaysw, and is
achieved ah = 0 [a bad bandwidth!].

We estimate/*, f(x) f (x) dx by a resampling method called “cross validation.” We will return to resampling methods later on.

For all 1< i < ndefine
fi(x) = n=1n E K <h ) .

1<7%n

j#i
In words: Remove; from the data and then Idf be the resulting kernel density estimate for the modified data. Note that

= [600) = g, 2 [ K (55) roaraxay
i#

_ %/:’/:’K (’?) £(x)f(y) dxdy

= [ (ax Y1)y

This uses the fact that the random functifiis independent oX;. Because H (x)] = (Kn * f)(x), we have also that

EUZ f(x)f(x)dx} :/Z(Kh*f)(x)f(x)dx:E[ﬂ(X.-)].

The left-hand side does not dependioB8o we can average it to find that

E [iéﬂ(m] _E /_Z f”(x)f(x)dx] :/_Zfz(x)dx

But we can expect that if is large, then with high probability,

iiﬁ(xi)zE[iiﬁ(Xa)- and /_Zf(x)f(x)dxz/_zfz(x)dx

4W. R. Schucany and J. P. Sommers (1977), Improvement of kernel type density estidAS#z2, 420-423.
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Thus, we are led to the cross-validation estimatory " ; fi(X) of [, f(x)f(x)dx In order to find a good bandwidth, we solve

mhmT(h),

where

T(h) = /_Z 1F(0)[2 dx— iiﬂ(m.

A practical method of “solving” this minimization problem is this: Compiliigh) for a large group of's of the formh = cn1/5,
and choose the bestamongst that group. There are theoretical justifications that this method works, but they involve (very)
large-sample analysis.

8 Consistency

It turns out that under some conditions layK, etc. the kernel density estimator is consistent. That is, there is a sense in which
f ~ f for nlarge. We analyze three cases of this phenomenon:

1. Fixx e R. Then, we want to know that under some reasonable conditionsf {xh= f (x) in probability. This is “pointwise
consistency.”

2. We want to know that under reasonable conditidns, f in some global sense. A strong case can be made for the so-called
“L! distance” between andf. That is, we wish to know that under some natural conditions, L/, | f (x) — f(x)]dx=0
in probability. This is “consistency in'.”

3. For some applications (e.g., mode-finding), we need to know that|miax — f(x)| — 0 in probability. This is the case of
“uniform consistency.”

8.1 Consistency at a Point

In this subsection we study that case where we are estimétijglocally. That is, we fix some point € R, and try to see if
f(x) ~ f(x) for large values ofi. For this to make sense we need to bandwhith depend om, and go to zero as — . We
shall writehy, in place ofh, but thish, need not be the asymptotically optimal one that was referred to earlier. This notation will be
adopted from here on.
The following is a stronger form of a classical consistency theorem of E. Parzen.

Theorem 11 (Parzen)Let us assume the following:
1. K vanishes at infinity, andi”, K2(x) dx < co;
2. hy —0as n— o; and
3. nhp — w0 as n— oo,
Then, whenever f is continuous in an open neighborhood of x Wefr(a)/ez f(x), as n— oo.

Proof: Throughout, we choose and fix amround whichf is continuous.
Recall from page 10 that

Ef () = (Kn, * F)(%),
A 1
Var f( = - [(Kﬁn £ ) (%) — (Kp, * f)z(x)} .
It might help to recall the notation on convolutions. In particular, we have
1 X—
(6100 =5 [ k2 (XY 1y
nJ—® n

Note thatk? is really short-hand fo¢K,)?. Let G(x) := K?(x) to find then that

(KB + 1) 00 = - (Gryx D) (X

5E. Parzen (1962). On estimation of a probability density function and n#otie, Math. Statist33, 1065—-1076.
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Now, G(x)/ [ K2(u)duis a probability density that vanishes at infinity. Therefore, we can apply Theorei@ fotéind that

(K2 ) (x) ~ %X)/ K2(u)du.
n —o00
Another application of Theorem 2 shows tliKf,  f)(x) — f(x). Therefore,

Var f (x) ~ % [fr(]x) /_m K2(u)du— f(x)} ~ L(—r);)/_m K2(u)du. (22)

Sincenh, — 0, this proves that Vd?(x) — 0 asn — o, Thanks to the Chebyshev inequality,

fx)—Ef(x) 2 0.

But another application of Theorem 2 shows thatlim Ef (x) = f(x), becausé, — 0. The theorem follows. O

8.2 L!'-Consistency

Here we prove a weaker formulation of a theorem of L. Devi®b¥iéae following is a global counterpart of the local Theorem 11.

Theorem 12 (Devroye) Suppose K is bounded; b 0, and nh, — o as n— . Then, as n— o,

/_m £ — £(x)] dx % 0.

Before we prove this let us state two facts: One from real analysis, and one from probability.

Lemma 13 (The Cauchy—Schwarz Inequality)Let h be a nonnegative function andxr0 a fixed number. Then,

/j:]\/deg ,/Zm/in;h(x)dx,

Proof: LetU be distributed uniformly ofi—m, m). Then,

m m
i/ Vhijdx=E[v/h(U)], and i/ h(x)dx= E[h(U)].
2m -m 2m -m
But EZ < \/E(Z?2) for all nonnegative random variabl&s’ Apply this withZ = y/h(U) to finish. O

Lemma 14 If K is bounded above everywhere by some constant B, then

Varf (x) < %(Khn* f)(x).

Proof: During the course of the proof of Theorem 11 we saw that
Fi) — (k2 2 12
Var f (x) = - (Ki = ) (%) — (Kpy * £)7 () | < - (Kg = ) (x).
Because & K(a) < Bfor all a, it follows thatKﬁn(a) < (B/hn)Kp, (&) for all a. Thus, the lemma follows. O

Proof of Theorem 12:If h andg are density functions, we consider
Ih=gls:= [ (3 —g(|dx
This is the so-calleti'-norm, and forms a global measure of howlfiaandg are.

Define
M(x) := Ef(x).

6L. Devroye (1983). The equivalence of weak, strong and complete convergence in density estimitidarikernel density estimate#&\nn. Statis. 11,
896-904.
"This follows immediately from the fact thatQ VarZ = E(z?) — |EZ|?.
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Note that/“, M(x)dx=E [*, f(x)dx= [, (Kn* f)(x)dx= 1. ThereforeM is a probability density function. Moreover,

+/{‘X‘>m} E[f(x) — Ef(x)|dx

wherem > 0O is large but fixed. Now recall that # is a nonnegative random variable then € /E(Z2).Therefore,

E||f—M||1</ JVarf(x) dx+/ E|f(x) — Ef(x |dx</ JVarf(x) dx+2/ Ef(x)dx

{Ix/>m} {Ix>m}

—/ JVarf(x) dx+2/ (K, + ) (x) dx

{Ix>m}

E||f_|v|||1:/:)E|f(x)—Ef(x)\dX=[:Elf(x)—Ef(X) d

x

The last inequality follows from the facts that: ) f are nonnegative; and so (iif (x) — Ef(x)| < f(x) + Ef(x). Lemma 14
applies and we have the following bound:

R B /m
E|f —M]|x < ,/m/_m./(Khn*f)(x)dx+2 o (K= 0000

By the Cauchy—-Schwarz inequality,

1) s JZm/_:mhn* £ (x) dx< \/Zm/_fo(Khn* ) () dx= v2m,

lim E[|f =M1 < lim ,/%ﬂzm (Kp,  f) () dx= 2 lim (Kp, * ) (X) dx

=0 J{x>m} =0 J{[x|>m}

/{‘X|>m}(Khn* f)(x)dx:/{xl>m}hln/°;|< (Xh—ny> f(y) dy dx— /:)K(Z) </{y+zm>m} f(y)dy) dz

Becausé, — 0, a standard theorem of integration theory implies the following:

o, {>m) (Ko x £) ()= /—eo K& </{y>m} f(y)dy> dz= -/{|y\>m} Fy)dy

As a result, the following holds for ath > 0:

Hence,

But

lim E||f —M|[1 <2 f(y)dx
n—eo {lyl>m}

Let m— o to deduce that lim..., E|| f — M||; = 0. On the other hand, it is not hard to verify the “triangle inequality, f||; <
| f —M||1+ |[M — f||1. Therefore, it remains to prove thil — f||; — 0 asn — . But

IM—flls = |Ef — flls=||(Kn,* ) — fl1 =0,

thanks to Theorem 3. O

8.3 Remarks on theL1-Norm

SupposeX, converges in distribution tX, and assume tha¢ has a densityf. Let Fy(x) := P{X, < x} andF(x) = [ f(u)du=
P{X < x}. Then, convergence in distribution, in this setting, amounts to the limit theorem: diff,(x) = F(x) for all xe R. A
little observation of Pgla asserts that a slightly stronger statement is true in this case. Namely, thaEgtax— F(x)| — 0 as
n — oo. [This really needs the continuity &f.]

There is another notion of convergence “in distribution.” We sayXqatonverges ta in total variationif

r!im mAax\P{Xn €A} —P{XeA}|=0
The maximum is taken over all (measurable) getblote that

m)?x\Fn(x) —F(x)|= max P{Xn € (-, X} —P{X € (—m,x]}' < mEx‘P{Xn e Al —P{X eA}|

8The requisite theorem is the so-called “dominated convergence theorem” of H. Lebesgue.
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Therefore, convergence in total variation certainly implies convergence in distribution. The converse, however, is false. A notable
counter-example in statistics is the most important classical CLT for binomial random variables.
Let By ~ binomialn,1/2). Then we know that

By—(n/2)

Vo4

Let F, andF denote the respective distribution functionsé@fandX. Because& has a nice density function it follows from Bal's
theorem that maxF,(x) — F(X)| — 0 asn — «. However, it is not the case thXt converges tX in total variation. Indeed,
maxa |P{X, € A} — P{X € A}| = 1. To see this, sék to be the collection of all real numbers of the fott- (n/2))//n/4, ast
ranges over all integers {0, ...,n}. Evidently, RX, € A} =1 and RX € A} = 0. It follows thatconvergence in total variation is
a much stronger statement than convergence in distribufitie.following shows why the!-norm is a natural measure of distance
between densities.

Xq i= 4 X :=N(0,1).

Theorem 15 (Schefé) Let X and Y be two continuous random variables with respective density functiamsl fi,. Then,

/:n fx(@) ~ fy(@)] da=2max[P(X € A} - P{Y € A},

Proof: For simplicity, define
drv(X,Y) = mAax|P{X e A} —P{Y e A}|.

For any sefj,
[ (x(@~tv(@) da= [ (fv(a)~ fx(a)) da (23)
A AC

To prove this collect the terms involvinig on one side and those involvirfg on the other to find that £ 1.
Now define the (measurable) set
A.:={aeR: fx(a)> fy(a)}.

Notice that
’P{XGA*}—P{YGA*}’:/A (fx(a)—fy(a))da:/A I (a) — fy(a)| da

But |P{X € A} — P{Y € A}| = |P{X € A®} — P{Y € A®}|. Therefore,
PiXeA}—PIYeA}|= [ (f(@)-fx(@)da= [ |ix(@~v(a)|da
Add the two displays to find that

20r(X,Y) > 2P{X €A}~ P(Y €A} = /:|fx(a) ~ fy(a)| da

This proves half of the theorem.
For the converse, suppoAds an arbitrary (measurable) set, and recall the definitiol.ofVe have

/Afx(a)da—/Afy(a)da

:‘/ (@~ fv(@) da+ [ (fx(a)— fv(a) da
ANA, ANAL

:‘/ fx(a) ~ (@) da- [ [fx(a) ~ fy(a)|da
JAnA, Janac
< max{/AQA* Ifx(a) — fy(a)| da, _/MAC I (a) — fy (a)| da},

becausdz— w| < max{z,w} for any two positive numbere andz. If we now replaceAN A, by A, the right-most term in the
display increases. The same is valid if we replAceAS by AS. Therefore,

|P{XeA}—P{YeA}|§max{//;|fx(a)—fy(a)|da,/A§|fx(a)—fy(a)|da}.

Thanks to (23) the two integrals are equal. Therefore, they must equal half of their sum. However, their[Synf,iga) —
fy(a)| da. Maximize overA to obtain the result. O
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Now let us return to kernel density estimation in the context of Theorem 12. Recafl tivat f are densities, althougﬁ is
random.
Define a second empirical distribution function that is based on our kernel density estimate; i.e., let

~ a ~
Fn(a) ::/ f(x) dx forallaeR.

By Schefé’s theorem,

P
mAax — 0 asn— .

/Adﬁn(x)_/AdF(x)

[If you want to understand this rigorously, then be aware that these are Stieldtjes integrals.] However, it is not hard to see that this
fails if we replaceR, by the usual empirical distribution functids. This shows that the empirical distribution function based on
f provides a better approximation to the usual empirical distribution function.

8.4 Uniform Consistency

Theorem 12 is a natural global-consistency theorem. But it falls shy of addressing an important application of density estimation
to which we will come in the next subsection. That is, estimating the mode of a density. [This was one of the original motivations
behind the theory of kernel density estimation. See E. Parzen (1962), On estimation of a probability density function and mode,
Ann. Math. Statist33, 1065-1076.] Here we address the important isswmiddrm consistencyThat is, we seek to find reasonable
conditions under which maxf (x) — f (x)| converges to zero in probability.

First we recall a few facts from Fourier analysishlis integrable then itBourier transformis the function# h defined by

(Fh)(t) := /‘m é*h(x)dx,  forallt eR.

J —00

Note that whenevdr := f is a density function, and it is the case for us, then,
(F)(t) =E[e™], (24)

and so¥ f is just the characteristic function ¥ [See the Probability Notes.] We need the following deep fact from Fourier/harmonic
analysis. In rough terms, the following tells us that after multiplying 2w) 2, the definition of#h can be formally inverted to
yield a formula forh in terms of its Fourier transform.

Theorem 16 (Inversion Theorem) Suppose h and-h are both [absolutely] integrable. Then, for alkxR,

h(x) = % L Z e (Zh)(t) dt.

The condition thah is integrable is very natural. For u,is a probability density, after all. However, it turns out that the
absolute integrability of# h implies thath is uniformly continuousSo this can be a real restriction.
Now note that

o n o _X. n 0
(Z)(t) :/ & F(x) dx = % Z/ &K <thxl) dx= % S e"xi/ MK (y) dy

= % S X (ZK) (hat).
j=1

In particular,.Z f is integrable as soon a&K is. If so, then the inversion theorem (Theorem 16) tell us that

1

n .
-+ LS 6 (7K) () .

n =1

0 . . n 0 © .
f(x) / e*'tx(,ﬁzf)(t)dtzz—jlm z/ e't(xi”‘)(fK)(hnt)dt:%/ e i
—o0 = —o0 —o0

Take expectations also to find that
Ef(x) 1 / e YE[eP] (ZK)(hnt) dt.

- E —00
Therefore,
00~ EF() = 5 [ & ™ (gn(t) ~ Egn(t)) (FK) (B .
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wheregy, is the “empirical characteristic function,”

n .
On(t) 1 g, forallteR.
n&
Becausée™| < 1, the triangle inequality yields,
p 1
max| £~ EF(] < 5= [ [6n(®) — Edn(0)] |(FK) ()| . (25)

Take expectations and use the by-now familiar bouf#j E \/E(Z?) [see the footnote on page 18] to find that

E(m)zax|fA(x) _2 / VVargn(t) |(ZK)(hpt)| dt.

[Caution: WhenZ is complex-valued, by V& we really mean EZ — EZ|2.] Now, we can writee™Xi = coqtXj) +isin(tX;).
Therefore (check!), ‘
Vare™i = Var cogtX;) + Var sintX;) < E [cog(tX;) + si?(tXj)] = 1.

Even itZ,,...,Z, are complex-valued, as long as they are i.i.d.,yjél:rlzj = z?=1Vaij (why?). Therefore, Vagin(t) < 1/n. It
follows then that

E(mxax\f( Ef() (ZK)(hqt)| dt

—Zf

27thn\f

This and Chebyshev’s inequality together implies thdi,if/n — c then max|f(x) — Ef(x)| — 0 in probability. Next we prove
that if f is uniformly continuous anti, — 0, then

()| ds

m)gax}EfA(x) —f(x)| =0,  asn— oo (26)
If this is the case, then we have proved the following celebrated theorem of Parzen (1962).

Theorem 17 (Parzen) Suppose f is uniformly continuougK is integrable, i — 0, and h+/n — . Then,

max f) - f(x| >0, asn—o.

Proof: It remains to verify (26). But this follows from Theorem 4 and the fact thedE= (K, * f)(x). O

Remark 18 The condition thah,,/n — o can be improved (slightly more) to the following:

— — 00 asShn— oo,
logn

This improvement is due to M. Bertrand-RetaBut this requires more advanced methods.

What does the integrability condition oK mean? To start with, the inversion theorem can be used to show that if
O (ZK)(t)|dt < « thenK is uniformly continuous. But the integrability o K is a little bit more stringent than the uni-
form continuity ofK. This problem belongs to a course in harmonic analysis. Therefore, rather than discussing this issue further
we show two useful classes of examples where this condition is verified. Both are the examples that have made several appearance
in these notes thus far.

Remark 19 Suppose is theN(0, 72) density, wherer > 0 is fixed. Then,ZK is the characteristic function ofi(0,72) random
variable; see (24). But we saw this earlier in the Probability Notes. The computation is as follows:

(ZK)(t) =e /2, forallt € R.

Obviously,#K is integrable. In fact,

/_m (FK) ()] dt = /_m e P24t — | fon ).

9M. Bertrand-Retali (1978). Convergence uniforme d’un estimateur de la dgmmita néthode de noyalRev. Roumaine Math. Pures. ApgB, 361-385.
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Figure 9: An Example of Modes.

Remark 20 Suppose&(x) = %e*'x‘ is the double exponential density. Then,

(3’7K)(t) _ }/m e—|x\+itdeZ }/me—x-s-itdeJr}/o e9<+it>< dx = }/w e—x+it><dx+g/oo e—x—itxdx
2 —00 2 0 2 —o00 2 0 2 0

The first integral is the characteristic function of an exponential random variable with mean one. Therefore, it is given by
Jo e ™Xdx=1/(1—it). Plug—t in place tot to find the second integralfy’ e *™dx = 1/(1+it). Add and divide by

two to find that

11 1 1 1
(ﬂK)(t)—zL_itJrlJrit]—1+t2, forallt € R.

Evidently, this is integrable. In fact,
® dt

[ eold= [ 55—

9 Hunting for Modes

Let f be a density function oR. A modefor f is a position of a local maximum. For example, Figure 9 depicts a density plot for
the density function

[(X) = 50100 + 502(%),

whereg; is theN(0,0.4) density andp, is theN(2,0.2) density function. Becauskhas two local maxima, it has two modes: One
isx = 0; and the other ig = 2.

In general, the question is: How can we use data to estimate the mode(s) of an unknown density f@nthiermnswer is very
simple now: If we know thaf ~ f uniformly (and with very high probability), then the mode(s)fohaveto approximate those
of f with high probability. This requires an exercise in real analysis, and is omitted.
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