Lecture 2
 The Range of a Lévy Process

Davar Khoshnevisan

Department of Mathematics
University of Utah
http://www.math.utah.edu/~davar
Summer School on Lévy Processes: Theory and Applications August 9-12, 2007
Sandbjerg Manor, Denmark

Recap

1. Suppose $\exists C>0$ such that $\forall \epsilon>0 \exists$ and b-adic cubes F_{1}, F_{2}, \ldots with $\operatorname{diam} F_{j} \leq \epsilon$ and $F \subseteq \cup_{j=1}^{\infty} F_{j}$ such that $\sum_{j=1}^{\infty}\left|\operatorname{diam} F_{j}\right|^{s} \leq C$. Then $\operatorname{dim}_{H} F \leq s$.

Recap

1. Suppose $\exists C>0$ such that $\forall \epsilon>0 \exists$ and b-adic cubes F_{1}, F_{2}, \ldots with $\operatorname{diam} F_{j} \leq \epsilon$ and $F \subseteq \cup_{j=1}^{\infty} F_{j}$ such that $\sum_{j=1}^{\infty}\left|\operatorname{diam} F_{j}\right|^{s} \leq C$. Then $\operatorname{dim}_{H} F \leq s$.
2. Suppose $\exists \mu \in \mathscr{P}(F)$ such that $I_{s}(\mu)<\infty$, where

$$
I_{s}(\mu):=\iint \frac{\mu(d x) \mu(d y)}{|x-y|^{s}}
$$

Then $\operatorname{dim}_{H} F \geq s$.

Goal

- Find a formula for $\operatorname{dim}_{H} X([0,1]), \operatorname{dim}_{H} X\left(\mathbf{R}_{+}\right), \overline{\operatorname{dim}}_{M} X([0,1])$, etc., where X is a Lévy process.

Goal

- Find a formula for $\operatorname{dim}_{H} X([0,1]), \operatorname{dim}_{H} X\left(\mathbf{R}_{+}\right), \overline{\operatorname{dim}}_{M} X([0,1])$, etc., where X is a Lévy process.
- Two issues:

Goal

- Find a formula for $\operatorname{dim}_{H} X([0,1]), \operatorname{dim}_{H} X\left(\mathbf{R}_{+}\right), \overline{\operatorname{dim}}_{M} X([0,1])$, etc., where X is a Lévy process.
- Two issues:

1. A lower bound [Uses an abstract form of the Frostman theorem]

Goal

- Find a formula for $\operatorname{dim}_{H} X([0,1]), \operatorname{dim}_{H} X\left(\mathbf{R}_{+}\right), \overline{\operatorname{dim}}_{M} X([0,1])$, etc., where X is a Lévy process.
- Two issues:

1. A lower bound [Uses an abstract form of the Frostman theorem]
2. An upper bound [Most Lévy processes are not continuous; the method for BM fails.]

Goal

- Find a formula for $\operatorname{dim}_{H} X([0,1]), \operatorname{dim}_{H} X\left(\mathbf{R}_{+}\right), \overline{\operatorname{dim}}_{M} X([0,1])$, etc., where X is a Lévy process.
- Two issues:

1. A lower bound [Uses an abstract form of the Frostman theorem]
2. An upper bound [Most Lévy processes are not continuous; the method for BM fails.]
3. We will handles these matters in reverse order.

Potential measures

- $X:=$ a Lévy process in \mathbf{R}^{d}.

Potential measures

- $X:=$ a Lévy process in \mathbf{R}^{d}.
- For all Borel sets $A \subseteq \mathbf{R}^{d}$ define

$$
U(A):=\int_{0}^{\infty} \mathrm{P}\{X(s) \in A\} e^{-s} d s
$$

[The one-potential measure]

Potential measures

- $X:=$ a Lévy process in \mathbf{R}^{d}.
- For all Borel sets $A \subseteq \mathbf{R}^{d}$ define

$$
U(A):=\int_{0}^{\infty} \mathrm{P}\{X(s) \in A\} e^{-s} d s
$$

[The one-potential measure]

- $\zeta:=$ independent mean-one exponential.

Potential measures

- $X:=$ a Lévy process in \mathbf{R}^{d}.
- For all Borel sets $A \subseteq \mathbf{R}^{d}$ define

$$
U(A):=\int_{0}^{\infty} \mathrm{P}\{X(s) \in A\} e^{-s} d s
$$

[The one-potential measure]

- $\zeta:=$ independent mean-one exponential.
- $\mathrm{P}\{\zeta>s\}=\exp (-s)$.

Potential measures

- $X:=$ a Lévy process in \mathbf{R}^{d}.
- For all Borel sets $A \subseteq \mathbf{R}^{d}$ define

$$
U(A):=\int_{0}^{\infty} \mathrm{P}\{X(s) \in A\} e^{-s} d s
$$

[The one-potential measure]

- $\zeta:=$ independent mean-one exponential.
- $\mathrm{P}\{\zeta>s\}=\exp (-s)$.
- $U(A)=\mathrm{E}\left[\int_{0}^{\zeta} \mathbf{1}_{A}(X(s)) d s\right]$.

Potential measures

- $X:=$ a Lévy process in \mathbf{R}^{d}.
- For all Borel sets $A \subseteq \mathbf{R}^{d}$ define

$$
U(A):=\int_{0}^{\infty} \mathrm{P}\{X(s) \in A\} e^{-s} d s
$$

[The one-potential measure]

- $\zeta:=$ independent mean-one exponential.
- $\mathrm{P}\{\zeta>s\}=\exp (-s)$.
- $U(A)=\mathrm{E}\left[\int_{0}^{\zeta} \mathbf{1}_{A}(X(s)) d s\right]$.
- U is a Borel probability measure on \mathbf{R}^{d}.

A hitting bound

For all $\boldsymbol{a} \in \mathbf{R}^{d}$ and $\epsilon>0$ define

$$
B(a, \epsilon):=\bigcap_{j=1}^{d}\left\{x \in \mathbf{R}^{d}: a_{j}-\epsilon \leq x_{j}<a_{j}+\epsilon\right\} .
$$

A hitting bound

For all $a \in \mathbf{R}^{d}$ and $\epsilon>0$ define

$$
B(a, \epsilon):=\bigcap_{j=1}^{d}\left\{x \in \mathbf{R}^{d}: a_{j}-\epsilon \leq x_{j}<a_{j}+\epsilon\right\} .
$$

Lemma
For all $\boldsymbol{a} \in \mathbf{R}^{d}$ and $\epsilon>0$,

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \leq \frac{U(B(a, 2 \epsilon))}{U(B(0, \epsilon))}
$$

A hitting bound

- Proof: Let T denote the first hitting time of $B(a, \epsilon)$.

A hitting bound

- Proof: Let T denote the first hitting time of $B(a, \epsilon)$.
- By the strong Markov property,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& =\mathrm{E}\left(\int_{0}^{\infty} \mathbf{1}_{B(0, \epsilon)}(X(s+T)-X(T)) e^{-(s+T)} d s ; T<\infty\right),
\end{aligned}
$$

since $\mathrm{P}\{\zeta>T\}=\mathrm{E}\left[e^{-T} ; T<\infty\right]$.

A hitting bound

- Proof: Let T denote the first hitting time of $B(a, \epsilon)$.
- By the strong Markov property,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& =\mathrm{E}\left(\int_{0}^{\infty} \mathbf{1}_{B(0, \epsilon)}(X(s+T)-X(T)) e^{-(s+T)} d s ; T<\infty\right),
\end{aligned}
$$

since $\mathrm{P}\{\zeta>T\}=\mathrm{E}\left[e^{-T} ; T<\infty\right]$.

- $|X(T)-a| \leq \epsilon$ a.s. on $\{T<\infty\}$.

A hitting bound

- Proof: Let T denote the first hitting time of $B(a, \epsilon)$.
- By the strong Markov property,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& =\mathrm{E}\left(\int_{0}^{\infty} \mathbf{1}_{B(0, \epsilon)}(X(s+T)-X(T)) e^{-(s+T)} d s ; T<\infty\right),
\end{aligned}
$$

since $\mathrm{P}\{\zeta>T\}=\mathrm{E}\left[e^{-T} ; T<\infty\right]$.

- $|X(T)-a| \leq \epsilon$ a.s. on $\{T<\infty\}$.
- By the triangle inequality,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& \leq \mathrm{E}\left(\int_{0}^{\infty} \mathbf{1}_{B(a, 2 \epsilon)}(X(s+T)) e^{-(s+T)} d s ; T<\infty\right)
\end{aligned}
$$

A hitting bound

By the triangle inequality,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& \leq E\left(\int_{0}^{\infty} 1_{B(a, 2 \epsilon)}(X(s+T)) e^{-(s+T)} d s ; T<\infty\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& \leq \mathrm{E}\left(\int_{T}^{\infty} \mathbf{1}_{B(\mathrm{a}, 2 \epsilon)}(X(s)) e^{-s} d s\right)
\end{aligned}
$$

A hitting bound

By the triangle inequality,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& \leq E\left(\int_{0}^{\infty} 1_{B(a, 2 \epsilon)}(X(s+T)) e^{-(s+T)} d s ; T<\infty\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& U(B(0, \epsilon)) \mathrm{P}\{\zeta>T\} \\
& \leq \mathrm{E}\left(\int_{T}^{\infty} \mathbf{1}_{B(\mathrm{a}, 2 \epsilon)}(X(s)) e^{-s} d s\right)
\end{aligned}
$$

This is $\leq U(B(a, 2 \epsilon))$.

A hitting bound

- Recall that $N_{n}(X([0, t]))$ denotes the number of dyadic cubes of side 2^{-n} the intersect $X([0, t])$.

A hitting bound

- Recall that $N_{n}(X([0, t]))$ denotes the number of dyadic cubes of side 2^{-n} the intersect $X([0, t])$.
- By the lemma,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{1}{U\left(B\left(0,2^{-n}\right)\right)} \sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n+1}\right)\right)
$$

where $\mathscr{D}_{n}:=$ all dyadic cubes.

A hitting bound

- Recall that $N_{n}(X([0, t]))$ denotes the number of dyadic cubes of side 2^{-n} the intersect $X([0, t])$.
- By the lemma,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{1}{U\left(B\left(0,2^{-n}\right)\right)} \sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n+1}\right)\right)
$$

where $\mathscr{D}_{n}:=$ all dyadic cubes.

- Now $\sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n}\right)\right)=1$.

A hitting bound

- Recall that $N_{n}(X([0, t]))$ denotes the number of dyadic cubes of side 2^{-n} the intersect $X([0, t])$.
- By the lemma,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{1}{U\left(B\left(0,2^{-n}\right)\right)} \sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n+1}\right)\right)
$$

where $\mathscr{D}_{n}:=$ all dyadic cubes.

- Now $\sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n}\right)\right)=1$.
- What about $\sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n+1}\right)\right)$?

A hitting bound

- Yellow $=B\left(a, 2^{-n}\right)$; a dyadic ball.

A hitting bound

- Yellow $=B\left(a, 2^{-n}\right)$; a dyadic ball.
- Red $=B\left(a, 2^{-n+1}\right)$.

A hitting bound

- Yellow $=B\left(a, 2^{-n}\right)$; a dyadic ball.
- $\operatorname{Red}=B\left(a, 2^{-n+1}\right)$.
- $\underbrace{\text { Blue }+ \text { yellow }}_{\text {Clique }}=3^{d}$ dyadic balls of radius 2^{-n} each.

A hitting bound

- Yellow $=B\left(a, 2^{-n}\right)$; a dyadic ball.
- $\operatorname{Red}=B\left(a, 2^{-n+1}\right)$.
- $\underbrace{\text { Blue }+ \text { yellow }}_{\text {Clique }}=3^{d}$ dyadic balls of radius 2^{-n} each.
- Each $I \in \mathscr{D}_{n}$ is in at most 5^{d} cliques.

A hitting bound

- Yellow $=B\left(a, 2^{-n}\right)$; a dyadic ball.
- Red $=B\left(a, 2^{-n+1}\right)$.
- $\underbrace{\text { Blue }+ \text { yellow }}_{\text {Clique }}=3^{d}$ dyadic balls of radius 2^{-n} each.
- Each $I \in \mathscr{D}_{n}$ is in at most 5^{d} cliques.
- $\sum_{B\left(a, 2^{-n}\right) \in \mathscr{D}_{n}} U\left(B\left(a, 2^{-n+1}\right)\right) \leq 5^{d} \sum_{I \in \mathscr{D}_{n}} U(I)=5^{d}$.

A hitting bound

- Thus,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{5^{d}}{U\left(B\left(0,2^{-n}\right)\right)} .
$$

A hitting bound

- Thus,

$$
\begin{gathered}
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{5^{d}}{U\left(B\left(0,2^{-n}\right)\right)} . \\
-N_{n}(X([0, \zeta])) \geq N_{n}(X([0,1])) \text { on }\{\zeta>1\} .
\end{gathered}
$$

A hitting bound

- Thus,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{5^{d}}{U\left(B\left(0,2^{-n}\right)\right)}
$$

- $N_{n}(X([0, \zeta])) \geq N_{n}(X([0,1]))$ on $\{\zeta>1\}$.
- $\Rightarrow \mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \geq e^{-1} \mathrm{E}\left(N_{n}(X([0,1]))\right)$.

A hitting bound

- Thus,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{5^{d}}{U\left(B\left(0,2^{-n}\right)\right)} .
$$

- $N_{n}(X([0, \zeta])) \geq N_{n}(X([0,1]))$ on $\{\zeta>1\}$.
- $\Rightarrow \mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \geq e^{-1} \mathrm{E}\left(N_{n}(X([0,1]))\right)$.

Lemma
$E\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right)$.

A hitting bound

- Thus,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{5^{d}}{U\left(B\left(0,2^{-n}\right)\right)} .
$$

- $N_{n}(X([0, \zeta])) \geq N_{n}(X([0,1]))$ on $\{\zeta>1\}$.
- $\Rightarrow \mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \geq e^{-1} \mathrm{E}\left(N_{n}(X([0,1]))\right)$.

Lemma
$E\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right)$.

A hitting bound

- Thus,

$$
\mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \leq \frac{5^{d}}{U\left(B\left(0,2^{-n}\right)\right)} .
$$

- $N_{n}(X([0, \zeta])) \geq N_{n}(X([0,1]))$ on $\{\zeta>1\}$.
- $\Rightarrow \mathrm{E}\left(N_{n}(X([0, \zeta]))\right) \geq e^{-1} \mathrm{E}\left(N_{n}(X([0,1]))\right)$.

Lemma
$\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right)$.
This will give an upper bound for $\operatorname{dim}_{H} X([0,1])$, and another upper bound for $\operatorname{dim}_{M} X([0,1])$.

Potential indices

- $\overline{\text { ind }} U:=\limsup _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$. [Upper index]

Potential indices

- $\overline{\text { ind }} U:=\limsup _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$. [Upper index]
- ind $U:=\liminf _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$. [Lower index]

Potential indices

- $\overline{\text { ind }} U:=\limsup _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$. [Upper index]
- ind $U:=\liminf _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$.
[Lower index]
- $U(B(0, \epsilon)) \geq \epsilon^{\text {ind } U+o(1)}$ for infinitely many ϵ small.

Potential indices

- $\overline{\text { ind }} U:=\limsup _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$. [Upper index]
- ind $U:=\liminf _{\epsilon \rightarrow 0} \log U(B(0, \epsilon)) / \log \epsilon$.
[Lower index]
- $U(B(0, \epsilon)) \geq \epsilon^{\text {ind } U+o(1)}$ for infinitely many ϵ small.
- $U(B(0, \epsilon)) \geq \epsilon^{\text {ind } U+o(1)}$ for all ϵ small.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{n \text { nind } U+o(1)}$, eventually.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{n \text { ind } U+o(1)}$, eventually. 1. $s>\overline{\mathrm{ind}} U \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(X([0,1])) \geq 2^{n s}\right\}<\infty$.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{n \text { ind } U+o(1)}$, eventually. 1. $s>\overline{\mathrm{ind}} U \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(X([0,1])) \geq 2^{n s}\right\}<\infty$.

2. $\operatorname{dim}_{M} X([0,1]) \leq \overline{\operatorname{ind}} U$ a.s.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{n \overline{\text { ind }} U+o(1)}$, eventually. 1. $s>\overline{\mathrm{ind}} U \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(X([0,1])) \geq 2^{n s}\right\}<\infty$.

2. $\operatorname{dim}_{M} X([0,1]) \leq \overline{\operatorname{ind}} U$ a.s.

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{\text {nind } U+o(1)}$, i.o.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{n \text { ind } U+o(1)}$, eventually. 1. $s>\overline{\mathrm{ind}} U \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(X([0,1])) \geq 2^{n s}\right\}<\infty$.

2. $\operatorname{dim}_{M} X([0,1]) \leq \overline{\operatorname{ind}} U$ a.s.

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{\text {nind } U+o(1)}$, i.o. 1. $s>$ ind $U \Rightarrow N_{n}(X([0,1])) \leq 2^{n s}$ i.o., a.s.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{\text {nind } U+o(1)}$, eventually. 1. $s>\overline{\mathrm{ind}} U \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(X([0,1])) \geq 2^{n s}\right\}<\infty$.

2. $\operatorname{dim}_{M} X([0,1]) \leq \overline{\operatorname{ind}} U$ a.s.

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{\text {nind } U+o(1)}$, i.o.

1. $s>$ ind $U \Rightarrow N_{n}(X([0,1])) \leq 2^{n s}$ i.o., a.s.
2. $\operatorname{dim}_{H} X([0,1]) \leq$ ind U a.s.

Potential indices

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{\text {nind } U+o(1)}$, eventually. 1. $s>\overline{\mathrm{ind}} U \Rightarrow \sum_{n} \mathrm{P}\left\{N_{n}(X([0,1])) \geq 2^{n s}\right\}<\infty$.

2. $\operatorname{dim}_{M} X([0,1]) \leq \overline{\operatorname{ind}} U$ a.s.

- $\mathrm{E}\left[N_{n}(X([0,1]))\right] \leq 5^{d} e / U\left(B\left(0,2^{-n}\right)\right) \leq 2^{\text {nind } U+o(1)}$, i.o.

1. $s>$ ind $U \Rightarrow N_{n}(X([0,1])) \leq 2^{n s}$ i.o., a.s.
2. $\operatorname{dim}_{H} X([0,1]) \leq$ ind U a.s.

- Both bounds are sharp. [dim ${ }_{\mathrm{H}}$ Pruitt, 1969; $\operatorname{dim}_{\mathrm{M}}$ Taylor, XXXX]

Theorems of Pruitt and Taylor

Theorem
A.s.: $\operatorname{dim}_{\mathrm{H}} X([0,1])=$ ind U and $\overline{\operatorname{dim}}_{\mathrm{M}} X([0,1])=\overline{\operatorname{ind}} U$.

Derivation of the formula for dim_{H} :

Theorems of Pruitt and Taylor

Theorem
A.s.: $\operatorname{dim}_{\mathrm{H}} X([0,1])=$ ind U and $\overline{\operatorname{dim}}_{\mathrm{M}} X([0,1])=\overline{\operatorname{ind}} U$.

Derivation of the formula for dim_{H} :

- For dim_{H} : Enough to derive $\operatorname{dim}_{H} X([0,1]) \geq$ ind U.

Theorems of Pruitt and Taylor

Theorem
A.s.: $\operatorname{dim}_{H} X([0,1])=\underline{\text { ind }} U$ and $\operatorname{dim}_{M} X([0,1])=\overline{\operatorname{ind}} U$.

Derivation of the formula for dim_{H} :

- For dim_{H} : Enough to derive $\operatorname{dim}_{H} X([0,1]) \geq$ ind U.
- Let $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$ [Occupation measure]

Theorems of Pruitt and Taylor

Theorem
A.s.: $\operatorname{dim}_{\mathrm{H}} X([0,1])=$ ind U and $\overline{\operatorname{dim}}_{\mathrm{M}} X([0,1])=\overline{\text { ind }} U$.

Derivation of the formula for dim_{H} :

- For dim_{H} : Enough to derive $\operatorname{dim}_{H} X([0,1]) \geq$ ind U.
- Let $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$ [Occupation measure]
- Strategy: $I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)<\infty$.

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.
- If $s<\underline{\text { ind }} U$, then $\int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=O\left(\epsilon^{s}\right)$. Therefore, for all $0<s<t<$ ind U,

$$
\int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u=\int_{0}^{1} \int_{0}^{\infty} \mathrm{P}\left\{|X(u)|^{-s}>\lambda\right\} d \lambda d u
$$

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.
- If $s<\underline{\text { ind }} U$, then $\int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=O\left(\epsilon^{s}\right)$. Therefore, for all $0<s<t<$ ind U,

$$
\int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u=\int_{0}^{1} \int_{0}^{\infty} \mathrm{P}\left\{|X(u)|^{-s}>\lambda\right\} d \lambda d u
$$

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.
- If $s<\underline{\text { ind }} U$, then $\int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=O\left(\epsilon^{s}\right)$. Therefore, for all $0<s<t<$ ind U,

$$
\begin{aligned}
\int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u & =\int_{0}^{1} \int_{0}^{\infty} \mathrm{P}\left\{|X(u)|^{-s}>\lambda\right\} d \lambda d u \\
& \leq 1+\int_{1}^{\infty} \int_{0}^{1} \mathrm{P}\left\{|X(u)| \leq \lambda^{-1 / s}\right\} d u d \lambda
\end{aligned}
$$

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.
- If $s<\underline{\text { ind }} U$, then $\int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=O\left(\epsilon^{s}\right)$. Therefore, for all $0<s<t<$ ind U,

$$
\begin{aligned}
\int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u & =\int_{0}^{1} \int_{0}^{\infty} \mathrm{P}\left\{|X(u)|^{-s}>\lambda\right\} d \lambda d u \\
& \leq 1+\int_{1}^{\infty} \int_{0}^{1} \mathrm{P}\left\{|X(u)| \leq \lambda^{-1 / s}\right\} d u d \lambda \\
& \leq 1+C \int_{1}^{\infty} \lambda^{-t / s} d \lambda<\infty
\end{aligned}
$$

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.
- If $s<\underline{\text { ind }} U$, then $\int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=O\left(\epsilon^{s}\right)$. Therefore, for all $0<s<t<$ ind U,

$$
\begin{aligned}
\int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u & =\int_{0}^{1} \int_{0}^{\infty} \mathrm{P}\left\{|X(u)|^{-s}>\lambda\right\} d \lambda d u \\
& \leq 1+\int_{1}^{\infty} \int_{0}^{1} \mathrm{P}\left\{|X(u)| \leq \lambda^{-1 / s}\right\} d u d \lambda \\
& \leq 1+C \int_{1}^{\infty} \lambda^{-t / s} d \lambda<\infty
\end{aligned}
$$

$\therefore \mathrm{E}\left[I_{s}(\mu)\right]<\infty$ whenever $0<s<$ ind U.

Theorems of Pruitt and Taylor

- $I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|X(u)-X(v)|^{-s} d u d v$.
- $\mathrm{E}\left[I_{s}(\mu)\right]=2 \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u$.
- If $s<\underline{\text { ind }} U$, then $\int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=O\left(\epsilon^{s}\right)$. Therefore, for all $0<s<t<$ ind U,

$$
\begin{aligned}
\int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u & =\int_{0}^{1} \int_{0}^{\infty} \mathrm{P}\left\{|X(u)|^{-s}>\lambda\right\} d \lambda d u \\
& \leq 1+\int_{1}^{\infty} \int_{0}^{1} \mathrm{P}\left\{|X(u)| \leq \lambda^{-1 / s}\right\} d u d \lambda \\
& \leq 1+C \int_{1}^{\infty} \lambda^{-t / s} d \lambda<\infty
\end{aligned}
$$

$\therefore \mathrm{E}\left[I_{s}(\mu)\right]<\infty$ whenever $0<s<$ ind U.
$\therefore \therefore \operatorname{dim}_{H} X([0,1]) \geq$ ind U.

The Minkowski dimension

Need an analogue of Frostman's theorem.
Theorem (Hu and Taylor)
Suppose $F \subset \mathbf{R}^{d}$ is bounded measurable, and \exists probability measure μ on F and $s>0$ such that

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint \mathbf{1}\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)<\infty .
$$

Then, $\overline{\operatorname{dim}}_{M} F \geq s$.

The Minkowski dimension

Need an analogue of Frostman's theorem.
Theorem (Hu and Taylor)
Suppose $F \subset \mathbf{R}^{d}$ is bounded measurable, and \exists probability measure μ on F and $s>0$ such that

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint \mathbf{1}\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)<\infty .
$$

Then, $\overline{\operatorname{dim}}_{M} F \geq s$.

The Minkowski dimension

Need an analogue of Frostman's theorem.
Theorem (Hu and Taylor)
Suppose $F \subset \mathbf{R}^{d}$ is bounded measurable, and \exists probability measure μ on F and $s>0$ such that

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint \mathbf{1}\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)<\infty .
$$

Then, $\operatorname{dim}_{M} F \geq s$.
Proof: If $\mathscr{D}_{n}:=$ dyadic cubes, then (why?),

$$
\iint 1\left\{|x-y| \leq 2^{-n} \sqrt{d}\right\} \mu(d x) \mu(d y)
$$

The Minkowski dimension

Need an analogue of Frostman's theorem.
Theorem (Hu and Taylor)
Suppose $F \subset \mathbf{R}^{d}$ is bounded measurable, and \exists probability measure μ on F and $s>0$ such that

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)<\infty
$$

Then, $\overline{\operatorname{dim}}_{\mathrm{M}} F \geq s$.
Proof: If $\mathscr{D}_{n}:=$ dyadic cubes, then (why?),

$$
\begin{aligned}
& \iint \mathbf{1}\left\{|x-y| \leq 2^{-n} \sqrt{d}\right\} \mu(d x) \mu(d y) \\
& \geq \sum_{I \in \mathscr{T}_{n}}|\mu(I)|^{2} \mathbf{1}\{I \cap F \neq \varnothing\}
\end{aligned}
$$

The Minkowski dimension

Need an analogue of Frostman's theorem.
Theorem (Hu and Taylor)
Suppose $F \subset \mathbf{R}^{d}$ is bounded measurable, and \exists probability measure μ on F and $s>0$ such that

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)<\infty
$$

Then, $\overline{\operatorname{dim}}_{\mathrm{M}} F \geq s$.
Proof: If $\mathscr{D}_{n}:=$ dyadic cubes, then (why?),

$$
\begin{aligned}
& \iint \mathbf{1}\left\{|x-y| \leq 2^{-n} \sqrt{d}\right\} \mu(d x) \mu(d y) \\
& \geq \sum_{l \in \mathscr{D}_{n}}|\mu(I)|^{2} \mathbf{1}\{I \cap F \neq \varnothing\} \geq \frac{1}{N_{n}(F)}
\end{aligned}
$$

The Minkowski dimension

Need an analogue of Frostman's theorem.
Theorem (Hu and Taylor)
Suppose $F \subset \mathbf{R}^{d}$ is bounded measurable, and \exists probability measure μ on F and $s>0$ such that

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)<\infty
$$

Then, $\overline{\operatorname{dim}}_{\mathrm{M}} F \geq s$.
Proof: If $\mathscr{D}_{n}:=$ dyadic cubes, then (why?),

$$
\begin{aligned}
& \iint \mathbf{1}\left\{|x-y| \leq 2^{-n} \sqrt{d}\right\} \mu(d x) \mu(d y) \\
& \geq \sum_{l \in \mathscr{D}_{n}}|\mu(I)|^{2} \mathbf{1}\{I \cap F \neq \varnothing\} \geq \frac{1}{N_{n}(F)} \quad \text { [Cauchy-Schwarz] }
\end{aligned}
$$

Therefore, $N_{n}(F) \geq c 2^{n s}$ i.o.

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{M} X([0,1]) \geq \overline{\operatorname{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{M} X([0,1]) \geq \overline{\operatorname{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.
- E $\iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)$
$\leq 2 \int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u$

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{M} X([0,1]) \geq \overline{\operatorname{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.
- E $\iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)$
$\leq 2 \int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u$

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{M} X([0,1]) \geq \overline{\operatorname{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.
- $\mathrm{E} \iint \mathbf{1}\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)$
$\leq 2 \int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=2 U(B(0, \epsilon))$

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{M} X([0,1]) \geq \overline{\operatorname{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.
- $\mathrm{E} \iint \mathbf{1}\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)$ $\leq 2 \int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=2 U(B(0, \epsilon)) \leq \epsilon^{\text {ind } U+o(1)}$.

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{\mathrm{M}} X([0,1]) \geq \overline{\mathrm{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.
- E $\iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)$ $\leq 2 \int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=2 U(B(0, \epsilon)) \leq \epsilon^{\text {ind } U+o(1)}$.
- \therefore if $0<s<\overline{\text { ind }} U$, Fatou's lemma \Rightarrow

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)=0 \quad \text { a.s. }
$$

End of proof $\left(\overline{\operatorname{dim}}_{\mathrm{M}}\right)$

Now we prove that $\overline{\operatorname{dim}}_{\mathrm{M}} X([0,1]) \geq \overline{\mathrm{ind}} U$ a.s., and finish the proof of the theorem.

- $\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(X(s)) d s$.
- E $\iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)$ $\leq 2 \int_{0}^{1} \mathrm{P}\{|X(u)| \leq \epsilon\} d u=2 U(B(0, \epsilon)) \leq \epsilon^{\text {ind } U+o(1)}$.
- \therefore if $0<s<\overline{\text { ind }} U$, Fatou's lemma \Rightarrow

$$
\liminf _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{s}} \iint 1\{|x-y| \leq \epsilon\} \mu(d x) \mu(d y)=0 \quad \text { a.s. }
$$

- As μ is a probab. meas. on $X([0,1])$, the previous theorem implies that $\overline{\operatorname{dim}}_{M} X([0,1]) \geq \overline{\operatorname{ind}} U$ a.s.

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
U(B(0, \epsilon))=\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s
$$

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
U(B(0, \epsilon))=\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s
$$

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
\begin{aligned}
U(B(0, \epsilon)) & =\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s \\
& =\int_{0}^{1} \mathrm{P}\left\{|X(1)| \leq \frac{\epsilon}{\sqrt{s}}\right\} d s
\end{aligned}
$$

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
\begin{aligned}
U(B(0, \epsilon)) & =\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s \\
& =\int_{0}^{1} \mathrm{P}\left\{|X(1)| \leq \frac{\epsilon}{\sqrt{s}}\right\} d s \\
& \asymp \int_{0}^{1}\left(\frac{\epsilon}{\sqrt{s}} \wedge 1\right)^{d} d s
\end{aligned}
$$

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
\begin{aligned}
U(B(0, \epsilon)) & =\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s \\
& =\int_{0}^{1} \mathrm{P}\left\{|X(1)| \leq \frac{\epsilon}{\sqrt{s}}\right\} d s \\
& \asymp \int_{0}^{1}\left(\frac{\epsilon}{\sqrt{s}} \wedge 1\right)^{d} d s .
\end{aligned}
$$

- If $d=1$, then this is of sharp order ϵ.

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
\begin{aligned}
U(B(0, \epsilon)) & =\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s \\
& =\int_{0}^{1} \mathrm{P}\left\{|X(1)| \leq \frac{\epsilon}{\sqrt{s}}\right\} d s \\
& \asymp \int_{0}^{1}\left(\frac{\epsilon}{\sqrt{s}} \wedge 1\right)^{d} d s .
\end{aligned}
$$

- If $d=1$, then this is of sharp order ϵ.
- If $d=2$, then this is of sharp order $\epsilon^{2} \log (1 / \epsilon)$.

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
\begin{aligned}
U(B(0, \epsilon)) & =\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s \\
& =\int_{0}^{1} \mathrm{P}\left\{|X(1)| \leq \frac{\epsilon}{\sqrt{s}}\right\} d s \\
& \asymp \int_{0}^{1}\left(\frac{\epsilon}{\sqrt{s}} \wedge 1\right)^{d} d s .
\end{aligned}
$$

- If $d=1$, then this is of sharp order ϵ.
- If $d=2$, then this is of sharp order $\epsilon^{2} \log (1 / \epsilon)$.
- If $d \geq 3$, then this is of sharp order ϵ^{2}.

Example: Brownian motion

- $X=$ Brownian motion on \mathbf{R}^{d}. Note that

$$
\begin{aligned}
U(B(0, \epsilon)) & =\int_{0}^{1} \mathrm{P}\{|X(s)| \leq \epsilon\} d s \\
& =\int_{0}^{1} \mathrm{P}\left\{|X(1)| \leq \frac{\epsilon}{\sqrt{s}}\right\} d s \\
& \asymp \int_{0}^{1}\left(\frac{\epsilon}{\sqrt{s}} \wedge 1\right)^{d} d s .
\end{aligned}
$$

- If $d=1$, then this is of sharp order ϵ.
- If $d=2$, then this is of sharp order $\epsilon^{2} \log (1 / \epsilon)$.
- If $d \geq 3$, then this is of sharp order ϵ^{2}.
$\therefore \overline{\mathrm{ind}} U=\underline{\mathrm{ind}} U=\min (d, 2)$.

Problems

1. Suppose μ is a Borel measure on \mathbf{R}^{d}, and $\sup _{I \in \mathscr{D}_{n}} \mu(I)=O\left(2^{-n s}\right)$ for some $s>0$. Then, prove that $\sup _{x \in \mathbf{R}^{d}} \mu(B(x, \epsilon))=O\left(\epsilon^{s}\right)$.

Problems

1. Suppose μ is a Borel measure on \mathbf{R}^{d}, and $\sup _{\epsilon \in \mathscr{D}_{n}} \mu(I)=O\left(2^{-n s}\right)$ for some $s>0$. Then, prove that $\sup _{x \in \mathbf{R}^{d}} \mu(B(x, \epsilon))=O\left(\epsilon^{s}\right)$.
2. Let F be a Borel subset of \mathbf{R}^{d}, and define the lower Minkowski dimension of F to be

$$
\operatorname{dim}_{M} F:=\liminf _{n \rightarrow \infty} \frac{\log _{2} N_{n}(F)}{n},
$$

where $N_{n}(F)$ denotes the number of dyadic cubes that intersect F. Prove:

Problems

1. Suppose μ is a Borel measure on \mathbf{R}^{d}, and $\sup _{\epsilon \in \mathscr{D}_{n}} \mu(I)=O\left(2^{-n s}\right)$ for some $s>0$. Then, prove that $\sup _{x \in \mathbf{R}^{d}} \mu(B(x, \epsilon))=O\left(\epsilon^{s}\right)$.
2. Let F be a Borel subset of \mathbf{R}^{d}, and define the lower Minkowski dimension of F to be

$$
\operatorname{dim}_{M} F:=\operatorname{limininf}_{n \rightarrow \infty} \frac{\log _{2} N_{n}(F)}{n},
$$

where $N_{n}(F)$ denotes the number of dyadic cubes that intersect F. Prove:
$2.1 \operatorname{dim}_{H} F \leq \operatorname{dim}_{M} F \leq \operatorname{dim}_{M} F$.

Problems

1. Suppose μ is a Borel measure on \mathbf{R}^{d}, and $\sup _{\epsilon \in \mathscr{D}_{n}} \mu(I)=O\left(2^{-n s}\right)$ for some $s>0$. Then, prove that $\sup _{x \in \mathbf{R}^{d}} \mu(B(x, \epsilon))=O\left(\epsilon^{s}\right)$.
2. Let F be a Borel subset of \mathbf{R}^{d}, and define the lower Minkowski dimension of F to be

$$
\operatorname{dim}_{M} F:=\operatorname{limininf}_{n \rightarrow \infty} \frac{\log _{2} N_{n}(F)}{n},
$$

where $N_{n}(F)$ denotes the number of dyadic cubes that intersect F. Prove:
$2.1 \operatorname{dim}_{H} F \leq \operatorname{dim}_{M} F \leq \overline{\operatorname{dim}}_{M} F$.
$2.2 \operatorname{dim}_{M} X([0,1])=\operatorname{dim}_{H} X([0,1]) \forall$ Lévy processes X.

More advanced problems

1. Prove that

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \geq \frac{U(B(a, \epsilon))}{U(B(0,2 \epsilon))}
$$

More advanced problems

1. Prove that

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \geq \frac{U(B(a, \epsilon))}{U(B(0,2 \epsilon))} .
$$

2. Prove that

$$
\operatorname{dim}_{H} X([0,1])=\sup \left\{s>0: \int_{0}^{1} E\left(|X(u)|^{-s}\right) d u<\infty\right\} .
$$

More advanced problems

1. Prove that

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \geq \frac{U(B(a, \epsilon))}{U(B(0,2 \epsilon))} .
$$

2. Prove that

$$
\operatorname{dim}_{H} X([0,1])=\sup \left\{s>0: \int_{0}^{1} E\left(|X(u)|^{-s}\right) d u<\infty\right\} .
$$

3. Let $X:=$ isotropic stable, index $\alpha \in(0,2]$:

$$
\operatorname{Eexp}(i \xi \cdot X(t))=\exp \left(-t\|\xi\|^{\alpha}\right) \text {. Prove: }
$$

$$
\operatorname{dim}_{H} X([0,1])=\operatorname{dim}_{M} X([0,1])=\min (d, \alpha) \text { a.s. }
$$

More advanced problems

1. Prove that

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \geq \frac{U(B(a, \epsilon))}{U(B(0,2 \epsilon))}
$$

2. Prove that

$$
\operatorname{dim}_{H} X([0,1])=\sup \left\{s>0: \int_{0}^{1} \mathrm{E}\left(|X(u)|^{-s}\right) d u<\infty\right\} .
$$

3. Let $X:=$ isotropic stable, index $\alpha \in(0,2]$:
$\mathrm{E} \exp (i \xi \cdot X(t))=\exp \left(-t\|\xi\|^{\alpha}\right)$. Prove: $\operatorname{dim}_{H} X([0,1])=\operatorname{dim}_{M} X([0,1])=\min (d, \alpha)$ a.s.
4. (Hard) Prove that:

More advanced problems

1. Prove that

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \geq \frac{U(B(a, \epsilon))}{U(B(0,2 \epsilon))} .
$$

2. Prove that

$$
\operatorname{dim}_{H} X([0,1])=\sup \left\{s>0: \int_{0}^{1} E\left(|X(u)|^{-s}\right) d u<\infty\right\} .
$$

3. Let $X:=$ isotropic stable, index $\alpha \in(0,2]$:
$\operatorname{Eexp}(i \xi \cdot X(t))=\exp \left(-t\|\xi\|^{\alpha}\right)$. Prove:
$\operatorname{dim}_{H} X([0,1])=\operatorname{dim}_{M} X([0,1])=\min (d, \alpha)$ a.s.
4. (Hard) Prove that:
4.1 $U(B(a, \epsilon)) \leq U(B(0,2 \epsilon))$.

More advanced problems

1. Prove that

$$
\mathrm{P}\{X(s) \in B(a, \epsilon) \text { for some } s \leq \zeta\} \geq \frac{U(B(a, \epsilon))}{U(B(0,2 \epsilon))} .
$$

2. Prove that

$$
\operatorname{dim}_{H} X([0,1])=\sup \left\{s>0: \int_{0}^{1} E\left(|X(u)|^{-s}\right) d u<\infty\right\} .
$$

3. Let $X:=$ isotropic stable, index $\alpha \in(0,2]$:

$$
\operatorname{Eexp}(i \xi \cdot X(t))=\exp \left(-t\|\xi\|^{\alpha}\right) \text {. Prove: }
$$

$$
\operatorname{dim}_{H} X([0,1])=\operatorname{dim}_{M} X([0,1])=\min (d, \alpha) \text { a.s. }
$$

4. (Hard) Prove that:

$$
4.1 \quad U(B(a, \epsilon)) \leq U(B(0,2 \epsilon)) \text {. }
$$

$$
4.2 \cup(B(0,2 \epsilon)) \leq 16^{d} U(B(0, \epsilon)) \text {. }
$$

