Lévy Processes and Stochastic Partial Differential Equations

Davar Khoshnevisan with M. Foondun and E. Nualart
Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar
Lévy Processes: Theory and Applications
August 13-17, 2007
Copenhagen, Denmark

Problem 1

- The stochastic heat equation:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) \quad \forall t \in 0, x \in \mathbf{R}^{d}
$$

Problem 1

- The stochastic heat equation:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) \quad \forall t \in 0, x \in \mathbf{R}^{d}
$$

- Question: Why \exists function solutions only when $d=1$? (Walsh, Dalang-Frangos, Dalang, Pesat-Zabczyk)

Problem 1

- The stochastic heat equation:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) \quad \forall t \in 0, x \in \mathbf{R}^{d}
$$

- Question: Why \exists function solutions only when $d=1$? (Walsh, Dalang-Frangos, Dalang, Pesat-Zabczyk)

Problem 1

- The stochastic heat equation:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) \quad \forall t \in 0, x \in \mathbf{R}^{d}
$$

- Question: Why \exists function solutions only when $d=1$? (Walsh, Dalang-Frangos, Dalang, Pesat-Zabczyk)
- Answer: BM has local times only in $d=1$.

Problem 1

- The stochastic heat equation:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) \quad \forall t \in 0, x \in \mathbf{R}^{d}
$$

- Question: Why \exists function solutions only when $d=1$? (Walsh, Dalang-Frangos, Dalang, Pesat-Zabczyk)
- Answer: BM has local times only in $d=1$.

Problem 1

- The stochastic heat equation:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) \quad \forall t \in 0, x \in \mathbf{R}^{d}
$$

- Question: Why \exists function solutions only when $d=1$? (Walsh, Dalang-Frangos, Dalang, Pesat-Zabczyk)
- Answer: BM has local times only in $d=1$. In fact, \exists function solutions in dimension $2-\alpha$ for all $\alpha \in(0,2]$.

Problem 2

- Weakly interacting system of stochastic wave equations:

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\left(\partial_{x x} u_{i}\right)(t, x)+\sum_{j=1}^{d} Q_{i j} \dot{W}_{j}(t, x) \quad \forall x \in \mathbf{R}, t \geq 0 \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

$\dot{W}_{1}, \ldots, \dot{W}_{d}:=$ i.i.d. white noises; $Q=\left(Q_{i j}\right)_{i, j=1}^{d}$ invert.

Problem 2

- Weakly interacting system of stochastic wave equations:

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\left(\partial_{x x} u_{i}\right)(t, x)+\sum_{j=1}^{d} Q_{i j} \dot{W}_{j}(t, x) \quad \forall x \in \mathbf{R}, t \geq 0 \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

$\dot{W}_{1}, \ldots, \dot{W}_{d}:=$ i.i.d. white noises; $Q=\left(Q_{i j}\right)_{i, j=1}^{d}$ invert.

- Question: When is $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$?

Problem 2

- Weakly interacting system of stochastic wave equations:

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\left(\partial_{x x} u_{i}\right)(t, x)+\sum_{j=1}^{d} Q_{i j} \dot{W}_{j}(t, x) \quad \forall x \in \mathbf{R}, t \geq 0 \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

$\dot{W}_{1}, \ldots, \dot{W}_{d}:=$ i.i.d. white noises; $Q=\left(Q_{i j}\right)_{i, j=1}^{d}$ invert.

- Question: When is $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$?
- Answer: Iff $d<4$.
(Orey-Pruitt, K, Dalang-Nualart; closely-related: LeGall)

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:
- $\{\dot{W}(A)\}_{A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)}:=$ a centered gaussian process.

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:
- $\{\dot{W}(A)\}_{A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)}:=$ a centered gaussian process.
- $\operatorname{Cov}(\dot{W}(A), \dot{W}(B))=|A \cap B| \quad \forall A, B \subset \mathbf{R}_{+} \times \mathbf{R}^{d}$.

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:
- $\{\dot{W}(A)\}_{A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)}:=$ a centered gaussian process.
- $\operatorname{Cov}(\dot{W}(A), \dot{W}(B))=|A \cap B| \quad \forall A, B \subset \mathbf{R}_{+} \times \mathbf{R}^{d}$.
- Identification via Wiener integrals:

$$
\int \phi d \dot{W} \simeq \int_{0}^{\infty} \int_{\mathbf{R}^{d}} \phi(t, x) \dot{W}(t, x) d x d t
$$

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:
- $\{\dot{W}(A)\}_{A \in \mathscr{G}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)}:=$ a centered gaussian process.
- $\operatorname{Cov}(\dot{W}(A), \dot{W}(B))=|A \cap B| \quad \forall A, B \subset \mathbf{R}_{+} \times \mathbf{R}^{d}$.
- Identification via Wiener integrals:

$$
\int \phi d \dot{W} \simeq \int_{0}^{\infty} \int_{\mathbf{R}^{d}} \phi(t, x) \dot{W}(t, x) d x d t .
$$

- The stochastic heat equation: $\exists(?) u:=u(t, x)$ $\left[t \geq 0, x \in \mathbf{R}^{d}\right]$:

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) .
$$

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:
- $\{\dot{W}(A)\}_{A \in \mathscr{G}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)}:=$ a centered gaussian process.
- $\operatorname{Cov}(\dot{W}(A), \dot{W}(B))=|A \cap B| \quad \forall A, B \subset \mathbf{R}_{+} \times \mathbf{R}^{d}$.
- Identification via Wiener integrals:

$$
\int \phi d \dot{W} \simeq \int_{0}^{\infty} \int_{\mathbf{R}^{d}} \phi(t, x) \dot{W}(t, x) d x d t .
$$

- The stochastic heat equation: $\exists(?) u:=u(t, x)$ $\left[t \geq 0, x \in \mathbf{R}^{d}\right]:$

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) .
$$

- Fact 1: Function-valued solution \exists iff $d=1$.

The standard equation

- $\dot{W}:=\{\dot{W}(t, x)\}_{t \geq 0, x \in \mathbf{R}^{d}}$ space-time white noise:
- $\{\dot{W}(A)\}_{A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}^{d}\right)}:=$ a centered gaussian process.
- $\operatorname{Cov}(\dot{W}(A), \dot{W}(B))=|A \cap B| \quad \forall A, B \subset \mathbf{R}_{+} \times \mathbf{R}^{d}$.
- Identification via Wiener integrals:

$$
\int \phi d \dot{W} \simeq \int_{0}^{\infty} \int_{\mathbf{R}^{d}} \phi(t, x) \dot{W}(t, x) d x d t
$$

- The stochastic heat equation: $\exists(?) u:=u(t, x)$ $\left[t \geq 0, x \in \mathbf{R}^{d}\right]:$

$$
\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x) .
$$

- Fact 1: Function-valued solution \exists iff $d=1$.
- Rough explanation: Δ_{x} smooths; \dot{W} makes rough.

The heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.

The heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Consider $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+f(t, x)$ [f nice]

The heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Consider $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+f(t, x)$
[f nice]
- Let

$$
Q_{t}(y):=\frac{1}{(4 \pi t)^{d / 2}} \exp \left(-\frac{\|y\|^{2}}{4 t}\right)
$$

The heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Consider $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+f(t, x)$
[f nice]
- Let

$$
Q_{t}(y):=\frac{1}{(4 \pi t)^{d / 2}} \exp \left(-\frac{\|y\|^{2}}{4 t}\right) .
$$

- Solution:

$$
u(t, x)=\int_{0}^{t} \int_{\mathbf{R}^{d}} Q_{t-s}(x-y) f(s, y) d y d s
$$

The heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Consider $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+f(t, x)$
[f nice]
- Let

$$
Q_{t}(y):=\frac{1}{(4 \pi t)^{d / 2}} \exp \left(-\frac{\|y\|^{2}}{4 t}\right) .
$$

- Solution:

$$
u(t, x)=\int_{0}^{t} \int_{\mathbf{R}^{d}} Q_{t-s}(x-y) f(s, y) d y d s
$$

- Apply to " $f:=\dot{W}$." [Mild solution; Walsh, 1986]

The stochastic heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.

The stochastic heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Mild solution: If \exists, then

$$
u(t, x)=\int_{0}^{t} \int_{\mathbf{R}^{d}} Q_{t-s}(x-y) \dot{W}(d y d s)
$$

The stochastic heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Mild solution: If \exists, then

$$
u(t, x)=\int_{0}^{t} \int_{\mathbf{R}^{d}} Q_{t-s}(x-y) \dot{W}(d y d s)
$$

- Weak solution: A family $u(t, \varphi)$, for nicely tempered φ :

$$
\begin{gathered}
u(t, \varphi):=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left(Q_{t-s} * \varphi\right)(y) \dot{W}(d y d s) . \\
" u(t, \varphi)=\int_{\mathbf{R}^{d}} u(t, x) \varphi(x) d x . "
\end{gathered}
$$

The stochastic heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Mild solution: If \exists, then

$$
u(t, x)=\int_{0}^{t} \int_{\mathbf{R}^{d}} Q_{t-s}(x-y) \dot{W}(d y d s)
$$

- Weak solution: A family $u(t, \varphi)$, for nicely tempered φ :

$$
u(t, \varphi):=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left(Q_{t-s} * \varphi\right)(y) \dot{W}(d y d s)
$$

$" u(t, \varphi)=\int_{\mathbf{R}^{d}} u(t, x) \varphi(x) d x . "$

- $\varphi \mapsto u(t, \varphi)$ is a linear gaussian distribution [Itô; Menshov].

The stochastic heat equation

- $\partial_{t} u(t, x)=\left(\Delta_{x} u\right)(t, x)+\dot{W}(t, x)$.
- Mild solution: If \exists, then

$$
u(t, x)=\int_{0}^{t} \int_{\mathbf{R}^{d}} Q_{t-s}(x-y) \dot{W}(d y d s)
$$

- Weak solution: A family $u(t, \varphi)$, for nicely tempered φ :

$$
u(t, \varphi):=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left(Q_{t-s} * \varphi\right)(y) \dot{W}(d y d s)
$$

$" u(t, \varphi)=\int_{\mathbf{R}^{d}} u(t, x) \varphi(x) d x . "$

- $\varphi \mapsto u(t, \varphi)$ is a linear gaussian distribution [Itô; Menshov].
- Need:

$$
\mathrm{E}\left(|u(t, \varphi)|^{2}\right)=\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s<\infty
$$

The stochastic heat equation

- Plancherel's theorem:

$$
\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s
$$

The stochastic heat equation

- Plancherel's theorem:

$$
\int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s
$$

The stochastic heat equation

- Plancherel's theorem:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2\|\xi\|^{2}(t-s)}|\hat{\varphi}(\xi)|^{2} d \xi d s
\end{aligned}
$$

The stochastic heat equation

- Plancherel's theorem:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2\|\xi\|^{2}(t-s)}|\hat{\varphi}(\xi)|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}}|\hat{\varphi}(\xi)|^{2} \frac{1-e^{-2 t\|\xi\|^{2}}}{2\|\xi\|^{2}} d \xi .
\end{aligned}
$$

The stochastic heat equation

- Plancherel's theorem:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2\|\xi\|^{2}(t-s)}|\hat{\varphi}(\xi)|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}}|\hat{\varphi}(\xi)|^{2} \frac{1-e^{-2 t\|\xi\|^{2}}}{2\|\xi\|^{2}} d \xi .
\end{aligned}
$$

- \therefore weak solution \exists iff $\varphi \in H_{-2}\left(\mathbf{R}^{d}\right)$. In fact,

$$
\mathrm{E}\left(|u(t, \varphi)|^{2}\right) \asymp t \int_{\mathbf{R}^{d}} \frac{|\hat{\varphi}(\xi)|^{2}}{1+t^{2}\|\xi\|^{2}} d \xi
$$

The stochastic heat equation

- Plancherel's theorem:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2\|\xi\|^{2}(t-s)}|\hat{\varphi}(\xi)|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}}|\hat{\varphi}(\xi)|^{2} \frac{1-e^{-2 t\|\xi\|^{2}}}{2\|\xi\|^{2}} d \xi .
\end{aligned}
$$

- \therefore weak solution \exists iff $\varphi \in H_{-2}\left(\mathbf{R}^{d}\right)$. In fact,

$$
\mathrm{E}\left(|u(t, \varphi)|^{2}\right) \asymp t \int_{\mathbf{R}^{d}} \frac{|\hat{\varphi}(\xi)|^{2}}{1+t^{2}\|\xi\|^{2}} d \xi
$$

- \therefore mild solution \exists iff $\delta_{x} \in H_{-2}\left(\mathbf{R}^{d}\right) \forall x \in \mathbf{R}^{d}$

The stochastic heat equation

- Plancherel's theorem:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2\|\xi\|^{2}(t-s)}|\hat{\varphi}(\xi)|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}}|\hat{\varphi}(\xi)|^{2} \frac{1-e^{-2 t\|\xi\|^{2}}}{2\|\xi\|^{2}} d \xi .
\end{aligned}
$$

- \therefore weak solution \exists iff $\varphi \in H_{-2}\left(\mathbf{R}^{d}\right)$. In fact,

$$
\mathrm{E}\left(|u(t, \varphi)|^{2}\right) \asymp t \int_{\mathbf{R}^{d}} \frac{|\hat{\varphi}(\xi)|^{2}}{1+t^{2}\|\xi\|^{2}} d \xi
$$

- \therefore mild solution \exists iff $\delta_{x} \in H_{-2}\left(\mathbf{R}^{d}\right) \forall x \in \mathbf{R}^{d}$

The stochastic heat equation

- Plancherel's theorem:

$$
\begin{aligned}
& \int_{0}^{t} \int_{\mathbf{R}^{d}}\left|\left(Q_{t-s} * \varphi\right)(y)\right|^{2} d y d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{0}^{t} \int_{\mathbf{R}^{d}} e^{-2\|\xi\|^{2}(t-s)}|\hat{\varphi}(\xi)|^{2} d \xi d s \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}}|\hat{\varphi}(\xi)|^{2} \frac{1-e^{-2 t\|\xi\|^{2}}}{2\|\xi\|^{2}} d \xi .
\end{aligned}
$$

- \therefore weak solution \exists iff $\varphi \in H_{-2}\left(\mathbf{R}^{d}\right)$. In fact,

$$
\mathrm{E}\left(|u(t, \varphi)|^{2}\right) \asymp t \int_{\mathbf{R}^{d}} \frac{|\hat{\varphi}(\xi)|^{2}}{1+t^{2}\|\xi\|^{2}} d \xi
$$

- \therefore mild solution \exists iff $\delta_{x} \in H_{-2}\left(\mathbf{R}^{d}\right) \forall x \in \mathbf{R}^{d} \Leftrightarrow d=1$.

An explanation

- (Dalang-Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\operatorname{Cov}\left(\int \phi d \dot{F}, \int \psi d \dot{F}\right)=$

$$
\iint \phi(t, x) \underbrace{(s \wedge t) \kappa(\|x-y\|)}_{\Sigma(s, t,\|x-y\|)} \psi(s, y) d t d x d s d y
$$

An explanation

- (Dalang-Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\operatorname{Cov}\left(\int \phi d \dot{F}, \int \psi d \dot{F}\right)=$

$$
\iint \phi(t, x) \underbrace{(s \wedge t) \kappa(\|x-y\|)}_{\Sigma(s, t,\|x-y\|)} \psi(s, y) d t d x d s d y
$$

- (Dalang-Frangos, Pesat-Zabczyk, Dalang) There can \exists solutions for $d>1$, depending on κ [NASC].

An explanation

- (Dalang-Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\operatorname{Cov}\left(\int \phi d \dot{F}, \int \psi d \dot{F}\right)=$

$$
\iint \phi(t, x) \underbrace{(s \wedge t) \kappa(\|x-y\|)}_{\Sigma(s, t,\|x-y\|)} \psi(s, y) d t d x d s d y
$$

- (Dalang-Frangos, Pesat-Zabczyk, Dalang) There can \exists solutions for $d>1$, depending on κ [NASC].
- Explains the roughening effect of white noise. [analytic]

An explanation

- (Dalang-Frangos) Replace $\dot{W}(t, x)$ by $\dot{F}(t, x)$, where \dot{F} is a centered gaussian noise with $\operatorname{Cov}\left(\int \phi d \dot{F}, \int \psi d \dot{F}\right)=$

$$
\iint \phi(t, x) \underbrace{(s \wedge t) \kappa(\|x-y\|)}_{\Sigma(s, t,\|x-y\|)} \psi(s, y) d t d x d s d y
$$

- (Dalang-Frangos, Pesat-Zabczyk, Dalang) There can \exists solutions for $d>1$, depending on κ [NASC].
- Explains the roughening effect of white noise. [analytic]
- We propose to explain the smoothing effect of Δ_{x}. [probabilistic]

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.
- Normalization: $\operatorname{Exp}(i \xi \cdot X(t))=\exp (-t \Psi(\xi)), \hat{L}(\xi)=-\Psi(\xi)$. That is,

$$
\int_{\mathbf{R}^{d}} f(x)(L g)(x) d x=-\int_{\mathbf{R}^{d}} \overline{\hat{f}}(\xi) \hat{g}(\xi) \Psi(\xi) d \xi
$$

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.
- Normalization: $\operatorname{Exp}(i \xi \cdot X(t))=\exp (-t \Psi(\xi)), \hat{L}(\xi)=-\Psi(\xi)$. That is,

$$
\int_{\mathbf{R}^{d}} f(x)(L g)(x) d x=-\int_{\mathbf{R}^{d}} \overline{\hat{f}(\xi)} \hat{g}(\xi) \Psi(\xi) d \xi .
$$

- $\operatorname{Dom}(L):=\left\{f \in L^{2}\left(\mathbf{R}^{d}\right): \int_{\mathbf{R}^{d}}|\hat{f}(\xi)|^{2} \operatorname{Re} \Psi(\xi) d \xi<\infty\right\}$.

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.
- Normalization: $\operatorname{Exp}(i \xi \cdot X(t))=\exp (-t \Psi(\xi)), \hat{L}(\xi)=-\Psi(\xi)$. That is,

$$
\int_{\mathbf{R}^{d}} f(x)(L g)(x) d x=-\int_{\mathbf{R}^{d}} \overline{\hat{f}}(\xi) \hat{g}(\xi) \Psi(\xi) d \xi .
$$

- $\operatorname{Dom}(L):=\left\{f \in L^{2}\left(\mathbf{R}^{d}\right): \int_{\mathbf{R}^{d}}|\hat{f}(\xi)|^{2} \operatorname{Re} \Psi(\xi) d \xi<\infty\right\}$.
- $X^{\prime}:=$ an independent copy of X;

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.
- Normalization: $\operatorname{Exp}(i \xi \cdot X(t))=\exp (-t \Psi(\xi)), \hat{L}(\xi)=-\Psi(\xi)$. That is,

$$
\int_{\mathbf{R}^{d}} f(x)(L g)(x) d x=-\int_{\mathbf{R}^{d}} \overline{\hat{f}}(\xi) \hat{g}(\xi) \Psi(\xi) d \xi .
$$

- $\operatorname{Dom}(L):=\left\{f \in L^{2}\left(\mathbf{R}^{d}\right): \int_{\mathbf{R}^{d}}|\hat{f}(\xi)|^{2} \operatorname{Re} \Psi(\xi) d \xi<\infty\right\}$.
- $X^{\prime}:=$ an independent copy of X;

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.
- Normalization: $\operatorname{Exp}(i \xi \cdot X(t))=\exp (-t \Psi(\xi)), \hat{L}(\xi)=-\Psi(\xi)$. That is,

$$
\int_{\mathbf{R}^{d}} f(x)(L g)(x) d x=-\int_{\mathbf{R}^{d}} \overline{\hat{f}}(\xi) \hat{g}(\xi) \Psi(\xi) d \xi .
$$

- $\operatorname{Dom}(L):=\left\{f \in L^{2}\left(\mathbf{R}^{d}\right): \int_{\mathbf{R}^{d}}|\hat{f}(\xi)|^{2} \operatorname{Re} \Psi(\xi) d \xi<\infty\right\}$.
- $X^{\prime}:=$ an independent copy of $X ; \bar{X}(t):=X(t)-X^{\prime}(t)$. [Lévy]

Lévy processes

- $L:=L^{2}$-generator of a Lévy process X in \mathbf{R}^{d}.
- Normalization: $\operatorname{Exp}(i \xi \cdot X(t))=\exp (-t \Psi(\xi)), \hat{L}(\xi)=-\Psi(\xi)$. That is,

$$
\int_{\mathbf{R}^{d}} f(x)(L g)(x) d x=-\int_{\mathbf{R}^{d}} \overline{\hat{f}}(\xi) \hat{g}(\xi) \Psi(\xi) d \xi .
$$

- $\operatorname{Dom}(L):=\left\{f \in L^{2}\left(\mathbf{R}^{d}\right): \int_{\mathbf{R}^{d}}|\hat{f}(\xi)|^{2} \operatorname{Re} \Psi(\xi) d \xi<\infty\right\}$.
- $X^{\prime}:=$ an independent copy of $X ; \bar{X}(t):=X(t)-X^{\prime}(t)$. [Lévy]
- \bar{X} is a Lévy process with char. exponent $2 \operatorname{Re} \Psi$.

Local times

- $\lambda_{t}^{x}:=$ local time of \bar{X}, at place x and time t, when it exists.

Local times

- $\lambda_{t}^{x}:=$ local time of \bar{X}, at place x and time t, when it exists.
- Defining property: \forall Borel meas. $f: \mathbf{R}^{d} \rightarrow \mathbf{R}_{+}, t>0$,

$$
\int_{0}^{t} f(\bar{X}(s)) d s=\int_{\mathbf{R}^{d}} f(x) \lambda_{t}^{x} d x \quad \text { a.s. }
$$

Local times

- $\lambda_{t}^{x}:=$ local time of \bar{X}, at place x and time t, when it exists.
- Defining property: \forall Borel meas. $f: \mathbf{R}^{d} \rightarrow \mathbf{R}_{+}, t>0$,

$$
\int_{0}^{t} f(\bar{X}(s)) d s=\int_{\mathbf{R}^{d}} f(x) \lambda_{t}^{x} d x \quad \text { a.s. }
$$

- $\lambda_{t}^{x}=O_{t}(d x) / d x$, where $O_{t}(E):=\int_{0}^{t} \mathbf{1}_{E}(\bar{X}(s)) d s$.

Local times

- $\lambda_{t}^{X}:=$ local time of \bar{X}, at place x and time t, when it exists.
- Defining property: \forall Borel meas. $f: \mathbf{R}^{d} \rightarrow \mathbf{R}_{+}, t>0$,

$$
\int_{0}^{t} f(\bar{X}(s)) d s=\int_{\mathbf{R}^{d}} f(x) \lambda_{t}^{X} d x \quad \text { a.s. }
$$

- $\lambda_{t}^{x}=O_{t}(d x) / d x$, where $O_{t}(E):=\int_{0}^{t} \mathbf{1}_{E}(\bar{X}(s)) d s$.

Theorem (Hawkes)
$\left\{\lambda_{t}^{x}\right\}_{t \geq 0, x \in \mathbf{R}^{d}}$ exists iff

$$
\int_{\mathbf{R}^{d}} \frac{d \xi}{1+\operatorname{Re} \Psi(\xi)}<\infty .
$$

Examples and remarks

- Hawkes' condition: $\int_{\mathbf{R}^{d}}(1+\operatorname{Re} \Psi(\xi))^{-1} d \xi<\infty$.

Examples and remarks

- Hawkes' condition: $\int_{\mathbf{R}^{d}}(1+\operatorname{Re} \Psi(\xi))^{-1} d \xi<\infty$.
- $\Psi(\xi)=O\left(\|\xi\|^{2}\right)$ [Bochner]. Therefore, local times can \exists only when $d=1$, if at all.

Examples and remarks

- Hawkes' condition: $\int_{\mathbf{R}^{d}}(1+\operatorname{Re} \Psi(\xi))^{-1} d \xi<\infty$.
- $\Psi(\xi)=O\left(\|\xi\|^{2}\right)$ [Bochner]. Therefore, local times can \exists only when $d=1$, if at all.
- If $d=1$ and $\Psi(\xi)=|\xi|^{\alpha}$ then local times exist iff $\alpha>1$.

Examples and remarks

- Hawkes' condition: $\int_{\mathbf{R}^{d}}(1+\operatorname{Re} \Psi(\xi))^{-1} d \xi<\infty$.
- $\Psi(\xi)=O\left(\|\xi\|^{2}\right)$ [Bochner]. Therefore, local times can \exists only when $d=1$, if at all.
- If $d=1$ and $\Psi(\xi)=|\xi|^{\alpha}$ then local times exist iff $\alpha>1$.
- For general (nonsymmetric) Lévy processes, the Hawkes condition is that

$$
\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{1+\Psi(\xi)}\right) d \xi<\infty
$$

Examples and remarks

- Hawkes' condition: $\int_{\mathbf{R}^{d}}(1+\operatorname{Re} \Psi(\xi))^{-1} d \xi<\infty$.
- $\Psi(\xi)=O\left(\|\xi\|^{2}\right)$ [Bochner]. Therefore, local times can \exists only when $d=1$, if at all.
- If $d=1$ and $\Psi(\xi)=|\xi|^{\alpha}$ then local times exist iff $\alpha>1$.
- For general (nonsymmetric) Lévy processes, the Hawkes condition is that

$$
\int_{-\infty}^{\infty} \operatorname{Re}\left(\frac{1}{1+\Psi(\xi)}\right) d \xi<\infty
$$

- Suppose $d=1$ and $\Psi(\xi)=|\xi|(1+i c s g n|\xi| \log |\xi|)$ for $0 \leq|c| \leq 2 / \pi$. Then local times exist iff $c \neq 0$.

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x),
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x)
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

- We call this the heat equation for L.

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x)
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

- We call this the heat equation for L.
- Fundamental questions:

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x)
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

- We call this the heat equation for L.
- Fundamental questions:
- When is there a function-valued solution?

[General answer by Dalang]

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x)
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

- We call this the heat equation for L.
- Fundamental questions:
- When is there a function-valued solution?

[General answer by Dalang]

- When is there a continuous solution?

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x)
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

- We call this the heat equation for L.
- Fundamental questions:
- When is there a function-valued solution?

[General answer by Dalang]

- When is there a continuous solution?
- When is there a Hölder-continuous solution?

A heat equation

- Consider the heat equation

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x)
$$

where L_{x} is the generator of a Lévy process on \mathbf{R}^{d}, acting on the variable x.

- We call this the heat equation for L.
- Fundamental questions:
- When is there a function-valued solution?

[General answer by Dalang]

- When is there a continuous solution?
- When is there a Hölder-continuous solution?
- Etc.

A heat equation

Theorem (K-Foondun-Nualart)
Let u denote the weak solution to the heat equation for L. Then, for all tempered functions φ and all $t, \lambda>0$,

$$
\frac{1-e^{-2 \lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi) \leq \mathrm{E}\left(|u(t, \varphi)|^{2}\right) \leq \frac{e^{2 \lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi),
$$

where

$$
\mathscr{E}_{\lambda}(\varphi, \psi):=\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}} \frac{\hat{\varphi}(\xi) \overline{\hat{\psi}(\xi)}}{\lambda+\operatorname{Re} \Psi(\xi)} d \xi .
$$

A heat equation

Theorem (K-Foondun-Nualart)
Let u denote the weak solution to the heat equation for L. Then, for all tempered functions φ and all $t, \lambda>0$,

$$
\frac{1-e^{-2 \lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi) \leq \mathrm{E}\left(|u(t, \varphi)|^{2}\right) \leq \frac{e^{2 \lambda t}}{2} \mathscr{E}_{\lambda}(\varphi, \varphi),
$$

where

$$
\mathscr{E}_{\lambda}(\varphi, \psi):=\frac{1}{(2 \pi)^{d}} \int_{\mathbf{R}^{d}} \frac{\hat{\varphi}(\xi) \overline{\hat{\psi}(\xi)}}{\lambda+\operatorname{Re} \psi(\xi)} d \xi .
$$

Corollary
\exists function-valued solutions iff \bar{X} has local times. The solution is continuous iff $x \mapsto \lambda_{t}^{X}$ is.

A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_{t}^{x}$ and vice versa:

A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_{t}^{x}$ and vice versa:
- Existence and continuity.

A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_{t}^{x}$ and vice versa:
- Existence and continuity.
- Hölder continuity.

A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_{t}^{x}$ and vice versa:
- Existence and continuity.
- Hölder continuity.
- p-variation of the paths

A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_{t}^{x}$ and vice versa:
- Existence and continuity.
- Hölder continuity.
- p-variation of the paths
- \exists an embedding of the isomorphism theorem? [Dynkin; Brydges-Fröhlich-Spencer]

A heat equation

- In fact, many [virtually all] of the properties of $x \mapsto u(t, x)$ are inherited from $x \mapsto \lambda_{t}^{x}$ and vice versa:
- Existence and continuity.
- Hölder continuity.
- p-variation of the paths
- \exists an embedding of the isomorphism theorem? [Dynkin; Brydges-Fröhlich-Spencer]
- A final Theorem (K-Foondun-Nualart): $t \mapsto u(t, \varphi)$ has a continuous version iff

$$
\int_{1}^{\infty} \frac{\mathscr{E}_{\lambda}(\varphi, \varphi)}{\lambda \sqrt{|\log \lambda|}} d \lambda<\infty
$$

Solutions in dimension $2-\epsilon$

- Recall:

$$
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x) .
$$

Solutions in dimension $2-\epsilon$

- Recall:

$$
\begin{equation*}
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x) . \tag{HE}
\end{equation*}
$$

- We chose L to be the generator of a Lévy process only because there we have NASC.

Solutions in dimension $2-\epsilon$

- Recall:

$$
\begin{equation*}
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x) \tag{HE}
\end{equation*}
$$

- We chose L to be the generator of a Lévy process only because there we have NASC.
- Could have $L:=$ generator of a nice Markov process.

Solutions in dimension $2-\epsilon$

- Recall:

$$
\begin{equation*}
\partial_{t} u(t, x)=\left(L_{x} u\right)(t, x)+\dot{W}(t, x) . \tag{HE}
\end{equation*}
$$

- We chose L to be the generator of a Lévy process only because there we have NASC.
- Could have $L:=$ generator of a nice Markov process.

Theorem (K-Foondun-Nualart)
Let $L:=$ Laplacian on a "nice" fractal of $\operatorname{dim}_{H}=2-\alpha$ for $\alpha \in(0,2]$.
Then (HE) has function solutions that are in fact Hölder continuous.

System of wave equations

- Let $\dot{L}:=$ be space-time Lévy noise with values in \mathbf{R}^{d}.

System of wave equations

- Let $\dot{L}:=$ be space-time Lévy noise with values in \mathbf{R}^{d}.
- $E \exp (i \xi \cdot \dot{L}(A))=\exp (-|A| \Psi(\xi))$ for $\xi \in \mathbf{R}^{d}$ and $A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}\right)$.

System of wave equations

- Let $\dot{L}:=$ be space-time Lévy noise with values in \mathbf{R}^{d}.
- $E \exp (i \xi \cdot \dot{L}(A))=\exp (-|A| \Psi(\xi))$ for $\xi \in \mathbf{R}^{d}$ and $A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}\right)$.
- Assume:

System of wave equations

- Let $\dot{L}:=$ be space-time Lévy noise with values in \mathbf{R}^{d}.
- $E \exp (i \xi \cdot \dot{L}(A))=\exp (-|A| \Psi(\xi))$ for $\xi \in \mathbf{R}^{d}$ and $A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}\right)$.
- Assume:
- Ψ is nonnegative real.

System of wave equations

- Let $\dot{L}:=$ be space-time Lévy noise with values in \mathbf{R}^{d}.
- $E \exp (i \xi \cdot \dot{L}(A))=\exp (-|A| \Psi(\xi))$ for $\xi \in \mathbf{R}^{d}$ and $A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}\right)$.
- Assume:
- Ψ is nonnegative real.
- $\forall a>0 \exists A_{a}>0$ such that

$$
\Psi(a \xi) \geq A_{a} \Psi(\xi)
$$

[stable like]

System of wave equations

- Let $\dot{L}:=$ be space-time Lévy noise with values in \mathbf{R}^{d}.
- $E \exp (i \xi \cdot \dot{L}(A))=\exp (-|A| \Psi(\xi))$ for $\xi \in \mathbf{R}^{d}$ and $A \in \mathscr{B}\left(\mathbf{R}_{+} \times \mathbf{R}\right)$.
- Assume:
- Ψ is nonnegative real.
- $\forall a>0 \exists A_{a}>0$ such that

$$
\Psi(a \xi) \geq A_{a} \Psi(\xi)
$$

[stable like]

- Gauge function \exists and is finite, where

$$
\Phi(\lambda):=\int_{\mathbf{R}^{d}} e^{-\lambda \Psi(\xi)} d \xi \quad \quad{ }^{\forall} \lambda>0
$$

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Theorem (K-Nualart)
TFAE:

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Theorem (K-Nualart)
TFAE:

1. With positive probab. $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Theorem (K-Nualart)
TFAE:

1. With positive probab. $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.
2. Almost surely, $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Theorem (K-Nualart)
TFAE:

1. With positive probab. $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.
2. Almost surely, $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.
3. $\int_{0}^{1} \lambda \Phi(\lambda) d \lambda<\infty$.

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x), \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0 .
\end{array}\right.
$$

Theorem (K-Nualart)
TFAE:

1. With positive probab. $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.
2. Almost surely, $u(t, x)=0$ for some $t>0$ and $x \in \mathbf{R}$.
3. $\int_{0}^{1} \lambda \Phi(\lambda) d \lambda<\infty$.
4. If $\int_{0}^{1} \lambda \Phi(\lambda) d \lambda<\infty$, then a.s.,

$$
\operatorname{dim}_{H} u^{-1}\{0\}=2-\limsup _{\lambda \downarrow 0} \frac{\log \Phi(\lambda)}{\log (1 / \lambda)} .
$$

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Example
Suppose $\dot{L}_{1}, \ldots, \dot{L}_{d}$ are independent, $\dot{L}_{j}=\operatorname{stable}\left(\alpha_{j}\right)$. Then:

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Example

Suppose $\dot{L}_{1}, \ldots, \dot{L}_{d}$ are independent, $\dot{L}_{j}=\operatorname{stable}\left(\alpha_{j}\right)$. Then:

1. u has zeros iff $\sum_{j=1}^{d}\left(1 / \alpha_{j}\right)<2$.

Zeros of the solution

$$
\left[\begin{array}{l}
\partial_{t t} u_{i}(t, x)=\partial_{x x} u_{i}(x, t)+\dot{L}_{i}(t, x) \\
u_{i}(0, x)=\partial_{t} u_{i}(0, x)=0
\end{array}\right.
$$

Example

Suppose $\dot{L}_{1}, \ldots, \dot{L}_{d}$ are independent, $\dot{L}_{j}=\operatorname{stable}\left(\alpha_{j}\right)$. Then:

1. u has zeros iff $\sum_{j=1}^{d}\left(1 / \alpha_{j}\right)<2$.
2. If $\sum_{j=1}^{d}\left(1 / \alpha_{j}\right)<2$, then $\operatorname{dim}_{H} u^{-1}\{0\}=2-\sum_{j=1}^{d}\left(1 / \alpha_{j}\right)$.

Idea of proof [existence part]

- WLOG consider $u(t, x)$ for $t, x \geq 0$.

Idea of proof [existence part]

- WLOG consider $u(t, x)$ for $t, x \geq 0$.
- $\mathrm{P}\{0 \in u(G)\} \asymp \mathrm{P}\{0 \in X(G)\}$, where

$$
X(t, x):=X_{1}(t)+X_{2}(x)
$$

where X_{1}, X_{2} are i.i.d. Lévy processes, exponent Ψ. [additive Lévy process]

Idea of proof [existence part]

- WLOG consider $u(t, x)$ for $t, x \geq 0$.
- $\mathrm{P}\{0 \in u(G)\} \asymp \mathrm{P}\{0 \in X(G)\}$, where

$$
X(t, x):=X_{1}(t)+X_{2}(x)
$$

where X_{1}, X_{2} are i.i.d. Lévy processes, exponent ψ. [additive Lévy process]

- Appeal to K-Shieh-Xiao.

Idea of proof [second part]

$u(t, x)=\frac{1}{2} \dot{L}(\mathscr{C}(t, x))$, where $\mathscr{C}(t, x)$ is the "light cone" emanating from (t, x).

Idea of proof [zero-one law part]

The zero set in the black triangle depends on the noise through its "backward light cone," shaded black/pink.

Therefore, $P\left\{u^{-1}(\{0\}) \neq \varnothing\right\}$ is zero or one.

