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1 Introduction

The basic problem in density estimation is this: SupposeX1, . . . ,Xn is an independent sample from a density functionf that is
unknown. In many cases,f is unknown only because it depends on unknown parameter(s). In such cases, we proceed by using
methods that are discussed in Math 5080–5090. For example, ifX1, . . . ,Xn ∼ N(µ ,σ2), then the density is

f (x) =
1

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
.

Then, we estimatef by

f̂ (x) =
1

σ̂
√

2π
exp

(
− (x− µ̂)2

2σ̂2

)
,
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whereµ̂ = X̄n andσ̂2 = (1/n)∑n
i=1(Xi − X̄n)2 are the usual (maximum likelihood) estimates of mean and variance.

Here, we are studying the more interesting case thatf is generally unknown. In this more general case, there are several
different approaches to density estimation. Later on we shall concentrate our efforts on the socalled “kernel density estimators.”
But for now, let us begin with a discussion of the most commonly-used, quick-and-dirty approach: The histogram.

1.1 The Histogram

A standard histogram of dataX1, . . . ,Xn starts with agreeing on a pointx0—called theorigin—and a positive numberh—called
bandwidth. Then, we definebins Bj for all integersj = 0,±1,±2, . . . as follows:

B j := [x0 + jh ,x0 +( j +1)h] .

The ensuinghistogramis the plot of the density estimator,

f̂ (x) :=
1
nh

n

∑
j=1

I
{

Xj is in the same bin asx
}

.

Note that for allx∈ Bk, f̂ (x) is equal to(1/h) times the fraction of the data that falls in bink. The bandwidthh is a “smoothing
parameter.” Ash is increased, the plot of̂f becomes “smoother,” and conversely ash is decreased,̂f starts to look “rougher.”
Fine-tuningh is generally something that one does manually. This is a skill that is honed by being thoughtful and after some
experimentation.
Warnings:

1. Generally the graph of̂f is also very sensitive to our choice ofx0.

2. The resulting picture/histogram is jagged by design. More often than not, density estimation is needed to decide on the
“shape” of f . In such cases, it is more helpful to have a “smooth” function estimator.

3. There are estimators off that have better mathematical properties than the histogram.

Example 1 Consider the following hypothetical data set:

1, 1, 2, 3, 4, 4, 4, 2, 1.5, 1.4, 2.3, 4.8.

Here,n = 12. Suppose we setx0 := 0 andh := 1.5. Then, the bins of interest are

[0,1.5), [1.5,3), [3,4.5), [4.5,6).

Therefore,

f̂ (x) =
1
18
×


3 if 0≤ x < 1.5,

4 if 1.5≤ x < 3,

4, if 3 ≤ x < 4.5,

1, if 4.5≤ x < 6,

=


1/6 if 0≤ x < 1.5,

2/9 if 1.5≤ x < 3,

2/9, if 3 ≤ x < 4.5,

1/18, if 4.5≤ x < 6.

In order to see how changingx0 can change the picture consider insteadx0 = 1. Then,

f̂ (x) =
1
18
×


4 if 1≤ x < 2.5,

4, if 2.5≤ x < 4,

1, if 4 ≤ x < 5.5.

The preceding example showcases the problem with the choice of the origin: By changingx0 even a little bit we can change
the entire shape of̂f . Nevertheless, the histogram can be a useful (i.e., fast) starting-point for the data analyst. For instance, inR,
you first type the expression “X = c(1,1,2,3,4,4,4,2,1.5,1.4,2.3,4.8) ” to get X to denote the data vector of the
previous example. Then, you type “hist(X) ” to produce Figure 1. TheR commandhist has several parameters that you can
use to fine-tune your histogram plotting. For instance,hist(X,breaks=6) produces Figure 2. [Figure 1 can be produced also
with hist(X,breaks=3) .]
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Figure 1: Histogram of the data of Example 1.
Three breaks (automatic).
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Figure 2: Histogram of the data of Example 1.
Six breaks (manual).

3



1.2 The Kernel Density Estimator

Kernel density estimators are a smoother substitute for histograms. We start with a heuristic argument: Ifh is a small number, and
if f is continuous atx, then

f (x)≈ 1
2h

P{x−h < X < x+h}.

Here,X ∼ f , of course. On the other hand, by the law of large numbers, ifn is large then

P{x−h < X < x+h} ≈ 1
n

n

∑
j=1

I
{

x−h < Xj < x+h
}

,

in probability. So we can consider the density estimator

f̂ (x) :=
1

2nh

n

∑
j=1

I
{

x−h < Xj < x+h
}

,

=
1
n

n

∑
j=1

I{|Xj −x| ≤ h}
2h

=
1
n

n

∑
j=1

1
h

w

(
x−Xj

h

)
,

wherew is the “kernel,”

w(x) :=
1
2

I{|x| ≤ 1}.

This definition of f̂ (x) yields a variant of the histogram. In order to obtain a smoother estimator, note that ifh is small then
wh(x) := (1/h)w((x−Xj)/h) is approximately a “delta function atXj ” That is: (1)wh is highly peaked atXj , and (2) the area under
wh is fixed to be one. So our strategy is to replace the role ofw by a smoother function so that a smoother delta function is obtained.

So now consider a “kernel”K. It is a function such thatK(x)≥ 0 and
∫ ∞
−∞ K(x)dx= 1. Then, define

f̂ (x) :=
1
nh

n

∑
j=1

K

(
x−Xj

h

)
.

The parameterh is used to tune the estimator. It is alternatively called thewindow width, thebandwidth, and/or thesmoothing
parameter. Roughly speaking, the kernel desnity estimator puts a smooth but concentrated “bump function” over each observation,
and then averages over the bumps.

1.3 The Nearest-Neighborhood Density Estimator

Let us choose and fix some integerk with the property thatk� n [usually,k≈
√

n.] Then, defineρ1(t)≤ ρ2(t)≤ ·· · ≤ ρn(t) to be
the ordered distances fromt to the sampleX1, . . . ,Xn.1 Then, we can consider

f̂ (x) =
k−1

2nρk(x)
. (1)

This is called thenearest-neighbor density estimator(also known as the “NN density estimator.”) In order to see why it is sensible
first note that iff is continuous atx andr is sufficiently small, then

E

[
n

∑
j=1

I
{

x− r < Xj < x+ r
}]

= nP{x− r < X1 < x+ r} ≈ 2rn f (x).

Therefore, by the law of large numbers, ifn is large then one might expect that

n

∑
j=1

I
{

x− r < Xj < x+ r
}
≈ 2rn f (x),

in probability. Thus, one might expect that forn large, the following has high probability:

n

∑
j=1

I
{

x−ρk(x) < Xj < x+ρk(x)
}
≈ 2ρk(x)n f(x).

1For instance, ifX1 = 1,X2 = 0,X3 = 2, thenρ1(0.6) = 0.4, ρ2(0.6) = 0.6, andρ3(t) = 1.4.
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[This is not obvious becauseρk(x) is a random variable. But remember that we are merely developing a heuristic argument here.]
Because

n

∑
j=1

I
{

x−ρk(x)≤ Xj ≤ x+ρk(x)
}

= k−1,

this leads us to (1).
NN density estimators have some well-known setbacks. Here are two:

1. f̂ is not smooth. Typically, this problem is addressed by using instead

f̂ (x) =
1

nρk(x)

n

∑
j=1

K

(
x−Xj

ρk(x)

)
.

This one performs somewhere between the NN-estimator and the kernel estimator.

2. f̂ is a better estimator off “locally.” For instance, this is a better method if we are interested in the values/shape off near a
pointx. Indeed, we can check easily that∫ ∞

−∞
f̂ (x)dx=

k−1
2n

∫ ∞

−∞

dx
ρk(x)

= ∞.

The reason is thatρk(x)∼ |x| as|x| → ∞. Therefore, the NN estimator is not itself a density function.

1.4 Variable Kernel Density Estimation

Let K be a nice kernel, and choose and fix a positive integerk. Defineδ j,k to be the distance betweenXj and thekth nearest point
in {X1 , . . . ,Xn}\{Xk}. Formally speaking,

δ j,k := min
6̀= j
|Xj −X`|.

Then we consider thevariable kernel density estimator,

f̂ (x) :=
1
n

n

∑
j=1

1
hδ j,k

K

(
x−Xj

hδ j,k

)
.

The “window width”h determines the degree of “smoothing,” andk determines how strongly the window width responds to “local
detail.”

1.5 The Orthogonal Series Method

Supposef is a density on[0,∞). Define

φ0(1) := 1

φ1(x) :=
√

2cos(2πx),

φ2(x) :=
√

2sin(2πx),
...

φ2 j−1(x) :=
√

2cos(2π jx),

φ2 j(x) :=
√

2sin(2π jx),

for j ≥ 1. Then, the theory of Fourier series tells us that

f (x)∼
∞

∑
j=0

f jφ j(x),

where

f j :=
∫ 1

0
f (x)φ j(x)dx,

and “f ∼ ∑∞
j=1 f jφ j ” means that the infinite sum converges inL 2(R) to f . That is,

lim
N→∞

∫ ∞

0

∣∣∣∣∣ f (x)−
N

∑
j=0

f j(x)φ j(x)

∣∣∣∣∣
2

dx= 0.
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Figure 3: Histogram of the variable “GD”.
Thirty breaks.

Now supposeX ∼ f . Then, f j is nothing but E[φ j(X)], and we are led to the law-of-large-numbers estimator

f̂ j :=
1
n

n

∑̀
=1

φ j(X`).

Therefore, we are led to the estimator

f̂ (x) :=
N

∑
j=0

f̂ jφ j(x),

whereM is a large, pre-determined, and fixed constant. This estimator has a serious setback: In general,f̂ (x) need not be≥ 0!

1.6 Maximum Penalized Likelihood Estimation

Define the “likelihood” ofg to be

L (g) := L (g |X1, . . . ,Xn ) :=
n

∏
j=1

g(Xj).

Then we can try to findg that maximizesL (g). Unfortunately, this is doomed to fail. Indeed, letf̂ (x) denote the histogram
with origin x0 = 0 and bandwidthh > 0. Then it is evident that̂f (Xi) ≥ (nh)−1, whence it follows that∏n

j=1 f̂ (Xi) ≥ (nh)−n.
Consequently, maxgL (g)≥ (nh)−n for all h > 0. Leth→ 0 to find that maxgL (g) = ∞.

Although the preceding attempt failed, it is not without its merits. The reason that our first attempt failed was that we are
maximizingL (g) over too many functionsg. Therefore, we can restrict the class ofg’s over which the maximization is taken. For
instance, consider the “penalized log-likelihood,”

`(g) :=
n

∑
j=1

lng(Xj)−λF(g),

whereλ > 0 is a smoothing parameter andF(g) measures the roughness ofg (say!). An example to have in mind isF(g) :=∫ ∞
−∞(g′′(x))2dx. Then, we can try and findg that solves the maximization problem, maxg∈W1,1 `(g), whereW1,1 denotes the class

of all functionsg such that
∫ ∞
−∞(g(x))2dx< ∞ and

∫ ∞
−∞(g′′(x))2dx< ∞.

The statistic∑n
j=1 lng(Xj) corresponds to the goodness of fit;F(g) to smoothness; andλ to how much of each (goodness of fit

versus smoothness) we wish to opt for. The major setback of this method is that it is technically (and computationally)veryhard
and intensive.

2 Kernel Density Estimation in One Dimension

Recall thatX1, . . . ,Xn are i.i.d. with density functionf . We choose and fix a probability density functionK and a binwidthh, and
then define our kernel density estimate as

f̂ (x) :=
1
nh

n

∑
j=1

K

(
x−Xj

h

)
, −∞ < x < ∞.
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Figure 5: Kernel density estimate usingN(0,1)
(h = 0.5).

15 16 17 18 19 20 21 22

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

y

F

density estimate using N(0,1)

Figure 6: Kernel density estimate usingN(0,1)
(h = 0.1).
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Before we start our analysis, let us see how kernel density estimators looks for a certain data set whose variable I call “GD.” In
order to have a reasonable starting point, I have drawn up the histogram of the data. This appears in Figure 3. The number of
breaks was 30. This number was obtained after a little experimentation.

Figures 4, 5, and 6 depict three different kernel density estimates of the unknown densityf . They are all based on the same
dataset.

1. Figure 4 shows the kernel density estimator of “GD” with bandwidthh := 0.5 andK := the double-exponential density; i.e.,
K(x) = 1

2e−|x|. The densityK is plotted in Figure 7.

2. Figure 5 shows the kernel density estimator for the same bandwidth(h = 0.5), but nowK := (2π)−1/2exp(−x2/2) is the
N(0,1) density. The densityK is plotted in Figure 8 for the purposes of comparison.

3. Figure 6 shows the kernel density estimator for the smaller bandwidthh = 0.1, but stillK is still theN(0,1) density.

Before we analyse kernel density estimators in some depth, let us try and understand the general notion of “smoothing,” which
translates to the mathematical “convolution.” In actual practice, you raiseh in order to obtain a smoother kernel density estimator;
you lowerh to obtain a rougher one. Figures 5 and 6 show this principle for the variable “GD.”

2.1 Convolutions

If f andg are two non-negative functions onR, then theirconvolutionis defined as

( f ∗g)(x) :=
∫ ∞

−∞
f (y)g(x−y)dy,

provided that the integral exists, of course. A change of variables shows thatf ∗ g = g∗ f , so that convolution is a symmetric
operation. You have seen convolutions in undergraduate probability already: IfX andY are independent random variables with
respective densitiesf andg, thenX +Y is a continuous random variable also, and its density is exactlyf ∗g.

Quite generally, iff andg are probability densities then so isf ∗g. Indeed,( f ∗g)(x)≥ 0 and∫ ∞

−∞
( f ∗g)(x)dx=

∫ ∞

−∞

∫ ∞

−∞
f (y)g(x−y)dydx=

∫ ∞

−∞

(∫ ∞

−∞
g(x−y)dx

)
f (y)dy= 1,

after a change of the order of integration.
Quite generally, convolution is a “smoothing operation.” One way to make this precise is this: Supposef andg are probability

densities;g is continuously differentiable with a bounded derivative. Then,f ∗g is also differentiable and

( f ∗g)′(x) =
∫ ∞

−∞
f (y)g′(x−y)dx.

The continuity and boundedness ofg′ ensure that we can differentiate under the integral sign. Similar remarks apply to the higher
derivatives off ∗g, etc.

In other words, if we start with a generic density functionf and a smooth oneg, then f ∗g is in general not less smooth thang.
By symmetry, it follows thatf ∗g is at least as smooth as the smoother one off andg.

2.2 Approximation to the Identity

Let K be a real-valued function onR such thatK(x)≥ 0 for all x∈ R, and
∫ ∞
−∞ K(x)dx= 1. That is,K is a density function itself.

But it is one that we choose according to taste, experience, etc. Define for allh > 0,

Kh(x) :=
1
h

K
(x

h

)
.

For example, ifK is the standard-normal density, thenKh is theN(0,h) density. In this case,Kh concentrates more and more
around 0 ash ↓ 0. This property is valid more generally, e.g., ifK “looks” like a normal, Cauchy, etc.

Recall thatK is a density function. This implies thatKh is a density also. Indeed,Kh(x)≥ 0, and∫ ∞

−∞
Kh(x)dx=

1
h

∫ ∞

−∞
K

(x
h

)
dx=

∫ ∞

−∞
K(y)dy= 1,

after a change of variables. The collection{Kh}h>0 of functions is sometimes called anapproximation to the identity. The following
justifies this terminology.

Theorem 2 Let f be a density function. Suppose that either:

8



1. f is bounded; i.e., there exists B such that| f (x)| ≤ B for all x; or

2. K vanishes at infinity; i.e.,lim|z|→∞ K(z) = 0.

Then, whenever f is continuous in an open neighborhood of x∈ R,

lim
h→0

(Kh∗ f )(x) = f (x).

In many applications, our kernelK is infinitely differentiable and vanishes at infinity. The preceding then proves thatf can be
approximated, at all its “continuity points,” by an infinitely-differentiable function.

Proof of Theorem 2:BecauseKh is a density function, we havef (x) =
∫ ∞
−∞ f (x)Kh(y)dy for all x∈ R. Therefore,

f (x)− ( f ∗Kh)(x) =
∫ ∞

−∞
Kh(y) f (x)dy−

∫ ∞

−∞
Kh(y) f (x−y)dy

=
∫ ∞

−∞
Kh(y)

[
f (x)− f (x−y)

]
dy.

We apply the triangle inequality for integrals to find that

| f (x)− ( f ∗Kh)(x)| dx≤
∫ ∞

−∞
Kh(y)

∣∣∣ f (x)− f (x−y)
∣∣∣dy

=
1
h

∫ ∞

−∞
K

(y
h

)∣∣∣ f (x)− f (x−y)
∣∣∣dy

=
∫ ∞

−∞
K(z)

∣∣∣ f (x)− f (x−zh)
∣∣∣dz.

Fix ε > 0, and chooseδ > 0 such that| f (x)− f (y)| ≤ ε whenever|y−x| ≤ δ . We split the last integral up in two pieces:∫ ∞

−∞
K(z)

∣∣∣ f (x)− f (x−zh)
∣∣∣dz

=
∫
|zh|>δ

K(z)
∣∣∣ f (x)− f (x−zh)

∣∣∣dz+
∫
|zh|≤δ

K(z)
∣∣∣ f (x)− f (x−zh)

∣∣∣dz

≤
∫
|zh|>δ

K(z)
∣∣∣ f (x)− f (x−zh)

∣∣∣dz+ ε

∫
|zh|≤δ

K(z)dz

≤
∫
|zh|>δ

K(z)
∣∣∣ f (x)− f (x−zh)

∣∣∣dz+ ε.

(2)

We estimate the other integral in the two cases separately. First suppose| f (x)| ≤ B for all x. Then,∫
|zh|>δ

K(z)
∣∣∣ f (x)− f (x−zh)

∣∣∣dz≤
∫
|zh|>δ

K(z)
(

f (x)+ f (x−zh)
)

dz

≤ 2B
∫
|z|>δ/h

K(z)dz.

Combine this with (2) to find that ∫ ∞

−∞
K(z)

∣∣∣ f (x)− f (x−zh)
∣∣∣dz≤ 2B

∫
|z|>δ/h

K(z)dz+ ε.

As h→ 0, the second integral vanishes. Because theh→ 0-limit of the left-hand side is independent ofε it must be zero.
Next, supposeK vanishes at infinity. Choose and fixη > 0 small. Then,K(z)≤ η whenever|z| is sufficiently large. Thus, for

all h small, ∫
|zh|>δ

K(z)
∣∣∣ f (x)− f (x−zh)

∣∣∣dz≤
∫
|zh|>δ

K(z)
(

f (x)+ f (x−zh)
)

dz

≤ η

∫
|z|>δ/h

(
f (x)+ f (x−zh)

)
dz≤ 2η .

Therefore,

lim
h→0

∫ ∞

−∞
K(z)

∣∣∣ f (x)− f (x−zh)
∣∣∣dz≤ 2η + ε.
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The left-hand side is independent ofε andη . Therefore it must be zero. �

Theorem 2 really requires some form of smoothness on the part off . However, there are versions of this theorem that require
nothing more than the fact thatf is a density. Here is one such version. Roughly speaking, it states that for “most” values ofx∈R,
(Kh∗ f )(x)≈ f (x) ash→ 0. The proof is similar to that of Theorem 2.

Theorem 3 Suppose f and K are density functions. Then,

lim
h→0

∫ ∞

−∞
|(Kh∗ f )(x)− f (x)| dx= 0.

There is also a “uniform” version of this. Recall thatf is uniformly continuousif

lim
ε→0

max
x
| f (x+ ε)− f (x)|= 0.

Then, the following can also be proved along the lines of Theorem 2.

Theorem 4 Suppose f and K are density functions, and f is uniformly continuous. Then,limh→0Kh∗ f = f uniformly; i.e.,

lim
h→0

max
x
|(Kh∗ f )(x)− f (x)|= 0.

3 The Kernel Density Estimator

Now supposeX1, . . . ,Xn are i.i.d. with densityf . Choose and fix a bandwidthh > 0 (small), and define

f̂ (x) :=
1
nh

n

∑
j=1

K

(
x−Xj

h

)
=

1
n

n

∑
j=1

Kh(x−Xj).

We can easily compute the mean and variance off̂ (x), viz.,

E f̂ (x) = E[Kh(x−X1)]

=
∫ ∞

−∞
Kh(x−y) f (y)dy= (Kh∗ f )(x);

Var f̂ (x) =
1
n

Var (Kh(x−X1))

=
1

nh2

∫ ∞

−∞

∣∣∣∣K (
x−y

h

)∣∣∣∣2 f (y)dy− 1
n
|(Kh∗ f )(x)|2

=
1
n

[
(K2

h ∗ f )(x)− (Kh∗ f )2(x)
]
.

Now recall themean-squared error:

MSE f̂ (x) := E
[∣∣ f̂ (x)− f (x)

∣∣2] = Var f̂ (x)+
∣∣Bias f̂ (x)

∣∣2 .

The bias is
Bias f̂ (x) = E

[
f̂ (x)

]
− f (x) = (Kh∗ f )(x)− f (x).

Thus, we note that for a relatively nice kernelK:

1. Var f̂ (x)→ 0 asn→ ∞; whereas

2. Biasf̂ (x)→ 0 ash→ 0; see Theorem 2.

The question arises: Can we leth = hn → 0 andn→ ∞ in such a way that MSÊf (x) → 0? We have seen that, in one form or
another, all standard density estimators have a sort of “bandwidth” parameter. Optimal choice of the bandwidth is the single-most
important question in density estimation, and there are no absolute answers! We will study two concrete cases next.

10



4 Asymptotically Optimal Bandwidth Selection

Suppose the unknown densityf is smooth (three bounded and continuous derivatives, say!). Suppose also thatK is symmetric [i.e.,
K(a) = K(−a)] and vanishes at infinity. Then it turns out that we can “find” the asymptotically-best value of the bandwidthh= hn.

Several times in the future, we will appeal to Taylor’s formula in the following form: For allh small,

f (x−zh)≈ f (x)−zh f′(x)+
z2h2

2
f ′′(x). (3)

4.1 Local Estimation

Suppose we are interested in estimatingf “locally.” Say, we wish to knowf (x) for a fixed, given value ofx.
We have seen already that

Bias f̂ (x) = (Kh∗ f )(x)− f (x)

=
1
h

∫ ∞

−∞
K

(
x−u

h

)
f (u)du− f (x)

=
∫ ∞

−∞
K(z) f (x−zh)dz− f (x).

Therefore, by (3),

Bias f̂ (x)≈
∫ ∞

−∞
K(z)

{
f (x)−zh f′(x)+

z2h2

2
f ′′(x)

}
dz− f (x)

= f (x)
∫ ∞

−∞
K(z)dz−h f ′(x)

∫ ∞

−∞
zK(z)dz+

h2

2
f ′′(x)

∫ ∞

−∞
z2K(z)dz− f (x)

=
h2

2
f ′′(x)

∫ ∞

−∞
z2K(z)dz=:

h2

2
f ′′(x)σ2

K .

(4)

We have used the facts that: (i)
∫ ∞
−∞ K(z)dz= 1 (K is a density); and (ii)

∫ ∞
−∞ zK(z)dz= 0 (symmetry).

Now we turn our attention to the variance off̂ (x). Recall that Var̂f (x) = (K2
h ∗ f )(x)− (Kh ∗ f )2(x). We begin by estimating

the first term.

(
K2

h ∗ f
)
(x) =

1
h2

∫ ∞

−∞

∣∣∣∣K (
x−u

h

)∣∣∣∣2 f (u)du

=
1
h

∫ ∞

−∞
K2(z) f (x−zh)dz

≈ 1
h

∫ ∞

−∞
K2(z)

{
f (x)−zh f′(x)+

z2h2

2
f ′′(x)

}
dz

=
1
h

f (x)
∫ ∞

−∞
K2(z)dz− f ′(x)

∫ ∞

−∞
zK2(z)dz+

h
2

f ′′(x)
∫ ∞

−∞
z2K2(z)dz

≈ 1
h

f (x)
∫ ∞

−∞
K2(z)dz=:

1
h

f (x)‖K‖2
2.

Because(Kh∗ f )(x)≈ f (x) (Theorem 2), this yields the following:2

Var f̂ (x)≈ 1
nh

f (x)‖K‖2
2.

Consequently, ash = hn → 0 andn→ ∞,

MSE f̂ (x)≈ 1
nh

f (x)‖K‖2
2 +

h4

4

∣∣ f ′′(x)
∣∣2 σ

4
K . (5)

Thus, we can chooseh = hn as the solution to the minimization problem:

min
h

[
1
nh

f (x)‖K‖2
2 +

h4

4

∣∣ f ′′(x)
∣∣2 σ

4
K

]
.

2We are writing‖h‖2
2 :=

∫ ∞
−∞ h2(z)dzandσ2

h :=
∫ ∞
−∞ z2h(z)dzfor any reasonable functionh.

11
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Figure 7: A plot of the double-exponential density.

Let ψ(h) denote the terms in brackets. Then,

ψ
′(h) =− 1

nh2 f (x)‖K‖2
2 +h3

∣∣ f ′′(x)
∣∣2 σ

4
K .

Setψ ′ ≡ 0 to find the asymptotically-optimal value ofh:

hn :=
α f βK

n1/5
, (6)

where

α f :=
( f (x))1/5

( f ′′(x))2/5
, and βK :=

‖K‖2/5
2

σ
4/5
K

=

(∫ ∞
−∞ K2(z)dz

)1/5(∫ ∞
−∞ z2K(z)dz

)2/5
. (7)

The asymptotically optimal MSE is obtained upon plugging in thishn into (5). That is,

MSEopt f̂ (x)≈ 1
nhn

f (x)‖K‖2
2 +

h4
n

4
| f ′′(x)|2σ

4
K

=
1

n4/5

[
f (x)‖K‖2

2

α f βK
+

1
4

α
4
f β

4
K | f ′′(x)|2σ

4
K

]
=
‖K‖8/5

2 σ
4/5
K

n4/5

[
f (x)
α f

+
α4

f | f ′′(x)|2

4

]
.

(8)

Example 5 A commonly-used kernel is the double exponential density. It is described by

K(x) :=
1
2

e−|x|.

See Figure 7 for a plot. By symmetry,

σ
2
K =

∫ ∞

0
x2e−x dx= 2, ‖K‖2

2 =
1
2

∫ ∞

0
e−2x dx=

1
4
, βK =

4−1/5

22/5
=

1

24/5
.

Therefore,

hn =
C

n1/5
where C =

α f

24/5
. (9)

Similarly,

MSEopt f̂ (x)≈ D

n4/5
where D =

1

21/5

[
f (x)
α f

+
| f ′′(x)|2α4

f

8

]
. (10)

12



!3 !2 !1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

r

dn
or

m
(r,

 m
ea

n 
= 

0,
 s

d 
= 

1)
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Example 6 Let τ > 0 be fixed. Then, theN(0,τ2) density is another commonly-used example; i.e.,

K(x) =
1

τ
√

2π
e−x2/(2τ2).

See Figure 8. In this case,σ2
K =

∫ ∞
−∞ z2K(z)dz= τ2, and

‖K‖2
2 =

1
2πτ2

∫ ∞

−∞
e−x2/τ2

dx=
1

2πτ
×
√

π =
1

2τ
√

π
.

Consequently,

βK =
1(

2τ
√

π
)1/5

. (11)

This yields,

hn =
C

n1/5
, where C =

α f(
2τ
√

π
)1/5

. (12)

Similarly,

MSEopt f̂ (x)≈ D

n4/5
where D =

1(
2τ
√

π
)4/5

[
f (x)
α f

+
τ4α4

f | f ′′(x)|2

4

]
. (13)

4.2 Global Estimation

If we are interested in estimatingf “globally,” then we need a more global notion of mean-squared error. A useful and easy-to-use
notion is the “mean-integrated-squared error” or “MISE.” It is defined as

MISE f̂ := E

[∫ ∞

−∞

∣∣ f̂ (x)− f (x)
∣∣2 dx

]
.

It is easy to see that

MISE f̂ =
∫ ∞

−∞
MSE( f̂ (x))dx.

Therefore, under the present smoothness assumptions,

MISE f̂ ≈ 1
nh

∫ ∞

−∞
K2(z)dz+

h4

4

∫ ∞

−∞

∣∣ f ′′(x)
∣∣2 dx·

(∫ ∞

−∞
z2K(z)dz

)2

:=
1
nh
‖K‖2

2 +
h4

4
‖ f ′′‖2

2σ
4
K .

(14)

See (5). Set

ψ(h) :=
1
nh
‖K‖2

2 +
h4

4
‖ f ′′‖2

2σ
4
K ,
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so that

ψ
′(h) =− 1

nh2‖K‖
2
2 +h3‖ f ′′‖2

2σ
4
K .

Setψ ′ ≡ 0 to find the asymptotically optimal bandwidth size for the minimum-MISE:

hn :=
C

n1/5
where C =

βK

‖ f ′′‖2/5
2

. (15)

See (7) for the notation onβK . The asymptotically optimal MISE is obtained upon plugging in thishn into (14). That is,

MISEopt f̂ (x)≈ 1
nhn

‖K‖2
2 +

h4
n

4
‖ f ′′‖2

2σ
4
K

=
D

n4/5
where D =

5
4
‖ f ′′‖2/5

2 ‖K‖8/5
2 σ

4/5
K .

(16)

Example 7 (Example 5, Continued)In the special case whereK is the double-exponential density,

hn =
C

n1/5
where C =

1

24/5‖ f ′′‖2/5
2

. (17)

Also,

MISEopt f̂ (x)≈ D

n4/5
where D =

5

216/5
‖ f ′′‖2/5

2 . (18)

Example 8 (Example 6, Continued)In the special case whereK is theN(0,τ2) density,

hn =
C

n1/5
where C =

1(
2τ
√

π
)1/5‖ f ′′‖2/5

2

. (19)

Also,

MISEopt f̂ (x)≈ D

n4/5
where D =

5

214/5π2/5
‖ f ′′‖2/5

2 . (20)

5 Problems and Some Remedies for Kernel Density Estimators

The major drawback of the preceding computations is thathn depends onf . Typically, one picks a related value ofh where the
dependence onf is replaced by a similar dependency, but on a known family of densities. But there are other available methods as
well. I will address two of them next.3

1. The Subjective Method:Choose various “sensible” values ofh (e.g., seth = cn−1/5 and varyc). Plot the resulting density
estimators, and choose the one whose general shape matches up best with your prior belief. This can be an effective way to
obtain a density estimate some times.

2. Reference to Another Density:To be concrete, considerhn for the global estimate. Thus, the optimalh has the form,

hn = βK‖ f ′′‖−2/5
2 n−1/5. Now replace‖ f ′′‖2/5

2 by ‖g′′‖2/5
2 for a nice density functiong. A commonly-used example is

g := N(0,τ2) density. Letϕ(x) = (2π)−1/2exp(−x2/2) be the standard-normal density. Note thatg(x) = τ−1ϕ(x/τ).
Therefore,g′′(x) = τ−3ϕ ′′(x/τ), whence it follows that

‖g‖2
2 =

1
τ6

∫ ∞

−∞

[
ϕ
′′
( x

τ

)]2
dx=

1
τ5

∫ ∞

−∞

[
ϕ
′′(y)

]2
dy=

1
2πτ5

∫ ∞

−∞
e−y2 (

y2−1
)2

dy=
3

8τ5
√

π
.

This is about 0.2115/τ5. So we can choose the bandwidthh := βK‖g′′‖−2/5
2 n−1/5; i.e.,

h =
81/5π1/10

31/5
· τβK

n1/5
.

To actually use this we need to knowτ. But our replacement off by g tacitly assumes that the variance of the date isτ2;
i.e., thatτ2 =

∫ ∞
−∞ x2 f (x)dx− (

∫ ∞
−∞ x f(x)dx)2. So we can estimateτ2 by traditional methods, plug, and proceed to use the

resultingh. If f is truly normal, then this method works very well. Of course, you should also a normal densityK as well
in such cases. However, iff is “far” from normal, then‖ f ′′‖2 tends to be a lot larger than‖g′′‖2. Therefore, ourh is much
larger than the asymptotically optimalhn. This results inover smoothing.

3We may note that by choosingK correctly, we can ensure that‖K‖2
2 is small. In this way we can reduce the size of MISEopt f̂ , for instance. But the stated

problem with the bandwidth is much more serious.
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6 Bias Reduction via Signed Estimators

One of the attractive features of kernel density estimators is the property that they are themselves probability densities. In particular,
they have the positivity property,̂f (x) ≥ 0 for all x. If we did not need this to hold, then we can get better results. In such a case
the end-result needs to be examined with extra care, but could still be useful.

So now we suppose that the kernelK has the following properties:

• [Symmetry] K(x) = K(−x) for all x;

•
∫ ∞
−∞ K(x)dx= 1;

• µ2(K) = 0, whereµ`(K) :=
∫ ∞
−∞ x`K(x)dx;

• µ4(K) 6= 0.

Then, we proceed with a four-term Taylor series expansion: Ifh is small then we would expect that

f (x−ha)≈ f (x)−ha f′(x)+
h2a2

2
f ′′(x)− h3a3

6
f ′′′(x)+

h4a4

24
f (iv)(x).

Therefore,

Bias f̂ (x) = (Kh∗ f )(x)− f (x) =
∫ ∞

−∞

1
h

K

(
x−u

h

)
f (u)du− f (x)

=
∫ ∞

−∞
K(a) f (x−ah)da− f (x)

≈
∫ ∞

−∞
K(a)

[
f (x)−ha f′(x)+

h2a2

2
f ′′(x)− h3a3

6
f ′′′(x)+

h4a4

24
f (iv)(x)

]
da− f (x)

= µ4(K)
h4

24
f (iv)(x).

Thus, the bias is of the orderh4. This is a substantial gain from before when we insisted thatK be a density function. In that case,
the bias was of the orderh2 see (4).

We continue as before and compute the asymptotic variance, as well:(
K2

h ∗ f
)
(x) =

1
h2

∫ ∞

−∞
K2

(
x−u

h

)
f (u)du=

1
h

∫ ∞

−∞
K2(a) f (x−ah)da

≈ 1
h

∫ ∞

−∞
K2(a)

[
f (x)−ha f′(x)+

h2a2

2
f ′′(x)

]
da

=
1
h

f (x)
∫ ∞

−∞
K2(a)da=

‖K‖2
2 f (x)
h

,

as before. Thus, as before,

Var f̂ (x) =
1
n

[(
K2

h ∗ f
)
(x)− (Kh∗ f )2 (x)

]
≈ ‖K‖2

2 f (x)
nh

.

Therefore,

MSE f̂ (x)≈ ‖K‖2
2 f (x)
nh

+ µ
2
4(K)

h8

576

[
f (iv)(x)

]2
. (21)

Write this, as before, asψ(h), and compute

ψ
′(h) =−‖K‖

2
2 f (x)

nh2 + µ
2
4(K)

h7

72

[
f (iv)(x)

]2
.

Setψ ′(h)≡ 0 to find that there exist constantsC, D, andE, such thathn = Cn−1/9, MSE f̂ (x)≈ Dn−8/9, and MISEf̂ ≈ En−8/9. I
will leave up to you to work out the remaining details (e.g., computeC, D, andE). Instead, let us state a few examples of kernels
K that satisfy the assumptions of this section.

Example 9 A classical example is

K(x) =

{
3
8(3−5x2), if |x|< 1,

0, otherwise.

A few lines of calculations reveal that: (i)K is symmetric; (ii)
∫ ∞
−∞ K(x)dx = 1; (iii)

∫ ∞
−∞ x2K(x)dx = 0; and (iv) µ4(K) =∫ ∞

−∞ x4K(x)dx=−3/35 6= 0.
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Example 10 We obtain another family of classical examples, due to W. R. Schucany and J. P. Sommers,4 by first choosing a
(proper probability density) kernelK, and then modifiying it as follows: Letν > 1 be fixed, and define

Kν(x) :=
(

ν2

ν2−1

)[
K(x)− 1

ν3 K
( x

ν

)]
.

SupposeK is symmetric and has four finite moments. Then, a few lines of calculations reveal thatKν satisfies the conditions
of the kernels of this section. Namely: (i)Kν is symmetric; (ii)

∫ ∞
−∞ Kν(x)dx = 1; (iii)

∫ ∞
−∞ x2Kν(x)dx = 0; and (iv)µ4(Kν) =∫ ∞

−∞ x4Kν(x)dx=−ν2µ4(Kν) 6= 0. Schucany and Sommers recommend using values ofν that are> 1, but very close to one.

7 Cross-Validation

Let f̂ denote the kernel density estimator off based on a reasonable (density) kernelK. Define the integrated squared error as∫ ∞

−∞

∣∣ f̂ (x)− f (x)
∣∣2 dx=

∫ ∞

−∞

∣∣ f̂ (x)
∣∣2 dx−2

∫ ∞

−∞
f̂ (x) f (x)dx+

∫ ∞

−∞
[ f (x)|2 dx.

One way to find an optimalh, then, is to minimize this over allh, and find the (an?)h that minimizes the mentioned error. Because
the last term in the display depends onf [and not onh], our problem is reduced to the following:

min
h

R( f̂ ),

where
R( f̂ ) :=

∫ ∞

−∞

∣∣ f̂ (x)
∣∣2 dx−2

∫ ∞

−∞
f̂ (x) f (x)dx.

Of course, this containsf , and so need to be estimate first. The naive thing to do is to estimate
∫ ∞
−∞ f̂ (x) f (x)dx by

∫ ∞
−∞ | f̂ (x)|2dx

and then minimize overh. But then our estimate forR( f̂ ) becomes−
∫ ∞
−∞ | f̂ (x)|2dx, whose minimum is nearly always−∞, and is

achieved ath = 0 [a bad bandwidth!].
We estimate

∫ ∞
−∞ f̂ (x) f (x)dxby a resampling method called “cross validation.” We will return to resampling methods later on.

For all 1≤ i ≤ n define

f̂i(x) :=
1

(n−1)h ∑
1≤ j≤n

j 6=i

K

(
x−Xj

h

)
.

In words: RemoveXi from the data and then let̂fi be the resulting kernel density estimate for the modified data. Note that

E
[

f̂i(Xi)
]
=

1
(n−1)h ∑

1≤ j≤n
j 6=i

∫ ∞

−∞

∫ ∞

−∞
K

(
x−y

h

)
f (x) f (y)dxdy

=
1
h

∫ ∞

−∞

∫ ∞

−∞
K

(
x−y

h

)
f (x) f (y)dxdy

=
∫ ∞

−∞
(Kh∗ f )(y) f (y)dy.

This uses the fact that the random functionf̂i is independent ofXi . Because E[ f̂ (x)] = (Kh∗ f )(x), we have also that

E

[∫ ∞

−∞
f̂ (x) f (x)dx

]
=

∫ ∞

−∞
(Kh∗ f )(x) f (x)dx= E

[
f̂i(Xi)

]
.

The left-hand side does not depend oni. So we can average it to find that

E

[
1
n

n

∑
i=1

f̂i(Xi)

]
= E

[∫ ∞

−∞
f̂ (x) f (x)dx

]
=

∫ ∞

−∞
f 2(x)dx.

But we can expect that ifn is large, then with high probability,

1
n

n

∑
i=1

f̂i(Xi)≈ E

[
1
n

n

∑
i=1

f̂i(Xi)

]
and

∫ ∞

−∞
f̂ (x) f (x)dx≈

∫ ∞

−∞
f 2(x)dx.

4W. R. Schucany and J. P. Sommers (1977), Improvement of kernel type density estimators,JASA72, 420–423.
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Thus, we are led to the cross-validation estimatorn−1 ∑n
i=1 f̂i(Xi) of

∫ ∞
−∞ f̂ (x) f (x)dx. In order to find a good bandwidth, we solve

min
h

T(h),

where

T(h) :=
∫ ∞

−∞

∣∣ f̂ (x)
∣∣2 dx− 2

n

n

∑
i=1

f̂i(Xi).

A practical method of “solving” this minimization problem is this: ComputeT(h) for a large group ofh’s of the formh = cn−1/5,
and choose the bestc amongst that group. There are theoretical justifications that this method works, but they involve (very)
large-sample analysis.

8 Consistency

It turns out that under some conditions onh, K, etc. the kernel density estimator is consistent. That is, there is a sense in which
f̂ ≈ f for n large. We analyze three cases of this phenomenon:

1. Fix x∈R. Then, we want to know that under some reasonable conditions, limn f̂ (x) = f (x) in probability. This is “pointwise
consistency.”

2. We want to know that under reasonable conditions,f̂ ≈ f in some global sense. A strong case can be made for the so-called
“L1 distance” between̂f and f . That is, we wish to know that under some natural conditions, limn→∞

∫ ∞
−∞ | f̂ (x)− f (x)|dx= 0

in probability. This is “consistency inL1.”

3. For some applications (e.g., mode-finding), we need to know that maxx | f̂ (x)− f (x)| → 0 in probability. This is the case of
“uniform consistency.”

8.1 Consistency at a Point

In this subsection we study that case where we are estimatingf (x) locally. That is, we fix some pointx ∈ R, and try to see if
f̂ (x) ≈ f (x) for large values ofn. For this to make sense we need to bandwidthh to depend onn, and go to zero asn→ ∞. We
shall writehn in place ofh, but thishn need not be the asymptotically optimal one that was referred to earlier. This notation will be
adopted from here on.

The following is a stronger form of a classical consistency theorem of E. Parzen.5

Theorem 11 (Parzen)Let us assume the following:

1. K vanishes at infinity, and
∫ ∞
−∞ K2(x)dx< ∞;

2. hn → 0 as n→ ∞; and

3. nhn → ∞ as n→ ∞.

Then, whenever f is continuous in an open neighborhood of x we havef̂ (x) P→ f (x), as n→ ∞.

Proof: Throughout, we choose and fix anx around whichf is continuous.
Recall from page 10 that

E f̂ (x) = (Khn ∗ f )(x),

Var f̂ (x) =
1
n

[(
K2

hn
∗ f

)
(x)− (Khn ∗ f )2 (x)

]
.

It might help to recall the notation on convolutions. In particular, we have

(
K2

hn
∗ f

)
(x) =

1
h2

n

∫ ∞

−∞
K2

(
x−y
hn

)
f (y)dy.

Note thatK2
hn

is really short-hand for(Khn)
2. Let G(x) := K2(x) to find then that

(
K2

hn
∗ f

)
(x) =

1
hn

(Ghn ∗ f )(x).

5E. Parzen (1962). On estimation of a probability density function and mode,Ann. Math. Statist.33, 1065–1076.
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Now, G(x)/
∫ ∞
−∞ K2(u)du is a probability density that vanishes at infinity. Therefore, we can apply Theorem 2 toG to find that

(
K2

hn
∗ f

)
(x)∼ f (x)

hn

∫ ∞

−∞
K2(u)du.

Another application of Theorem 2 shows that(Khn ∗ f )(x)→ f (x). Therefore,

Var f̂ (x)∼ 1
n

[
f (x)
hn

∫ ∞

−∞
K2(u)du− f (x)

]
∼ f (x)

nhn

∫ ∞

−∞
K2(u)du. (22)

Sincenhn → 0, this proves that Var̂f (x)→ 0 asn→ ∞. Thanks to the Chebyshev inequality,

f̂ (x)−E f̂ (x) P→ 0.

But another application of Theorem 2 shows that limn→∞ E f̂ (x) = f (x), becausehn → 0. The theorem follows. �

8.2 L1-Consistency

Here we prove a weaker formulation of a theorem of L. Devroye.6 The following is a global counterpart of the local Theorem 11.

Theorem 12 (Devroye)Suppose K is bounded, hn → 0, and nhn → ∞ as n→ ∞. Then, as n→ ∞,∫ ∞

−∞

∣∣ f̂ (x)− f (x)
∣∣ dx

P→ 0.

Before we prove this let us state two facts: One from real analysis, and one from probability.

Lemma 13 (The Cauchy–Schwarz Inequality)Let h be a nonnegative function and m> 0 a fixed number. Then,∫ m

−m

√
h(x)dx≤

√
2m

∫ m

−m
h(x)dx.

Proof: Let U be distributed uniformly on(−m,m). Then,

1
2m

∫ m

−m

√
h(x)dx= E

[√
h(U)

]
, and

1
2m

∫ m

−m
h(x)dx= E[h(U)] .

But EZ≤
√

E(Z2) for all nonnegative random variablesZ.7 Apply this withZ =
√

h(U) to finish. �

Lemma 14 If K is bounded above everywhere by some constant B, then

Var f̂ (x)≤ B
nhn

(Khn ∗ f )(x).

Proof: During the course of the proof of Theorem 11 we saw that

Var f̂ (x) =
1
n

[(
K2

hn
∗ f

)
(x)− (Khn ∗ f )2 (x)

]
≤ 1

n

(
K2

hn
∗ f

)
(x).

Because 0≤ K(a)≤ B for all a, it follows thatK2
hn

(a)≤ (B/hn)Khn(a) for all a. Thus, the lemma follows. �

Proof of Theorem 12:If h andg are density functions, we consider

‖h−g‖1 :=
∫ ∞

−∞
|h(x)−g(x)|dx.

This is the so-calledL1-norm, and forms a global measure of how farh andg are.
Define

M(x) := E f̂ (x).

6L. Devroye (1983). The equivalence of weak, strong and complete convergence in density estimation inL1 for kernel density estimates,Ann. Statis.11,
896–904.

7This follows immediately from the fact that 0≤ VarZ = E(Z2)−|EZ|2.
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Note that
∫ ∞
−∞ M(x)dx= E

∫ ∞
−∞ f̂ (x)dx=

∫ ∞
−∞(Kh∗ f )(x)dx= 1. Therefore,M is a probability density function. Moreover,

E‖ f̂ −M‖1 =
∫ ∞

−∞
E| f̂ (x)−E f̂ (x)|dx=

∫ m

−m
E| f̂ (x)−E f̂ (x)|dx+

∫
{|x|>m}

E| f̂ (x)−E f̂ (x)|dx,

wherem> 0 is large but fixed. Now recall that ifZ is a nonnegative random variable then EZ≤
√

E(Z2).Therefore,

E‖ f̂ −M‖1 ≤
∫ m

−m

√
Var f̂ (x)dx+

∫
{|x|>m}

E| f̂ (x)−E f̂ (x)|dx≤
∫ m

−m

√
Var f̂ (x)dx+2

∫
{|x|>m}

E f̂ (x)dx

=
∫ m

−m

√
Var f̂ (x)dx+2

∫
{|x|>m}

(Khn ∗ f )(x)dx.

The last inequality follows from the facts that: (i)f , f̂ are nonnegative; and so (ii)| f̂ (x)−E f̂ (x)| ≤ f̂ (x) + E f̂ (x). Lemma 14
applies and we have the following bound:

E‖ f̂ −M‖1 ≤
√

B
nhn

∫ m

−m

√
(Khn ∗ f )(x)dx+2

∫
{|x|>m}

(Khn ∗ f )(x)dx.

By the Cauchy–Schwarz inequality,∫ m

−m

√
(Khn ∗ f )(x)dx≤

√
2m

∫ m

−m
(Khn ∗ f )(x)dx≤

√
2m

∫ ∞

−∞
(Khn ∗ f )(x)dx=

√
2m.

Hence,

lim
n→∞

E‖ f̂ −M‖1 ≤ lim
n→∞

√
2mB
nhn

+2 lim
n→∞

∫
{|x|>m}

(Khn ∗ f )(x)dx= 2 lim
n→∞

∫
{|x|>m}

(Khn ∗ f )(x)dx.

But ∫
{|x|>m}

(Khn ∗ f )(x)dx=
∫
{|x|>m}

1
hn

∫ ∞

−∞
K

(
x−y
hn

)
f (y)dydx=

∫ ∞

−∞
K(z)

(∫
{|y+zhn|>m}

f (y)dy

)
dz.

Becausehn → 0, a standard theorem of integration theory implies the following:8

lim
n→∞

∫
{|x|>m}

(Khn ∗ f )(x)dx=
∫ ∞

−∞
K(z)

(∫
{|y|>m}

f (y)dy

)
dz=

∫
{|y|>m}

f (y)dy.

As a result, the following holds for allm> 0:

lim
n→∞

E‖ f̂ −M‖1 ≤ 2
∫
{|y|>m}

f (y)dx.

Let m→ ∞ to deduce that limn→∞ E‖ f̂ −M‖1 = 0. On the other hand, it is not hard to verify the “triangle inequality,”‖ f̂ − f‖1 ≤
‖ f̂ −M‖1 +‖M− f‖1. Therefore, it remains to prove that‖M− f‖1 → 0 asn→ ∞. But

‖M− f‖1 = ‖E f̂ − f‖1 = ‖(Khn ∗ f )− f‖1 → 0,

thanks to Theorem 3. �

8.3 Remarks on theL1-Norm

SupposeXn converges in distribution toX, and assume thatX has a densityf . Let Fn(x) := P{Xn ≤ x} andF(x) =
∫ x

0 f (u)du=
P{X ≤ x}. Then, convergence in distribution, in this setting, amounts to the limit theorem: limn→∞ Fn(x) = F(x) for all x∈ R. A
little observation of Poĺya asserts that a slightly stronger statement is true in this case. Namely, that maxx |Fn(x)−F(x)| → 0 as
n→ ∞. [This really needs the continuity ofF .]

There is another notion of convergence “in distribution.” We say thatXn converges toX in total variation if

lim
n→∞

max
A
|P{Xn ∈ A}−P{X ∈ A}|= 0.

The maximum is taken over all (measurable) setsA. Note that

max
x
|Fn(x)−F(x)|= max

x

∣∣∣P{Xn ∈ (−∞ ,x]}−P{X ∈ (−∞ ,x]}
∣∣∣≤max

A

∣∣∣P{Xn ∈ A}−P{X ∈ A}
∣∣∣.

8The requisite theorem is the so-called “dominated convergence theorem” of H. Lebesgue.
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Therefore, convergence in total variation certainly implies convergence in distribution. The converse, however, is false. A notable
counter-example in statistics is the most important classical CLT for binomial random variables.

Let Bn ∼ binomial(n,1/2). Then we know that

Xn :=
Bn− (n/2)√

n/4
d→ X := N(0,1).

Let Fn andF denote the respective distribution functions ofXn andX. BecauseX has a nice density function it follows from Polýa’s
theorem that maxx |Fn(x)−F(x)| → 0 asn→ ∞. However, it is not the case thatXn converges toX in total variation. Indeed,
maxA |P{Xn ∈ A}−P{X ∈ A}| = 1. To see this, setA to be the collection of all real numbers of the form(`− (n/2))/

√
n/4, as`

ranges over all integers in{0, . . . ,n}. Evidently, P{Xn ∈ A}= 1 and P{X ∈ A}= 0. It follows thatconvergence in total variation is
a much stronger statement than convergence in distribution.The following shows why theL1-norm is a natural measure of distance
between densities.

Theorem 15 (Scheff́e) Let X and Y be two continuous random variables with respective density functions fX and fY. Then,∫ ∞

−∞
| fX(a)− fY(a)| da= 2max

A

∣∣∣P{X ∈ A}−P{Y ∈ A}
∣∣∣.

Proof: For simplicity, define
dTV(X ,Y) := max

A
|P{X ∈ A}−P{Y ∈ A}| .

For any setA, ∫
A
( fX(a)− fY(a)) da=

∫
Ac

( fY(a)− fX(a)) da. (23)

To prove this collect the terms involvingfX on one side and those involvingfY on the other to find that 1= 1.
Now define the (measurable) set

A∗ := {a∈ R : fX(a) > fY(a)} .

Notice that ∣∣∣P{X ∈ A∗}−P{Y ∈ A∗}
∣∣∣ =

∫
A∗

( fX(a)− fY(a)) da=
∫

A∗
| fX(a)− fY(a)| da.

But |P{X ∈ A}−P{Y ∈ A}|= |P{X ∈ Ac}−P{Y ∈ Ac}|. Therefore,∣∣∣P{X ∈ A∗}−P{Y ∈ A∗}
∣∣∣ =

∫
Ac∗

( fY(a)− fX(a)) da=
∫

Ac∗
| fX(a)− fY(a)| da.

Add the two displays to find that

2dTV(X ,Y)≥ 2
∣∣∣P{X ∈ A∗}−P{Y ∈ A∗}

∣∣∣ =
∫ ∞

−∞
| fX(a)− fY(a)| da.

This proves half of the theorem.
For the converse, supposeA is an arbitrary (measurable) set, and recall the definition ofA∗. We have∣∣∣∣∫

A
fX(a)da−

∫
A

fY(a)da

∣∣∣∣ =
∣∣∣∣∫

A∩A∗
( fX(a)− fY(a)) da+

∫
A∩Ac∗

( fX(a)− fY(a)) da

∣∣∣∣
=

∣∣∣∣∫
A∩A∗

| fX(a)− fY(a)| da−
∫

A∩Ac∗
| fX(a)− fY(a)| da

∣∣∣∣
≤max

{∫
A∩A∗

| fX(a)− fY(a)| da ,
∫

A∩Ac∗
| fX(a)− fY(a)| da

}
,

because|z−w| ≤ max{z,w} for any two positive numbersw andz. If we now replaceA∩A∗ by A∗ the right-most term in the
display increases. The same is valid if we replaceA∩Ac

∗ by Ac
∗. Therefore,

|P{X ∈ A}−P{Y ∈ A}| ≤max

{∫
A∗
| fX(a)− fY(a)| da ,

∫
Ac∗
| fX(a)− fY(a)| da

}
.

Thanks to (23) the two integrals are equal. Therefore, they must equal half of their sum. However, their sum is
∫ ∞
−∞ | fX(a)−

fY(a)|da. Maximize overA to obtain the result. �
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Now let us return to kernel density estimation in the context of Theorem 12. Recall thatf̂ and f are densities, althougĥf is
random.

Define a second empirical distribution function that is based on our kernel density estimate; i.e., let

F̃n(a) :=
∫ a

−∞
f̂ (x)dx, for all a∈ R.

By Scheff́e’s theorem,

max
A

∣∣∣∣∫
A

dF̃n(x)−
∫

A
dF(x)

∣∣∣∣ P→ 0 asn→ ∞.

[If you want to understand this rigorously, then be aware that these are Stieldtjes integrals.] However, it is not hard to see that this
fails if we replaceF̃n by the usual empirical distribution function̂Fn. This shows that the empirical distribution function based on
f̂ provides a better approximation to the usual empirical distribution function.

8.4 Uniform Consistency

Theorem 12 is a natural global-consistency theorem. But it falls shy of addressing an important application of density estimation
to which we will come in the next subsection. That is, estimating the mode of a density. [This was one of the original motivations
behind the theory of kernel density estimation. See E. Parzen (1962), On estimation of a probability density function and mode,
Ann. Math. Statist.33, 1065–1076.] Here we address the important issue ofuniform consistency. That is, we seek to find reasonable
conditions under which maxx | f̂ (x)− f (x)| converges to zero in probability.

First we recall a few facts from Fourier analysis. Ifh is integrable then itsFourier transformis the functionFh defined by

(Fh)(t) :=
∫ ∞

−∞
eitxh(x)dx, for all t ∈ R.

Note that wheneverh := f is a density function, and it is the case for us, then,

(F f )(t) = E
[
eitX1

]
, (24)

and soF f is just the characteristic function ofX. [See the Probability Notes.] We need the following deep fact from Fourier/harmonic
analysis. In rough terms, the following tells us that after multiplying by(2π)−1, the definition ofFh can be formally inverted to
yield a formula forh in terms of its Fourier transform.

Theorem 16 (Inversion Theorem) Suppose h andFh are both [absolutely] integrable. Then, for all x∈ R,

h(x) =
1

2π

∫ ∞

−∞
e−itx(Fh)(t)dt.

The condition thath is integrable is very natural. For us,h is a probability density, after all. However, it turns out that the
absolute integrability ofFh implies thath is uniformly continuous. So this can be a real restriction.

Now note that

(F f̂ )(t) =
∫ ∞

−∞
eitx f̂ (x)dx=

1
nhn

n

∑
j=1

∫ ∞

−∞
eitxK

(
x−Xj

hn

)
dx=

1
n

n

∑
j=1

eitX j

∫ ∞

−∞
eihntyK(y)dy

=
1
n

n

∑
j=1

eitX j (FK)(hnt).

In particular,F f̂ is integrable as soon asFK is. If so, then the inversion theorem (Theorem 16) tell us that

f̂ (x) =
1

2π

∫ ∞

−∞
e−itx(F f̂ )(t)dt =

1
2πn

n

∑
j=1

∫ ∞

−∞
eit (Xj−x)(FK)(hnt)dt =

1
2π

∫ ∞

−∞
e−itx 1

n

n

∑
j=1

eitX j (FK)(hnt)dt.

Take expectations also to find that

E f̂ (x) =
1

2π

∫ ∞

−∞
e−itxE

[
eitX1

]
(FK)(hnt)dt.

Therefore,

f̂ (x)−E f̂ (x) =
1

2π

∫ ∞

−∞
e−itx (φn(t)−Eφn(t))(FK)(hnt)dt,
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whereφn is the “empirical characteristic function,”

φn(t) :=
1
n

n

∑
j=1

eitX j , for all t ∈ R.

Because|eitx| ≤ 1, the triangle inequality yields,

max
x

∣∣ f̂ (x)−E f̂ (x)
∣∣≤ 1

2π

∫ ∞

−∞
|φn(t)−Eφn(t)| · |(FK)(hnt)| dt. (25)

Take expectations and use the by-now familiar bound E|Z| ≤
√

E(Z2) [see the footnote on page 18] to find that

E
(

max
x

∣∣ f̂ (x)−E f̂ (x)
∣∣)≤ 1

2π

∫ ∞

−∞

√
Varφn(t) |(FK)(hnt)| dt.

[Caution: WhenZ is complex-valued, by VarZ we really mean E|Z−EZ|2.] Now, we can writeeitX j = cos(tXj) + i sin(tXj).
Therefore (check!),

VareitX j = Var cos(tXj)+Var sin(tXj)≤ E
[
cos2(tXj)+sin2(tXj)

]
= 1.

Even itZ1, . . . ,Zn are complex-valued, as long as they are i.i.d., Var∑n
j=1Z j = ∑n

j=1VarZ j (why?). Therefore, Varφn(t)≤ 1/n. It
follows then that

E
(

max
x

∣∣ f̂ (x)−E f̂ (x)
∣∣)≤ 1

2π
√

n

∫ ∞

−∞
|(FK)(hnt)| dt

=
1

2πhn
√

n

∫ ∞

−∞
|(FK)(s)| ds.

This and Chebyshev’s inequality together implies that ifhn
√

n→ ∞ then maxx | f̂ (x)−E f̂ (x)| → 0 in probability. Next we prove
that if f is uniformly continuous andhn → 0, then

max
x

∣∣E f̂ (x)− f (x)
∣∣→ 0, asn→ ∞. (26)

If this is the case, then we have proved the following celebrated theorem of Parzen (1962).

Theorem 17 (Parzen)Suppose f is uniformly continuous,FK is integrable, hn → 0, and hn
√

n→ ∞. Then,

max
x

∣∣ f̂ (x)− f (x)
∣∣ P→ 0, as n→ ∞.

Proof: It remains to verify (26). But this follows from Theorem 4 and the fact that Ef̂ (x) = (Khn ∗ f )(x). �

Remark 18 The condition thathn
√

n→ ∞ can be improved (slightly more) to the following:

hn

√
n

logn
→ ∞ asn→ ∞.

This improvement is due to M. Bertrand-Retali.9 But this requires more advanced methods.

What does the integrability condition onFK mean? To start with, the inversion theorem can be used to show that if∫ ∞
−∞ |(FK)(t)|dt < ∞ thenK is uniformly continuous. But the integrability ofFK is a little bit more stringent than the uni-

form continuity ofK. This problem belongs to a course in harmonic analysis. Therefore, rather than discussing this issue further
we show two useful classes of examples where this condition is verified. Both are the examples that have made several appearances
in these notes thus far.

Remark 19 SupposeK is theN(0,τ2) density, whereτ > 0 is fixed. Then,FK is the characteristic function of aN(0,τ2) random
variable; see (24). But we saw this earlier in the Probability Notes. The computation is as follows:

(FK)(t) = e−τ2t2/2, for all t ∈ R.

Obviously,FK is integrable. In fact, ∫ ∞

−∞
|(FK)(t)|dt =

∫ ∞

−∞
e−τ2t2/2dt =

√
2π/τ.

9M. Bertrand-Retali (1978). Convergence uniforme d’un estimateur de la densité par la ḿethode de noyau,Rev. Roumaine Math. Pures. Appl.23, 361–385.
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Figure 9: An Example of Modes.

Remark 20 SupposeK(x) = 1
2e−|x| is the double exponential density. Then,

(FK)(t) =
1
2

∫ ∞

−∞
e−|x|+itx dx=

1
2

∫ ∞

0
e−x+itx dx+

1
2

∫ 0

−∞
ex+itx dx=

1
2

∫ ∞

0
e−x+itx dx+

1
2

∫ ∞

0
e−x−itx dx.

The first integral is the characteristic function of an exponential random variable with mean one. Therefore, it is given by∫ ∞
0 e−x+itx dx = 1/(1− it ). Plug−t in place tot to find the second integral:

∫ ∞
0 e−x−itx dx = 1/(1+ it ). Add and divide by

two to find that

(FK)(t) =
1
2

[
1

1− it
+

1
1+ it

]
=

1
1+ t2 , for all t ∈ R.

Evidently, this is integrable. In fact, ∫ ∞

−∞
|(FK)(t)|dt =

∫ ∞

−∞

dt
1+ t2 = π.

9 Hunting for Modes

Let f be a density function onR. A modefor f is a position of a local maximum. For example, Figure 9 depicts a density plot for
the density function

f (x) =
1
2

φ1(x)+
1
2

φ2(x),

whereφ1 is theN(0,0.4) density andφ2 is theN(2,0.2) density function. Becausef has two local maxima, it has two modes: One
is x = 0; and the other isx = 2.

In general, the question is: How can we use data to estimate the mode(s) of an unknown density functionf ? The answer is very
simple now: If we know that̂f ≈ f uniformly (and with very high probability), then the mode(s) off̂ haveto approximate those
of f with high probability. This requires an exercise in real analysis, and is omitted.
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