Lecture 1
 Measure and Dimension

Davar Khoshnevisan

\author{
Department of Mathematics
 University of Utah
 ```
http://www.math.utah.edu/~ davar

```
}

Summer School on Lévy Processes: Theory and Applications August 9-12, 2007 Sandbjerg Manor, Denmark

\section*{The Minkowski dimension}
- Suppose \(F\) is a bounded subset of \(\mathbf{R}^{d}\), say \(F \subseteq[0,1)^{d}\).

\(N_{n}(F)=11\)

\section*{The Minkowski dimension}
- Suppose \(F\) is a bounded subset of \(\mathbf{R}^{d}\), say \(F \subseteq[0,1)^{d}\).
- A \(b\)-adic subcube of \([0,1)^{d}\) of side \(b^{-n}\) has the form
\[
\left[\left(j_{1}-1\right) b^{-n}, j_{1} b^{-n}\right) \times \cdots \times\left[\left(j_{d}-1\right) b^{-n}, j_{d} b^{-n}\right),
\]
where \(1 \leq j_{1}, \ldots, j_{d} \leq b^{n}\).

\(N_{n}(F)=11\)

\section*{The Minkowski dimension}
- Suppose \(F\) is a bounded subset of \(\mathbf{R}^{d}\), say \(F \subseteq[0,1)^{d}\).
- A \(b\)-adic subcube of \([0,1)^{d}\) of side \(b^{-n}\) has the form
\[
\left[\left(j_{1}-1\right) b^{-n}, j_{1} b^{-n}\right) \times \cdots \times\left[\left(j_{d}-1\right) b^{-n}, j_{d} b^{-n}\right),
\]
where \(1 \leq j_{1}, \ldots, j_{d} \leq b^{n}\).
- Let \(N_{n}(F)\) denote the number of \(b\)-adic subcubes of \([0,1)^{d}\) side \(b^{-n}\) that intersect \(F\), where \(b \geq 2\) is a fixed integer.

\[
N_{n}(F)=11
\]

\section*{A much better example}


\section*{Back to the Minkowski dimension}
- Let \(N_{n}(F)\) denote the number of \(b\)-adic subcubes of \([0,1)^{d}\) side \(b^{-n}\) that intersect \(F\), where \(b \geq 2\) is a fixed integer.

\section*{Back to the Minkowski dimension}
- Let \(N_{n}(F)\) denote the number of \(b\)-adic subcubes of \([0,1)^{d}\) side \(b^{-n}\) that intersect \(F\), where \(b \geq 2\) is a fixed integer.
- "The Minkowski dimension of \(F\) " is \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\).

\section*{Back to the Minkowski dimension}
- Let \(N_{n}(F)\) denote the number of \(b\)-adic subcubes of \([0,1)^{d}\) side \(b^{-n}\) that intersect \(F\), where \(b \geq 2\) is a fixed integer.
- "The Minkowski dimension of \(F\) " is \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\).
- That is, \(N_{n}(F)=b^{o(n)+n \operatorname{dim}_{M} F}\) as \(n \uparrow \infty\).

\section*{Problems and remedies}
1. \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\) might not exist [ \(\exists\) counterexamples].

\section*{Problems and remedies}
1. \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\) might not exist [ \(\exists\) counterexamples].
- This is easy to address: Instead we define the "upper Minkowski dimension":
\[
\overline{\operatorname{dim}}_{\mathrm{M}} F:=\limsup _{n \rightarrow \infty} \frac{\log _{b} N_{n}(F)}{n} .
\]

\section*{Problems and remedies}
1. \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\) might not exist [ \(\exists\) counterexamples].
- This is easy to address: Instead we define the "upper Minkowski dimension":
\[
\overline{\operatorname{dim}}_{\mathrm{M}} F:=\limsup _{n \rightarrow \infty} \frac{\log _{b} N_{n}(F)}{n} .
\]
2. Positive: Easy to compute.

\section*{Problems and remedies}
1. \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\) might not exist
[ \(\exists\) counterexamples].
- This is easy to address: Instead we define the "upper Minkowski dimension":
\[
\overline{\operatorname{dim}}_{\mathrm{M}} F:=\limsup _{n \rightarrow \infty} \frac{\log _{b} N_{n}(F)}{n} .
\]
2. Positive: Easy to compute.
3. Positive: \(\overline{\operatorname{dim}}_{M} F\) does not depend on the base \(b \geq 2\) [covering argument].

\section*{Problems and remedies}
1. \(\lim _{n \rightarrow \infty} \log _{b} N_{n}(F) / n\) might not exist
[ \(\exists\) counterexamples].
- This is easy to address: Instead we define the "upper Minkowski dimension":
\[
\overline{\operatorname{dim}}_{\mathrm{M}} F:=\limsup _{n \rightarrow \infty} \frac{\log _{b} N_{n}(F)}{n} .
\]
2. Positive: Easy to compute.
3. Positive: \(\overline{\operatorname{dim}}_{M} F\) does not depend on the base \(b \geq 2\) [covering argument].
4. Negative: \(\exists\) countable sets \(F\) with \(\overline{\operatorname{dim}}_{\mathrm{M}} F>0\).

\section*{Hausdorff's measures}
- Given: Real numbers \(\epsilon, s>0\), and a set \(F \subseteq \mathbf{R}^{d}\).

\section*{Hausdorff's measures}
- Given: Real numbers \(\epsilon, s>0\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{H}_{s}^{\epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all closed/open sets of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).

\section*{Hausdorff's measures}
- Given: Real numbers \(\epsilon, s>0\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{H}_{s}^{\epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all closed/open sets of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).
- \(\epsilon \mapsto \mathscr{H}_{s}^{\epsilon}(F)\) is nondecreasing.

\section*{Hausdorff's measures}
- Given: Real numbers \(\epsilon, s>0\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{H}_{s}^{\epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all closed/open sets of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).
- \(\epsilon \mapsto \mathscr{H}_{s}^{\epsilon}(F)\) is nondecreasing.
- \(\mathscr{H}_{s}(F):=\lim _{\epsilon \backslash 0} \mathscr{H}_{s}^{\epsilon}(F)\).

\section*{Hausdorff's measures}

\section*{Theorem (Hausdorff)}

\section*{Hausdorff's measures}

Theorem (Hausdorff)
- \(\mathscr{H}_{s}\) is a Carathéodory outer measure.

\section*{Hausdorff's measures}

Theorem (Hausdorff)
- \(\mathscr{H}_{s}\) is a Carathéodory outer measure.
- The restriction of \(\mathscr{H}_{s}\) to \(\mathscr{B}\left(\mathbf{R}^{d}\right)\) is a [Borel] measure.

\section*{Hausdorff's measures}

Theorem (Hausdorff)
- \(\mathscr{H}_{s}\) is a Carathéodory outer measure.
- The restriction of \(\mathscr{H}_{s}\) to \(\mathscr{B}\left(\mathbf{R}^{d}\right)\) is a [Borel] measure.
- \(\left.\mathscr{H}_{d}\right|_{\mathscr{B}\left(\mathbf{R}^{d}\right)}=c \times\) Lebesgue measure on \(\mathbf{R}^{d}\).

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\sup \varnothing:=0]\);

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\) sup \(\varnothing:=0]\);
2. \(\inf \left\{s>0: \mathscr{H}_{s}(F)<\infty\right\}\).

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\) sup \(\varnothing:=0]\);
2. \(\inf \left\{s>0: \mathscr{H}_{s}(F)<\infty\right\}\).

Lemma

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\) sup \(\varnothing:=0]\);
2. \(\inf \left\{s>0: \mathscr{H}_{s}(F)<\infty\right\}\).

Lemma
1. If \(\mathscr{H}_{s}(F)<\infty\), then \(\mathscr{H}_{s+\delta}(F)=0\) for all \(\delta>0\).

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\) sup \(\varnothing:=0]\);
2. \(\inf \left\{s>0: \mathscr{H}_{s}(F)<\infty\right\}\).

Lemma
1. If \(\mathscr{H}_{s}(F)<\infty\), then \(\mathscr{H}_{s+\delta}(F)=0\) for all \(\delta>0\).
2. If \(\mathscr{H}_{s}(F)=\infty\), then \(\mathscr{H}_{s-\delta}(F)=\infty\) for all \(\delta \in(0, s)\).

\section*{Hausdorff dimension}

Definition (Hausdorff dimension)
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\) sup \(\varnothing:=0]\);
2. \(\inf \left\{s>0: \mathscr{H}_{s}(F)<\infty\right\}\).

\section*{Lemma}
1. If \(\mathscr{H}_{s}(F)<\infty\), then \(\mathscr{H}_{s+\delta}(F)=0\) for all \(\delta>0\).
2. If \(\mathscr{H}_{s}(F)=\infty\), then \(\mathscr{H}_{s-\delta}(F)=\infty\) for all \(\delta \in(0, s)\).
3. \(\mathscr{H}_{d+\delta}(F)=0 \Rightarrow \operatorname{dim}_{H} F \in[0, d]\).

\section*{Hausdorff dimension}

\section*{Definition (Hausdorff dimension)}
\(\operatorname{dim}_{H} F\) is defined in two equivalent ways:
1. \(\sup \left\{s>0: \mathscr{H}_{s}(F)>0\right\}[\) sup \(\varnothing:=0]\);
2. \(\inf \left\{s>0: \mathscr{H}_{s}(F)<\infty\right\}\).

\section*{Lemma}
1. If \(\mathscr{H}_{s}(F)<\infty\), then \(\mathscr{H}_{s+\delta}(F)=0\) for all \(\delta>0\).
2. If \(\mathscr{H}_{s}(F)=\infty\), then \(\mathscr{H}_{s-\delta}(F)=\infty\) for all \(\delta \in(0, s)\).
3. \(\mathscr{H}_{d+\delta}(F)=0 \Rightarrow \operatorname{dim}_{H} F \in[0, d]\).
4. ( \(\sigma\)-regularity) \(\operatorname{dim}_{H} \cup_{j=1}^{\infty} F_{j}=\sup _{j \geq 1} \operatorname{dim}_{H} F_{j}\).

\section*{Besicovitch's net measures}
- Given: Real numbers \(\epsilon, s>0\), an integer \(b \geq 2\), and a set \(F \subseteq \mathbf{R}^{d}\).

\section*{Besicovitch's net measures}
- Given: Real numbers \(\epsilon, s>0\), an integer \(b \geq 2\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{N}_{s}^{b, \epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all \(b\)-adic cubes of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).

\section*{Besicovitch's net measures}
- Given: Real numbers \(\epsilon, s>0\), an integer \(b \geq 2\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{N}_{s}^{b, \epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all \(b\)-adic cubes of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).
- Advantage: WLOG the \(F_{j}\) 's are disjoint.

\section*{Besicovitch's net measures}
- Given: Real numbers \(\epsilon, s>0\), an integer \(b \geq 2\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{N}_{s}^{b, \epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all \(b\)-adic cubes of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).
- Advantage: WLOG the \(F_{j}\) 's are disjoint.
- \(\epsilon \mapsto \mathscr{N}_{s}^{b, \epsilon}(F)\) is nondecreasing.

\section*{Besicovitch's net measures}
- Given: Real numbers \(\epsilon, s>0\), an integer \(b \geq 2\), and a set \(F \subseteq \mathbf{R}^{d}\).
- \(\mathscr{N}_{s}^{b, \epsilon}(F):=\inf \sum_{j=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\), where the inf is over all \(b\)-adic cubes of diam \(\leq \epsilon\) such that \(F \subseteq \cup_{j=1}^{\infty} F_{j}\).
- Advantage: WLOG the \(F_{j}\) 's are disjoint.
- \(\epsilon \mapsto \mathscr{N}_{s}^{b, \epsilon}(F)\) is nondecreasing.
- \(\mathscr{N}_{s}^{b}(F):=\lim _{\epsilon \backslash 0} \mathscr{N}_{s}^{b, \epsilon}(F)\).

\section*{Equivalence of Hausdorff-Besicovitch measures}
- Fact 1: \(\mathscr{H}_{s}(F) \leq \mathscr{N}_{s}^{b}(F)\)
[The interior of a \(b\)-adic cube is an open set.]

\section*{Equivalence of Hausdorff-Besicovitch measures}
- Fact 1: \(\mathscr{H}_{s}(F) \leq \mathscr{N}_{s}^{b}(F)\)
[The interior of a \(b\)-adic cube is an open set.]
- Fact 2: \(\mathscr{N}_{s}^{b}(F) \leq 2^{d} c^{s} \mathscr{H}_{s}(F)\)
[E.g., for the \(\ell^{\infty}\) metric on \(\mathbf{R}^{d}, c=1\) : An open set of diam \(\leq b^{-n}\) can be covered by at most \(2^{d} b\)-adic cubes of diam \(b^{-n}\) ]

\section*{Equivalence of Hausdorff-Besicovitch measures}
- Fact 1: \(\mathscr{H}_{s}(F) \leq \mathscr{N}_{s}^{b}(F)\)
[The interior of a \(b\)-adic cube is an open set.]
- Fact 2: \(\mathscr{N}_{s}^{b}(F) \leq 2^{d} c^{s} \mathscr{H}_{s}(F)\)
[E.g., for the \(\ell^{\infty}\) metric on \(\mathbf{R}^{d}, c=1\) : An open set of diam \(\leq b^{-n}\) can be covered by at most \(2^{d} b\)-adic cubes of diam \(b^{-n}\) ]
- \(\therefore \operatorname{dim}_{H} F\) is also equal to
\(\sup \left\{s>0: \mathscr{N}_{s}^{b}(F)>0\right\}=\inf \left\{s>0: \mathscr{N}_{s}^{b}(F)<\infty\right\}\), for any and all integers \(b \geq 2\).

\section*{Cantor's set}

\section*{Corollary \\ If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).}

\section*{Cantor's set}

\section*{Corollary \\ If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).}

\section*{Example}

\section*{Cantor's set}

\section*{Corollary}

If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).

\section*{Example}
- Let \(C\) denote the standard ternary Cantor set in [0, 1]. At the nth stage of its construction, \(C\) is covered by \(2^{n}\) intervals of length/diameter \(3^{-n}\) each.

\section*{Cantor's set}

\section*{Corollary}

If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).

\section*{Example}
- Let \(C\) denote the standard ternary Cantor set in [0, 1]. At the nth stage of its construction, \(C\) is covered by \(2^{n}\) intervals of length/diameter \(3^{-n}\) each.
- Therefore, \(\mathscr{H}_{\log _{3} 2}^{3^{-n}}(C) \leq 2^{n} \cdot 3^{-n s}=1\).

\section*{Cantor's set}

\section*{Corollary}

If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).

\section*{Example}
- Let \(C\) denote the standard ternary Cantor set in [0, 1]. At the nth stage of its construction, \(C\) is covered by \(2^{n}\) intervals of length/diameter \(3^{-n}\) each.
- Therefore, \(\mathscr{H}_{\log _{3} 2}^{3^{-n}}(C) \leq 2^{n} \cdot 3^{-n s}=1\).
- Let \(\epsilon \searrow 0[n \nearrow \infty]\) to deduce that \(\mathscr{H}_{\log _{3} 2}(C) \leq 1\).

\section*{Cantor's set}

\section*{Corollary}

If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).

\section*{Example}
- Let \(C\) denote the standard ternary Cantor set in \([0,1]\). At the nth stage of its construction, \(C\) is covered by \(2^{n}\) intervals of length/diameter \(3^{-n}\) each.
- Therefore, \(\mathscr{H}_{\log _{3} 2}^{3^{-n}}(C) \leq 2^{n} \cdot 3^{-n s}=1\).
- Let \(\epsilon \searrow 0[n \nearrow \infty]\) to deduce that \(\mathscr{H}_{\log _{3} 2}(C) \leq 1\).
- Thus, we obtain \(\operatorname{dim}_{\mathrm{H}} C \leq \log _{3} 2 \approx 0.6309\).

\section*{Cantor's set}

\section*{Corollary}

If \(\mathscr{H}_{s}(F)<\infty\) then \(\operatorname{dim}_{H} F \leq s\).

\section*{Example}
- Let \(C\) denote the standard ternary Cantor set in \([0,1]\). At the \(n\)th stage of its construction, \(C\) is covered by \(2^{n}\) intervals of length/diameter \(3^{-n}\) each.
- Therefore, \(\mathscr{H}_{\log _{3} 2}^{3^{-n}}(C) \leq 2^{n} \cdot 3^{-n s}=1\).
- Let \(\epsilon \searrow 0[n \nearrow \infty]\) to deduce that \(\mathscr{H}_{\log _{3} 2}(C) \leq 1\).
- Thus, we obtain \(\operatorname{dim}_{H} C \leq \log _{3} 2 \approx 0.6309\).
- We will prove later that this is an equality [Hausdorff].

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).
- Goal: \(\operatorname{dim}_{H} W([0,1]) \leq \min (d, 2)\) a.s. We will soon prove that this is an identity.

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).
- Goal: \(\operatorname{dim}_{H} W([0,1]) \leq \min (d, 2)\) a.s. We will soon prove that this is an identity.
- The same proof will show that \(\operatorname{dim}_{H} W([0, n]) \leq \min (d, 2)\) a.s. \(\sigma\)-regularity \(\Rightarrow \operatorname{dim}_{H} W\left(\mathbf{R}_{+}\right) \leq \min (d, 2)\) a.s.

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).
- Goal: \(\operatorname{dim}_{H} W([0,1]) \leq \min (d, 2)\) a.s. We will soon prove that this is an identity.
- The same proof will show that \(\operatorname{dim}_{H} W([0, n]) \leq \min (d, 2)\) a.s. \(\sigma\)-regularity \(\Rightarrow \operatorname{dim}_{H} W\left(\mathbf{R}_{+}\right) \leq \min (d, 2)\) a.s.
- Fact: \(\forall \eta \in(0,1 / 2)\), there a.s. exists a random variable \(V_{\eta}\) such that \(|W(t)-W(s)| \leq V_{\eta}|t-s|^{\frac{1}{2}-\eta}\) for all \(s, t \in[0,1]\).

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).
- Goal: \(\operatorname{dim}_{H} W([0,1]) \leq \min (d, 2)\) a.s. We will soon prove that this is an identity.
- The same proof will show that \(\operatorname{dim}_{H} W([0, n]) \leq \min (d, 2)\) a.s. \(\sigma\)-regularity \(\Rightarrow \operatorname{dim}_{H} W\left(\mathbf{R}_{+}\right) \leq \min (d, 2)\) a.s.
- Fact: \(\forall \eta \in(0,1 / 2)\), there a.s. exists a random variable \(V_{\eta}\) such that \(|W(t)-W(s)| \leq V_{\eta}|t-s|^{\frac{1}{2}-\eta}\) for all \(s, t \in[0,1]\).
- Let \(F_{j}:=[j / n,(j+1) / n]\) for \(j=0, \ldots, n-1\). Then, with probab. one, diam \(W\left(F_{j}\right) \leq V_{\eta} n^{-\frac{1}{2}+\eta}:=\epsilon \forall j\).

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).
- Goal: \(\operatorname{dim}_{H} W([0,1]) \leq \min (d, 2)\) a.s. We will soon prove that this is an identity.
- The same proof will show that \(\operatorname{dim}_{H} W([0, n]) \leq \min (d, 2)\) a.s. \(\sigma\)-regularity \(\Rightarrow \operatorname{dim}_{H} W\left(\mathbf{R}_{+}\right) \leq \min (d, 2)\) a.s.
- Fact: \(\forall \eta \in(0,1 / 2)\), there a.s. exists a random variable \(V_{\eta}\) such that \(|W(t)-W(s)| \leq V_{\eta}|t-s|^{\frac{1}{2}-\eta}\) for all \(s, t \in[0,1]\).
- Let \(F_{j}:=[j / n,(j+1) / n]\) for \(j=0, \ldots, n-1\). Then, with probab. one, diam \(W\left(F_{j}\right) \leq V_{\eta} n^{-\frac{1}{2}+\eta}:=\epsilon \forall j\).
- \(\mathscr{H}_{s}^{\epsilon}(W([0,1])) \leq V_{\eta} n^{1-\frac{s}{2}+s \eta} \Rightarrow \mathscr{H}_{s}(W([0,1]))<\infty\) a.s. for \(s=\left(\frac{1}{2}-\eta\right)^{-1}\).

\section*{Brownian motion}
- Let \(W\) be standard \(d\)-dimensional Brownian motion; \(W(0)=0\).
- Goal: \(\operatorname{dim}_{H} W([0,1]) \leq \min (d, 2)\) a.s. We will soon prove that this is an identity.
- The same proof will show that \(\operatorname{dim}_{H} W([0, n]) \leq \min (d, 2)\) a.s. \(\sigma\)-regularity \(\Rightarrow \operatorname{dim}_{H} W\left(\mathbf{R}_{+}\right) \leq \min (d, 2)\) a.s.
- Fact: \(\forall \eta \in(0,1 / 2)\), there a.s. exists a random variable \(V_{\eta}\) such that \(|W(t)-W(s)| \leq V_{\eta}|t-s|^{\frac{1}{2}-\eta}\) for all \(s, t \in[0,1]\).
- Let \(F_{j}:=[j / n,(j+1) / n]\) for \(j=0, \ldots, n-1\). Then, with probab. one, diam \(W\left(F_{j}\right) \leq V_{\eta} n^{-\frac{1}{2}+\eta}:=\epsilon \forall j\).
- \(\mathscr{H}_{s}^{\epsilon}(W([0,1])) \leq V_{\eta} n^{1-\frac{s}{2}+s \eta} \Rightarrow \mathscr{H}_{s}(W([0,1]))<\infty\) a.s. for \(s=\left(\frac{1}{2}-\eta\right)^{-1}\).
\(\therefore \operatorname{dim}_{H} W([0,1]) \leq 2\) a.s. We are done because \(W([0,1]) \subset \mathbf{R}^{d}\)

\section*{A method for lower bounds}
\(\mathscr{P}(F):=\) all probability measures that are supported in \(F\).

\section*{A method for lower bounds}
\(\mathscr{P}(F):=\) all probability measures that are supported in \(F\).
Theorem (Frostman, 1935)
Let \(F\) be a bounded meas. subset of \(\mathbf{R}^{d}\). Suppose there exists \(s>0\) and \(\mu \in \mathscr{P}(F)\) such that
\[
I_{s}(\mu):=\iint \frac{\mu(d x) \mu(d y)}{|x-y|^{s}}<\infty .
\]

Then, \(\operatorname{dim}_{H} F \geq s\).

\section*{A method for lower bounds}
\(\mathscr{P}(F):=\) all probability measures that are supported in \(F\).
Theorem (Frostman, 1935)
Let \(F\) be a bounded meas. subset of \(\mathbf{R}^{d}\). Suppose there exists \(s>0\) and \(\mu \in \mathscr{P}(F)\) such that
\[
I_{s}(\mu):=\iint \frac{\mu(d x) \mu(d y)}{|x-y|^{s}}<\infty .
\]

Then, \(\operatorname{dim}_{H} F \geq s\).
- \(I_{s}(\mu):=\) the \(s\)-dimensional [Bessel-] Riesz energy of \(\mu\).

\section*{A method for lower bounds}

Proof: Let \(\left\{F_{j}\right\}\) denote a covering of \(F\) by dyadic cubes. We can assume WLOG that \(F_{i} \cap F_{j}=\varnothing\) if \(i \neq j\).

\section*{A method for lower bounds}

Proof: Let \(\left\{F_{j}\right\}\) denote a covering of \(F\) by dyadic cubes. We can assume WLOG that \(F_{i} \cap F_{j}=\varnothing\) if \(i \neq j\).
\[
I_{s}(\mu)=\sum_{i, j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(d x) \mu(d y)}{|x-y|^{s}}
\]

\section*{A method for lower bounds}

Proof: Let \(\left\{F_{j}\right\}\) denote a covering of \(F\) by dyadic cubes. We can assume WLOG that \(F_{i} \cap F_{j}=\varnothing\) if \(i \neq j\).
\[
I_{s}(\mu)=\sum_{i, j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(d x) \mu(d y)}{|x-y|^{s}} \geq \sum_{i=1}^{\infty} \frac{\left|\mu\left(F_{i}\right)\right|^{2}}{\left|\operatorname{diam}\left(F_{i}\right)\right|^{s}}
\]

\section*{A method for lower bounds}

Proof: Let \(\left\{F_{j}\right\}\) denote a covering of \(F\) by dyadic cubes. We can assume WLOG that \(F_{i} \cap F_{j}=\varnothing\) if \(i \neq j\).
\[
\begin{aligned}
I_{s}(\mu) & =\sum_{i, j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(d x) \mu(d y)}{|x-y|^{s}} \geq \sum_{i=1}^{\infty} \frac{\left|\mu\left(F_{i}\right)\right|^{2}}{\left|\operatorname{diam}\left(F_{i}\right)\right|^{s}} \\
& \geq\left(\sum_{i=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\right)^{-1}, \text { since } E(1 / Z) \geq 1 / E(Z) .
\end{aligned}
\]

Simply take \(Z=\left|\operatorname{diam}\left(F_{J}\right)\right|^{s} / \mu\left(F_{J}\right)\), where \(P\{J=j\}=\mu\left(F_{j}\right)\).

\section*{A method for lower bounds}

Proof: Let \(\left\{F_{j}\right\}\) denote a covering of \(F\) by dyadic cubes. We can assume WLOG that \(F_{i} \cap F_{j}=\varnothing\) if \(i \neq j\).
\[
\begin{aligned}
I_{s}(\mu) & =\sum_{i, j=1}^{\infty} \int_{F_{i}} \int_{F_{j}} \frac{\mu(d x) \mu(d y)}{|x-y|^{s}} \geq \sum_{i=1}^{\infty} \frac{\left|\mu\left(F_{i}\right)\right|^{2}}{\left|\operatorname{diam}\left(F_{i}\right)\right|^{s}} \\
& \geq\left(\sum_{i=1}^{\infty}\left|\operatorname{diam}\left(F_{j}\right)\right|^{s}\right)^{-1}, \text { since } E(1 / Z) \geq 1 / E(Z) .
\end{aligned}
\]

Simply take \(Z=\left|\operatorname{diam}\left(F_{J}\right)\right|^{s} / \mu\left(F_{J}\right)\), where \(P\{J=j\}=\mu\left(F_{j}\right)\). \(\mathscr{N}_{s}^{2}(F) \geq 1 / I_{s}(\mu)>0\).

\section*{Cantor's set}
- Write all \(x \in[0,1]\) as \(x:=\sum_{j=1}^{\infty} x_{j} 3^{-j}\), where \(x_{j} \in\{0,1,2\}\).

\section*{Cantor's set}
- Write all \(x \in[0,1]\) as \(x:=\sum_{j=1}^{\infty} x_{j} 3^{-j}\), where \(x_{j} \in\{0,1,2\}\).
- \(C:=\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}\).

\section*{Cantor's set}
- Write all \(x \in[0,1]\) as \(x:=\sum_{j=1}^{\infty} x_{j} 3^{-j}\), where \(x_{j} \in\{0,1,2\}\).
- \(C:=\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}\).
- The most natural probab. meas. on \(C\) is the uniform distribution: \(X_{1}, X_{2}, \ldots\) i.i.d. \(\mathrm{P}\left\{X_{1}=0\right\}=\mathrm{P}\left\{X_{1}=2\right\}=1 / 2 . X:=\sum_{j=1}^{\infty} X_{j} 3^{-j}\).

\section*{Cantor's set}
- Write all \(x \in[0,1]\) as \(x:=\sum_{j=1}^{\infty} x_{j} 3^{-j}\), where \(x_{j} \in\{0,1,2\}\).
- \(C:=\left\{x \in[0,1]: x_{j} \in\{0,2\}\right\}\).
- The most natural probab. meas. on \(C\) is the uniform distribution: \(X_{1}, X_{2}, \ldots\) i.i.d. \(\mathrm{P}\left\{X_{1}=0\right\}=\mathrm{P}\left\{X_{1}=2\right\}=1 / 2 . X:=\sum_{j=1}^{\infty} X_{j} 3^{-j}\).
- \(\mu(A):=\mathrm{P}\{X \in A\}\).

Cantor-Lebesgue measure
We will prove that \(I_{s}(\mu)<\infty\) for all \(s \in\left(0, \log _{3} 2\right)\).

\section*{Cantor's set}
- \(I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)\)

\section*{Cantor's set}
- \(I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)\)

\section*{Cantor's set}
- \(I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)=\mathrm{E}\left(|X-Y|^{-s}\right)\), where \(Y\) is an independent copy of \(X\).

\section*{Cantor's set}
- \(I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)=\mathrm{E}\left(|X-Y|^{-s}\right)\), where \(Y\) is an independent copy of \(X\).
- But
\[
|X-Y| \geq \frac{2}{3^{N}}-\sum_{j=N+1}^{\infty} \frac{\left|X_{j}-Y_{j}\right|}{3^{j}} \geq \frac{1}{3^{N}}
\]
where \(N:=\min \left\{j: X_{j} \neq Y_{j}\right\}\). Therefore, \(I_{s}(\mu) \leq \mathrm{E}\left[3^{N s}\right]\).

\section*{Cantor's set}
- \(I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)=\mathrm{E}\left(|X-Y|^{-s}\right)\), where \(Y\) is an independent copy of \(X\).
- But
\[
|X-Y| \geq \frac{2}{3^{N}}-\sum_{j=N+1}^{\infty} \frac{\left|X_{j}-Y_{j}\right|}{3^{j}} \geq \frac{1}{3^{N}}
\]
where \(N:=\min \left\{j: X_{j} \neq Y_{j}\right\}\). Therefore, \(I_{s}(\mu) \leq \mathrm{E}\left[3^{N s}\right]\).
- \(\mathrm{P}\{N=k\}=2^{-k}\) for \(k \geq 1\) [geometric distribution].

\section*{Cantor's set}
- \(I_{s}(\mu)=\iint|x-y|^{-s} \mu(d x) \mu(d y)=\mathrm{E}\left(|X-Y|^{-s}\right)\), where \(Y\) is an independent copy of \(X\).
- But
\[
|X-Y| \geq \frac{2}{3^{N}}-\sum_{j=N+1}^{\infty} \frac{\left|X_{j}-Y_{j}\right|}{3^{j}} \geq \frac{1}{3^{N}}
\]
where \(N:=\min \left\{j: X_{j} \neq Y_{j}\right\}\). Therefore, \(l_{s}(\mu) \leq \mathrm{E}\left[3^{N s}\right]\).
- \(\mathrm{P}\{N=k\}=2^{-k}\) for \(k \geq 1\) [geometric distribution].
- \(\mathrm{E}\left[3^{N s}\right]=\sum_{k=1}^{\infty} 3^{k s} 2^{-k}<\infty\) iff \(s<\log _{3} 2\). \(\square\)

\section*{The Cantor-Lebesgue function}
\(c(x):=\mu([0, x]) \Rightarrow c^{\prime}(x)=0\) a.e., \(c(0)=0, c(1)=1, c=\) continuous.

"The devil's staircase" [Mandelbrot]

\section*{Brownian motion}

Theorem (Lévy) \(\operatorname{dim}_{H} W([0,1])=\min (d, 2)\) a.s.

\section*{Brownian motion}

Theorem (Lévy)
\(\operatorname{dim}_{H} W([0,1])=\min (d, 2)\) a.s.
- Suffices to prove that \(\operatorname{dim}_{H} W([0,1]) \geq \min (d, 2)\); we proved the other bound earlier.

\section*{Brownian motion}

Theorem (Lévy) \(\operatorname{dim}_{H} W([0,1])=\min (d, 2)\) a.s.
- Suffices to prove that \(\operatorname{dim}_{H} W([0,1]) \geq \min (d, 2)\); we proved the other bound earlier.
- Need a probability measure on \(W([0,1])\) such that \(I_{s}(\mu)<\infty\) a.s. for \(s<\min (d, 2)\).

\section*{Brownian motion}
- \(\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(W(u)) d u ; \mu \in \mathscr{P}(W([0,1]))\).

\section*{Brownian motion}
- \(\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(W(u)) d u ; \mu \in \mathscr{P}(W([0,1]))\).
- \(I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|W(v)-W(u)|^{-s} d u d v\).

\section*{Brownian motion}
- \(\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(W(u)) d u ; \mu \in \mathscr{P}(W([0,1]))\).
- \(I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|W(v)-W(u)|^{-s} d u d v\).
- \(\mathrm{E}\left(I_{s}(\mu)\right)=\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v \times \mathrm{E}\left(|Z|^{-s}\right)\), where \(Z\) is a vector of \(d\) i.i.d. \(N(0,1)\) 's.

\section*{Brownian motion}
- \(\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(W(u)) d u ; \mu \in \mathscr{P}(W([0,1]))\).
- \(I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|W(v)-W(u)|^{-s} d u d v\).
- \(\mathrm{E}\left(I_{s}(\mu)\right)=\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v \times \mathrm{E}\left(|Z|^{-s}\right)\), where \(Z\) is a vector of \(d\) i.i.d. \(N(0,1)\) 's.
- \(\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v<\infty\) iff \(s<2\).

\section*{Brownian motion}
- \(\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(W(u)) d u ; \mu \in \mathscr{P}(W([0,1]))\).
- \(I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|W(v)-W(u)|^{-s} d u d v\).
- \(\mathrm{E}\left(I_{s}(\mu)\right)=\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v \times \mathrm{E}\left(|Z|^{-s}\right)\), where \(Z\) is a vector of \(d\) i.i.d. \(N(0,1)\) 's.
- \(\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v<\infty\) iff \(s<2\).
- \(\mathrm{E}\left(|Z|^{-s}\right)<\infty\) iff \(s<d\) [Polar coordinates].

\section*{Brownian motion}
- \(\mu(A):=\int_{0}^{1} \mathbf{1}_{A}(W(u)) d u ; \mu \in \mathscr{P}(W([0,1]))\).
- \(I_{s}(\mu)=\int_{0}^{1} \int_{0}^{1}|W(v)-W(u)|^{-s} d u d v\).
- \(\mathrm{E}\left(I_{s}(\mu)\right)=\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v \times \mathrm{E}\left(|Z|^{-s}\right)\), where \(Z\) is a vector of \(d\) i.i.d. \(N(0,1)\) 's.
- \(\int_{0}^{1} \int_{0}^{1}|u-v|^{-s / 2} d u d v<\infty\) iff \(s<2\).
- \(\mathrm{E}\left(|Z|^{-s}\right)<\infty\) iff \(s<d\) [Polar coordinates].
- \(s<d \wedge 2 \Rightarrow I_{s}(\mu) \stackrel{\text { a.s. }}{<} \infty \Rightarrow \operatorname{dim}_{H} W([0,1]) \stackrel{\text { a.s. }}{\geq} d \wedge 2\). \(\square\)

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{M} F=1 / 2>0=\operatorname{dim}_{H} F\).

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{M} F=1 / 2>0=\operatorname{dim}_{H} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{M} F=1 / 2>0=\operatorname{dim}_{H} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).
3. Prove that \(\overline{\operatorname{dim}}_{\mathrm{M}} C=\log _{3} 2\).

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{M} F=1 / 2>0=\operatorname{dim}_{H} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).
3. Prove that \(\overline{\operatorname{dim}}_{M} C=\log _{3} 2\).
4. Compute \(\operatorname{dim}(C \times C)\), where \(\operatorname{dim}=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{\mathrm{M}}\), and \(C:=\) Cantor's set.

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{\mathrm{M}} F=1 / 2>0=\operatorname{dim}_{H} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).
3. Prove that \(\overline{\operatorname{dim}}_{M} C=\log _{3} 2\).
4. Compute \(\operatorname{dim}(C \times C)\), where \(\operatorname{dim}=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{\mathrm{M}}\), and \(C:=\) Cantor's set.
5. Prove that \(\overline{\operatorname{dim}}_{M} W([0,1])=\min (d, 2)\) a.s.

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{\mathrm{M}} F=1 / 2>0=\operatorname{dim}_{H} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).
3. Prove that \(\overline{\operatorname{dim}}_{M} C=\log _{3} 2\).
4. Compute \(\operatorname{dim}(C \times C)\), where \(\operatorname{dim}=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{\mathrm{M}}\), and \(C:=\) Cantor's set.
5. Prove that \(\overline{\operatorname{dim}}_{M} W([0,1])=\min (d, 2)\) a.s.
6. Prove that for all compact nonrandom sets \(E \subset[0,1]\), \(\operatorname{dim} W(E)=\min (d, 2 \operatorname{dim} E)\) a.s., where \(\operatorname{dim}:=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{M}\) everywhere.

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{\mathrm{M}} F=1 / 2>0=\operatorname{dim}_{\mathrm{H}} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).
3. Prove that \(\overline{\operatorname{dim}}_{M} C=\log _{3} 2\).
4. Compute \(\operatorname{dim}(C \times C)\), where \(\operatorname{dim}=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{\mathrm{M}}\), and \(C:=\) Cantor's set.
5. Prove that \(\overline{\operatorname{dim}}_{M} W([0,1])=\min (d, 2)\) a.s.
6. Prove that for all compact nonrandom sets \(E \subset[0,1]\), \(\operatorname{dim} W(E)=\min (d, 2 \operatorname{dim} E)\) a.s., where \(\operatorname{dim}:=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{M}\) everywhere.
7. Prove that always, \(\operatorname{dim}_{H}(E \times F)=\operatorname{dim}_{H}(F \times E)\).

\section*{Problems}
1. Prove: \(F:=\cup_{n=1}^{\infty}\{1 / n\} \Rightarrow \overline{\operatorname{dim}}_{\mathrm{M}} F=1 / 2>0=\operatorname{dim}_{\mathrm{H}} F\).
2. Prove that always, \(\operatorname{dim}_{H} F \leq \overline{\operatorname{dim}}_{M} F\).
3. Prove that \(\overline{\operatorname{dim}}_{M} C=\log _{3} 2\).
4. Compute \(\operatorname{dim}(C \times C)\), where \(\operatorname{dim}=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{\mathrm{M}}\), and \(C:=\) Cantor's set.
5. Prove that \(\operatorname{dim}_{M} W([0,1])=\min (d, 2)\) a.s.
6. Prove that for all compact nonrandom sets \(E \subset[0,1]\), \(\operatorname{dim} W(E)=\min (d, 2 \operatorname{dim} E)\) a.s., where \(\operatorname{dim}:=\operatorname{dim}_{H}\) or \(\overline{\operatorname{dim}}_{M}\) everywhere.
7. Prove that always, \(\operatorname{dim}_{H}(E \times F)=\operatorname{dim}_{H}(F \times E)\).
8. Prove that always, \(\operatorname{dim}_{H}(E \times F) \leq \operatorname{dim}_{H} E+\overline{\operatorname{dim}}_{M} F\).

\section*{More advanced problems}
\(f:[0,1] \rightarrow \mathbf{R}^{d}\) is Hölder continuous with index \(\alpha>0\) if
\[
\sup _{0 \leq x \neq y \leq 1} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty
\]
1. Prove that \(\alpha \leq 1\), and \(\operatorname{dim}_{H} f(E) \leq \min \left(d, \alpha^{-1} \operatorname{dim}_{H} E\right)\) \(\forall E \in \mathscr{B}([0,1])\).

\section*{More advanced problems}
\(f:[0,1] \rightarrow \mathbf{R}^{d}\) is Hölder continuous with index \(\alpha>0\) if
\[
\sup _{0 \leq x \neq y \leq 1} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty .
\]
1. Prove that \(\alpha \leq 1\), and \(\operatorname{dim}_{H} f(E) \leq \min \left(d, \alpha^{-1} \operatorname{dim}_{H} E\right)\) \(\forall E \in \mathscr{B}([0,1])\).
2. Prove that the Cantor-Lebesgue function is Hölder continuous with index \(\log _{3} 2\) (Hint: Compute \(\mu(I)\) for a 3 -ary interval \(I\).)

\section*{More advanced problems}
\(f:[0,1] \rightarrow \mathbf{R}^{d}\) is Hölder continuous with index \(\alpha>0\) if
\[
\sup _{0 \leq x \neq y \leq 1} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty .
\]
1. Prove that \(\alpha \leq 1\), and \(\operatorname{dim}_{H} f(E) \leq \min \left(d, \alpha^{-1} \operatorname{dim}_{H} E\right)\) \(\forall E \in \mathscr{B}([0,1])\).
2. Prove that the Cantor-Lebesgue function is Hölder continuous with index \(\log _{3} 2\) (Hint: Compute \(\mu(I)\) for a 3 -ary interval I.)
3. Prove that \(C-C:=\{x-y: x, y \in C\}=[-1,1]\). (Hint: \(x \in C\), \(t \in[-1,1] \Rightarrow\) the line \(y=x+t\) intersects \(C \times C\) at some 3 -adic square.)```

