
Regularity Theory

In this chapter we treat two questions about Gaussian processes simultan-
teously. Namely, “when is a Gaussian process continuous?”; and “when is
a Gaussian process bounded”? We begin by discussing a sufficient con-
dition for questions such as continuity and boundedness. That condition
is based on a very general principle about abstract stochastic processes,
and involves the notion of metric entropy.

1. Metric Entropy

Let (T � �) be a non-empty, compact metric space and define B(� � �) to be
the closed �-ball of radius � > 0 about � ∈ T ; that is,

B(� � �) := {� ∈ T : �(� � �) 6 �} [� ∈ T� � > 0]�

By default, for every ε > 0 there exists an integer �(ε) > 1 and points
�1� � � � � ��(ε) ∈ T such that T = ∪�(ε)

�=1 B(�� � ε).

Definition 1.1. We write NT (ε) for the smallest such integer �(ε). The
function NT is called the metric entropy of (T � �).

The function NT : (0 � ∞) → Z+ is non-increasing, and the behavior of
NT (ε) for ε ≈ 0 quantifies the “size” of the compact set T . For example,
we can see easily that T is a finite set if and only if limε↓0 NT (ε) < ∞.
And if limε↓0 NT (ε) < ∞, then the rate at which NT (ε) diverges can yield
information about the geometry of T . The following is one way in which
this statement can be quantified.
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94 7. Regularity Theory

Definition 1.2. The Minkowski dimension of (T � �) is defined as

dimM(T) := lim sup
ε↓0

log NT (ε)
log(1/ε) �

Some authors refer to dimM(T) as the “fractal dimension” of T . See
Mandelbrot XXX, for instance.

ex:dimM:1 Example 1.3. Here are a few simple examples that show how the be-
havior of NT near zero can describe the “size” of T .

(1) Consider the set T :=
��

�=1[�� ��] where �� < �� are real num-
bers. We endow T with the Euclidean metric, �(� � �) := �� − ��
for all �� � ∈ T . Then it is not hard to see that dimM(T) = �.
In other words, the Minkowski dimension of T agrees with any
reasonable topological notion of dimension for T .

(2) Let T denote the standard ternary Cantor set in R+, and endow
T with the Euclidean metric, �(� � �) := |� − �| for all �� � ∈ T .
Then it is possible to verify that dimM(T) = log 2/ log 3, which
ought to be a familiar computation to you.

(3) If T is a finite set then dimM(T) = 0. However, there are count-
able spaces that have non-zero Minkowski dimension. For in-
stance, consider T := {1 � 1/2 � 1/3 � 1/4 � � � �}� endowed with the Eu-
clidean metric, �(� � �) := |� − �| for all �� � ∈ T . It is a good
exercise to prove that dimM(T) = 1/2.

(4) There are also many metric spaces of infinite Minkowski dimen-
sion. An example is the space T of all continuous, real-valued
functions on [0 � 1], endowed with the usual metric,

�(� � �) := sup
06�61

|�(�) − �(�)| for all �� � ∈ T .

Or one can consider T = L�[0 � 1] for any 1 6 � 6 ∞, endowed
with �(� � �) := �� − ��L�[0�1] for all �� � ∈ L�[0 � 1].

The main result of this section is a careful version of the assertion
that a T-indexed stochastic process is continuous if the index set T is
“not too big,” as understood, in one fashion or another, via the behavior
of NT near zero.

Now let {X�}�∈T be a real-valued stochastic process, indexed by a set
T , where (T � �) is a metric space. Define

ΨX(�) := sup
���∈T

P {|X� − X�| > �(� � �)�} [� > 0]�
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Also, introduce the “tail” functions {���X}�>1 as follows.

���X(λ) := �
� ∞

0
��−1 (λΨX(�) ∧ 1) d� [λ > 0� � > 1]�

The goal of this section is to prove the following result about increments
of general T-indexed stochastic processes. In the next section we will
work out examples that highlight some of the uses of such a theorem.

th:entropy Theorem 1.4. For every finite set S ⊂ T and all � > 1,

E

⎛

⎝ max
���∈S:

�(���)6δ

|X� − X�|�
⎞

⎠ 6
�

12
� δ

0

�
���X

�
[NS(�)]2

��1/�
d�

��

�

for every 0 < δ 6 �(T), where �(S) := sup���∈S �(� � �) denotes the
�-diameter of S. If T ⊂ RM for some M > 1 and is endowed with
any Euclidean metric �, then there exists a finite constant L > 1—
depending only on (M � �)—such that, for every finite set S ⊂ T and all
� > 1,

E

⎛

⎝ max
���∈S:

�(���)6δ

|X� − X�|�
⎞

⎠ 6
�

12
� δ

0

�
���X (L · NS(�))

�1/� d�
��

�

for every 0 < δ 6 �(T).

Remark 1.5. The second part of the previous theorem holds not only
when (T � �) is a metric subset of a Euclidean space, but in fact whenever
(T � �) is a metric subset of a metric space (A � �) to which the Besicovitch
covering theorem applies; for more information on this topic consult
Füredi and Loeb XXX.

There are many variations on Theorem 1.4 XXX. This formulation
of Theorem 1.4 is particularly elegant, and might well be new. The
essence of the proof can be traced back to an unpublished manuscript
of Kolmogorov, with non-trivial extensions due to Preston XXX and par-
ticularly Dudley XXX. The argument rests on the following simple a
priori estimate.

lem:entropy:1 Lemma 1.6. Let A ⊂ T × T be a finite set of cardinality |A|. Then,

E

�
max
(���)∈A

|X� − X�|�
�
6 ���X(|A|) · max

(���)∈A
[�(� � �)]� for all � > 1�

Proof. For every � > 0,

P

�
max
(���)∈A

����
X� − X�
�(� � �)

���� > �
�

6
�

(���)∈A
P

�����
X� − X�
�(� � �)

���� > �
�

6 |A|ΨX(�) ∧ 1�
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Integrate [���−1 d�] to see that

E

�
max
(���)∈A

����
X� − X�
�(� � �)

����
��

6 ���X(|A|)�

This implies the lemma. ⇤

Proof of Theorem 1.4. Let us first consider the general case; the Eu-
clidean case requires making small adjustments and is deferred to the
end of the proof.

We can restrict attention to {X�}�∈S in order to see that we can
assume—without loss in generality—that S = T is a finite set.

Define
K� := NT

�
2−��(T)

�
[� > 0]�

Then clearly, 1 = K0 6 K1 6 K2 6 � � � .
The definition of metric entropy ensures that for every integer � > 0

we can find a finite set T� ⊂ T such that:
(1) |T�| = K�;
(2) inf�∈T� �(� � �) 6 2−��(T) for all � ∈ T ; and
(3) There exists an integer M > 1 such that T� = T for all � > M .

Therefore, among other things, we can associate to every point � ∈ T a
unique point π�(�) ∈ T� such that:

(P.a) �(� � π�(�)) 6 2−��(T);1 and
(P.b) π�(�) = π�(�) whenever �(� � �) 6 2−��(T).

Since K0 = 1, we can see from the definition of �(T) that we can choose
T0 := {�0}, where �0 ∈ T is an arbitrary point. Having observed this
we then write X� − X�0 =

�∞
�=0(Xπ�+1(�) − Xπ�(�)) for every � ∈ T , all the

time noticing that the sum is composed of not more than M +1 nonzero
terms, and hence is absolutely convergent a.s. In particular,

|X� − X�| 6
∞�

�=0

��Xπ�+1(�) − Xπ�(�) − Xπ�+1(�) + Xπ�(�)
�� [�� � ∈ T]�

where the summands are zero for all but a finite number of integers �.
If, in addition, there exists an integer � > 0 such that �(� � �) 6 2−��(T),
then π�(�) = π�(�) for all � > �. From here it follows readily that if
�(�� �) 6 2−��(T), then

|X� − X�| 6
∞�

�=�

��Xπ�+1(�) − Xπ�(�)
�� +

∞�

�=�

��Xπ�+1(�) − Xπ�(�)
�� �

1There can be more than one such point; if so, then choose any one of the possibles one. Since T
is finite, this can even be done algorithmically, if needed.
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Now, �(π�+1(�) � π�(�)) 6 �(π�(�) � �) + �(π�+1(�) � �) 6 3
2 · 2−��(T), and

a similar bound holds for �(π�+1(�) � π�(�)) as well. Therefore,

max
���∈T

�(���)62−��(T)

|X� − X�| 6 2
∞�

�=�
max

�∈T�+1��∈T�
�(���)6 3

2 ·2−��(T)

|X� − X� |�

By Minkowski’s inequality,
������

max
���∈T

�(���)62−��(T)

|X� − X�|

������
L�(P)

6 2
∞�

�=�

�������
max

�∈T�+1��∈T�
�(���)6 3

2 ·2−��(T)

|X� − X� |

�������
L�(P)

�

for all real numbers � > 1. The cardinality of T� is K� 6 K�+1 and the
cardinality of T�+1 is K�+1. Therefore, Lemma 1.6 implies that

�������
max

�∈T�+1��∈T�
�(���)6 3

2 ·2−��(T)

|X� − X�|

�������
L�(P)

6 3 · 2−��(T)
�
���X

�
K2

�+1

��1/�
(7.1) eq:for:KCT

= 6 · 2−1−��(T)
�
���X

��
NT

�
2−1−��(T)

��2
��1/�

�

for every � > �. Sum over all � > � in order to see that
������

max
���∈T

�(���)62−��(T)

|X� − X�0 |

������
L�(P)

6 6
∞�

�=�
2−1−��(T)

�
���X

��
NT

�
2−1−��(T)

��2
��1/�

= 12
∞�

�=�

� 2−1−��(T)

2−2−��(T)

�
���X

��
NT

�
2−1−��(T)

��2
��1/�

dε

6 12
� 2−1−��(T)

0

�
���X

�
[NT (ε)]2

��1/�
dε� (7.2) eq:for:KCT:1

If 0 < δ 6 �(T), then we can find always a unique integer � > 0 such
that 2−�−1�(T) < δ 6 2−��(T), whence
������

max
���∈T

�(���)6δ

|X� − X�0 |

������
L�(P)

6

������
max
���∈T

�(���)62−��(T)

|X� − X�0 |

������
L�(P)

6 12
� 2−1−��(T)

0

�
���X

�
[NT (ε)]2

��1/�
dε 6 12

� δ

0

�
���X

�
[NT (ε)]2

��1/�
dε�
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by the preceding portion of the proof. The general form of the theorem
follows from this.

The Euclidean form is proved similarly; except we notice that by the
Besicovitch covering theorem XXX,

L = L(M � �) := sup
�>0

max
�∈T�

���� ∈ T�+1 : �(� � �) 6 3
2 · 2−��(T)

��� < ∞�

[For instance, L 6 21+M when �(� � �) := max�6M |�� − ��|.] Therefore, (7.1)
can be improved to the following:

�������
max

�∈T�+1��∈T�
�(���)6 3

2 ·2−��(T)

|X� − X�|

�������
L�(P)

6 6 · 2−1−��(T)
�
���X (LK�+1)

�1/�

= 6 · 2−1−��(T)
�
���X

�
L · NT

�
2−1−��(T)

���1/�
�

The remainder of the proof is unchanged. ⇤

2. Continuity Theorems

§1. Kolmogorov’s Continuity Theorem. Among other things, Theo-
rem 1.4 and its variations can be used to sometimes show that a stochas-
tic process {X�}�∈T can be constructed in a nice way, where as before
(T � �) is a metric space.

Definition 2.1. Let X := {X�}�∈T and Y := {Y�}�∈T be two stochastic
processes. We say that X is a modification—sometimes also called a
version—of Y if P{X� = Y�} = 1 for all � ∈ T .

Of course, if X is a version of Y , then in turn Y is a version of X
as well. What the preceding really says is that X and Y have the same
distributions in the sense that

P {X�1 ∈ A1 � � � � � X�� ∈ A�} = P {Y�1 ∈ A1 � � � � � Y�� ∈ A�} �

for all Borel sets A1� � � � � A� ⊂ R and all �1� � � � � �� ∈ T . In particular, all
computable probabilities for X are the same as their counterparts for
the process Y . In this sense, if X and Y are modifications of one other,
then they are “stochastically indistinguishable.”

th:entropy:1 Theorem 2.2. Let X := {X�}�∈T be a stochastic process and suppose
there exists a real number � > 1 and a compact separable set S ⊂ T
such that � �(S)

0

�
���X

�
[NS(�)]2

��1/�
d� < ∞�
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for some � > 1. Then, {X}�∈S has a continuous version {Y�}�∈S which
satisfies

E

⎛
⎜⎝ sup

���∈S:
�(���)6δ

|Y� − Y�|�

⎞
⎟⎠ 6

�
12

� δ

0

�
���X

�
[NS(�)]2

��1/�
d�

��

�

for every 0 < δ 6 �(S). If (T � �) is a metric subset of RM , then we can
replace [NS(�)]2 everywhere by L · NS(�) in both of the preceding two
displays, where L = L(M � �) > 1 is a finite universal number.

Theorem 2.2 is a restatement of Theorem 1.4. But this particular
formulation has the following useful consequence.

th:KCT Theorem 2.3 (Kolmogorov’s Continuity Theorem). Suppose that (T � �)
is compact and separable, and that {X�}�∈T is a stochastic process for
which we can finite constants A� β > 0 and � > 2 dimM(T) such that

E (|X� − X�|�) 6 A[�(� � �)]�+β for all �� � ∈ T� (7.3) eq:KCT

Then X has a continuous version Y which satisfies the following: For
every 1 6 � < �, and 0 < α < (� − 2 dimM(T))/� ,

E

⎛
⎜⎝ sup

���∈T :
� �=�

����
Y� − Y�

[�(� � �)]α

����
�
⎞
⎟⎠ < ∞� (7.4) goal:KCT

If (T � �) is a compact subset of RM for some integer M > 1, then the
conditions for � and α can be respectively improved to � > dimM(T)
and 0 < α < (� − dimM(T))/�.

This is an excellent time to go back and deduce, from Theorem 2.3,
Proposition 2.2 on page 86. I will leave the few remaining details to you,
and verify Theorem 2.3 only.

Proof. I will prove the general case; the Euclidean case is proved simi-
larly. Let us apply Chebyshev’s inequality to see that for all � > 0,

Ψ(�) = sup
���∈T

P {|X� − X�| > �(� � �)�} 6 sup
���∈T

A[�(� � �)]β
�� = B�−��

where B := A[�(T)]β . This shows that whenever � ∈ (0 � �) and λ > 0,

���X(λ) 6 �
� ∞

0
��

�
Bλ
�� ∧ 1

�
d�
� = Cλ�/��

where C is finite and equal to the same integral as the previous one, but
with λ replaced by 1 [change of variables]. The definition of Minkowski
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dimension tells us that N�(ε) 6 ε− dimM (T)+�(1) as ε ↓ 0, and that the in-
equality is an identity for infinitely-many values of ε ↓ 0. In particular,
for every � ∈ (dimM(T) � �/2) we can find a finite constant D such that
N�(�) 6 D�−� for all 0 < � 6 �(T). Consequently,

� δ

0

�
���X

�
[NT (�)]2

��1/�
d� 6 const ·

� δ

0
�−2�/� d� 6 const · δ(�−2�)/��

uniformly for all 0 < δ 6 �(T). Theorem 2.2 now yields

E

⎛
⎜⎝ sup

���∈S:
�(���)62−��(T)

|X� − X�|�

⎞
⎟⎠ 6 const · 2−�(�−2�)�/��

uniformly for all integers � > 0 and all finite [hence also countable]
S ⊂ T . In particular,

E

⎛
⎜⎝ sup

���∈S:
2−�−1�(T)<�(���)62−��(T)

����
X� − X�
[�(� � �)]α

����
�
⎞
⎟⎠ 6 const · 2−�(�−2�−α�)�/��

uniformly for all integers � > 0 and real numbers α > 0. We sum the
preceding expectation over all � > 0 in order to see that, if in addition
we ask that � − 2� − α� > 0, then the following slightly weaker version
of (7.4) holds:

E

⎛
⎜⎝ sup

���∈S:
� �=�

����
X� − X�
[�(� � �)]α

����
�
⎞
⎟⎠ < ∞� (7.5) goal:KCT:S

We apply the preceding with S being a dense subset of T , and define

Y� := lim sup
�→�:
�∈S

X� for all � ∈ T�

Clearly, P{Y� = X�} = 1 for all � ∈ S. And (7.3) shows that X is continu-
ous in probability; that is, X� → X� in probability as � → �. Therefore, we
can deduce from the density of S in T that Y is a modification of X. Eq.
(7.5), the construction of Y , and Fatou’s lemma together imply (7.4) Since
we can have � arbitrarily close to dimM(T), this proves the theorem. ⇤

§2. Application to Gaussian Processes. Let X := {X�}�∈T denote a
mean-zero Gaussian process, indexed by an arbitrary set T . Define

�(� � �) :=
�
E

�
|X� − X�|2

�
[�� � ∈ T]�

It is easy to see that �(� � �) 6 �(� � �) + �(� � �) for all �� �� � ∈ T , and
�(� � �) = �(� � �). That is, � is a pseudo-metric on T . Let us write � ∼ �
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if �(� � �) = 0, and [�] := {� ∈ T : � ∼ �}. Clearly, ∼ is an equivalence
relation on T and [�] ∈ T/ ∼ denotes the equivalence class of � ∈ T .

We can define X̄[�] := X� for all [�] ∈ T/ ∼ as X̄[�] := X� for any and
every � ∈ [�]. Then it follows that X̄ is a mean-zero Gaussian process,
indexed by T/ ∼:= {[�] : � ∈ T}, and with the same “finite-dimensional
distributions” as X. In this way we can assume without loss of generality
that (T � �) is a metric space; otherwise we study X̄ in place of X, using
the same methods.

With the preceding in mind, we can now see that Theorem 1.4 and
its consequences imply sufficient conditions for X to have a continuous
modification. In order to identify the details, we first develop two esti-
mates.

lem:Psi:Gauss Lemma 2.4. ΨX(�) < exp(−�2/2) for all � > 0.

Proof. The usual proof of this sort of fact yields twice the stated upper
bound. The argument for this slight improvement is even easier, and
borrowed from Khoshnevisan, XXX. Let U have a N(0 � 1) distribution
on the line and observe that

P{U > �} = 1√
2π

� ∞

�
e−�2/2 d� = e−�2/2

√
2π

� ∞

�
exp

�
− (� − �)(� + �)

2

�
d�

= e−�2/2
√

2π

� ∞

0
exp

�
−�(� + 2�)

2

�
d��

If � > 0, then � + 2� > � whence follows P{U > �} < 1
2 exp(−�2/2).

This proves the lemma because ΨX(�) = P{|U| > �} = 2P{U > �}. ⇤

Lemma 2.5. �1�X(λ) 6 3
�

log(λ ∨ e) for all λ > 0.

Proof. If 0 < λ 6 e, then by Lemma 2.4, �1�X(λ) 6
� ∞

0 exp(−�2/2) d� =√
π/2 6

√
8� If λ > e, then we write

�1�X(λ) 6
�

2 log λ + λ
� ∞

√
2 log λ

e−�2/2 d� =
�

2 log λ +
√

2π λP
�

U >
�

2 log λ
�

<
�

2 log λ +
�

π
2 < 3

�
log λ�

using the fact that P{U > �} 6 1
2 exp(−�2/2) for all � > 0 [see proof of

Lemma 2.4]. This has the desired consequence. ⇤

We can now appeal to the previous lemma and Theorem 1.4 in order
to deduce the following, which is essentially due to Dudley XXX.
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th:Dudley Theorem 2.6 (Dudley, XXX). For every finite subset S ⊂ T ,

E

⎛

⎝ max
���∈S:

�(���)6δ

|X� − X�|

⎞

⎠ 6 36
� δ

0

�
log(NS(�) ∨ e) d� [0 < δ 6 �(T)]�

If (T � �) is compact and separable, and
� �(T)

0
�

log(NT (�)) d� < ∞� then
X has a continuous modification Y , and

E

⎛
⎜⎝ sup

���∈T :
�(���)6δ

|Y� − Y�|

⎞
⎟⎠ 6 36

� δ

0

�
log(NT (�) ∨ e) d� [0 < δ 6 �(T)]�

Remark 2.7. Since
�

0+
�

log(1/�) d� < ∞, Theorem 2.6 implies that X
has a continuous version whenever the Minkowski dimension of T is
finite.

It is now easy to obtain bounds for the expectation of sup�∈S X� .
co:Dudley Corollary 2.8. For all finite sets S ⊂ T ,

E

�
max
�∈S

X�

�
6 36

� �(S)

0

�
log(NS(�) ∨ e) d��

Therefore, if U is a denumerable subset of T , then sup�∈U |X� | is finite
[a.s.] if and only if E[sup�∈U X� ] < ∞.

Proof. Without loss of generality, we may and will assume that S = T is
finite. Choose and fix an arbitrary �0 ∈ T and use the fact that E(X�0 ) = 0
to write E[max�∈T X� ] = E[max�∈T (X� − X�0 )]. Therefore, Dudley’s Theo-
rem implies the inequality of the corollary. For the remainder, let U ⊂ T
be a countable set [if T is finite, then there is nothing to prove]. By the
Borell, Sudakov–Tsirelson inequality [Theorem 2.1, page 55],

P

�����max
�∈S

|X� | − E
�
max
�∈S

|X� |
����� > �

�
6 2e−�2/2 [� > 0]�

for every finite S ⊂ U . Among other things, this inequality implies that
sup�∈U |X� | < ∞ iff E[sup�∈U |X� |] < ∞. Because X and −X have the
same law,

E

�
sup
�∈U

X�

�
6 E

�
sup
�∈U

|X� |
�
6 2E

�
sup
�∈U

X�

�
�

Therefore, the corollary follows. ⇤
Example 2.9. Set T := {1 � � � � � �} and define {Z�}�∈T to be a sequence
of i.i.d. N(0 � 1) random variables. Because

�(� � �) =
�√

2 if � �= ��
0 if � = ��
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we can see that �(T) =
√

2 and NT (�) = � for all � > 0. Corollary 2.8
yields

µ(�) = E

�
max
16�6�

Z�

�
6 const ·

�
log ��

which we know is sharp to leading order [Proposition 1.3, page 7] .

We conclude this section by inspecting a classical condition for the
continuity of a “stationary Gaussian process.”

Example 2.10. Suppose T = [0 � 1] and {X�}06�61 is a stationary Gaussian
process with E[X� ] = 0 and E[X�X�] = �(|� − �|) for a symmetric, strictly
decreasing and continuous function � : R+ → R such that �(0) = 1.2
Because

�(� � �) =
�

2 (1 − �(|� − �|)) [0 6 �� � 6 1]�

it follows that: (a) �(T) <
√

2; (b) (T � �) is compact; and (c) Every ball in
(T � �) is also a Euclidean ball. In fact,

B(� � �) =
�

� > 0 : |� − �| < �−1
�

1 − �2

2

��
[0 6 � 6 1� 0 < � 6

√
2]�

From this, and Dudley’s theorem, we can conclude that

N[0�1](ε) = (1 + �(1))
�−1 �

1 − 1
2ε2� as ε ↓ 0�

This leads to the following sufficient condition XXX for the continuity of
the process X,

�

0+

����log
�

1
�−1 �

1 − 1
2�2�

�
d� < ∞�

As it turns out, this is also a necessary condition for both continuity and
boundedness; see Theorem 3.7 on page 108 below.

Example 2.11. Let X := {X�}�>0 denote Brownian motion on R. In this
example,

�(� � �) =
�
E

�
|X� − X� |2

�
=

�
|� − �| [�� � > 0]�

Let us consider the restriction {X�}�∈T of Brownian motion to the index
set T := [0 � 1]. Then, (T � �) is a compact metric space and NT (ε) 6 ε−2

2The linear Ornstein–Uhlenbeck process [p. 83] is an example of such a process with �(�) = exp(−�).
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for all ε ∈ (0 � 1). In particular, Dudley’s theorem yields that X has a
continuous version W which satisfies

E

⎛
⎜⎝ sup

06���61
|�−�|6δ

|W� − W�|

⎞
⎟⎠ 6 const ·

�
δ log(1/δ)�

for all 0 < δ < 1. Now apply the proof of Kolmogorov’s continuity
theorem [Theorem 2.3] to see that3

E

⎛
⎜⎝ sup

06���61
� �=�

|W� − W�|�
|� − �| log(1/|� − �|)

⎞
⎟⎠ < ∞�

In particular, the random variable under the expectation is finite a.s. This
statement is sharp. For instance, a theorem of Lévy XXX states that

lim
δ→0

sup
06���61

0<|�−�|6δ

|W� − W�|�
|� − �| log(1/|� − �|)

=
√

2 a.s.

§3. An Infinite-Dimensional Example. Among other things, Dudley’s
theorem has found many applications in the theory of empirical pro-
cesses and its connections to machine learning, etc. The following ex-
ample is the sort that arises naturally in empirical-process theory (see,
Dudley XXX for instance).

Let H := L2[0 � 1] and consider white noise X := {X(�)}�∈H. Recall
that X is a mean-zero Gaussian process with

Cov[X(� ) � X(�)] =
� 1

0
� (�)�(�) d� [�� � ∈ H]�

It is easy to see that the random function X is unbounded on H. For
instance, choose and fix an arbitrary orthonormal family {φ�}∞

�=1 in H—
such as φ�(�) = sin(2π��) for all � > 0—and note that X(φ1)� X(φ2)� � � �
are i.i.d. N(0 � 1) random variables, and hence are unbounded. In fact,
we have seen already that lim sup�→∞ X(φ�)/

√
2 log � = 1 a.s.; see (5.2)

on page 55. Still, there are many infinite-dimensional subsets T ⊂ H

for which {X(� )}�∈T defines a bounded random function. The following
furnishes one such example.

Proposition 2.12. Let T denote the collection of all Lipschitz-continuous
functions � : [0 � 1] → R such that � (0) = 0 and Lip(� ) 6 1. Then,
{X(� )}�∈T has a bounded version.

3This is a little sharper than what we obtain from Kolmogorov’s continuity theorem [Theorem 2.3].
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Proof. Since T is not a closed subspace of H, it is helpful to instead
metrize T via �(� � �) := sup06�61 |� (�) − �(�)| for �� � ∈ T . I will prove
that {X(� )}�∈T has a version Y that is continuous when T is metrized
by � rather than the courser metric �(� � �) :=

�
E(|X(� ) − X(�)|2) =

��−��H ofH. This enterprise will immediately yield the a.s.-boundedness
of � �� Y (� ), for example, as well as the measurability of sup�∈T Y (� ),
sup�∈T |Y (� )|, etc.

The Arzela–Ascoli theorem XXX ensures that (T � �) is compact; i.e.,
T is closed and N(T� �)(ε) < ∞ for all ε > 0. We wish to understand the
behavior of N(T� �)(ε) near ε = 0.

For every integer � > 0 define T� to be the collection of all continu-
ous, piecewise linear, functions � : [0 � 1] → R such that:

(1) � is linear on [�/� � (� + 1)/�] for every 0 6 � 6 � − 1;
(2) |�((� + 1)/�) − �(�/�)| = 1/��

It is easy to see that:
(i) For every � ∈ T there exists � ∈ T� such that �(� � �) 6 �−1; and
(ii) |T�| 6 2�.

Thus, N(T� �)(1/�) 6 2�, whence log N(T� �)(1/�) 6 � log 2. For all ε ∈ (0 � 1)
we can find an integer � > 1 such that (� + 1)−1 < ε 6 �−1. For
this choice of �, we find that log N(T� �)(ε) 6 log N(T� �)(1/(� + 1)) 6 (� +
1) log 2 6 2 + 2ε−1. In particular,

�
log(N(T� �)(ε) ∨ e) 6 2√

ε ∨ 1 [0 < ε < 1]�

The preceding defines an integrable function of ε ∈ (0 � 1). Since �(T � �) =
1 and [�(� � �)]2 = E(|X(� ) − X(�)|2) =

� 1
0 |� (�) − �(�)|2 d� 6 [�(� � �)]2 for

all �� � ∈ T , it follows from Theorem 2.6 that X has a continuous version
Y which satisfies

E

⎛
⎜⎝ sup

���∈T
�(���)6δ

|Y (� ) − Y (�)|

⎞
⎟⎠ 6 36

� δ/2

0

�
2√
ε ∨ 1

�
dε 6 const ·

√
δ�

for all δ ∈ (0 � 1). It is possible to adapt the proof of Theorem 2.3 in order
to deduce from the above fact that

E

⎡
⎢⎣ sup

���∈T :
� �=�

|Y (� ) − Y (�)|�
�(� � �)

⎤
⎥⎦ < ∞�

and hence � �� X(� ) is almost surely “Hölder continuous with index 1/2,”
uniformly on (T � �). It is a good exercise to deduce from the above and
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the Borell, Sudakov–Tsirelson inequality [Theorem 2.1, page 55] that

E

⎡
⎢⎣ sup

���∈T :
� �=�

�
|Y (� ) − Y (�)|�

�(� � �)

��
⎤
⎥⎦ < ∞�

for all real number � > 1. ⇤

3. Lower Bounds

We continue using the notation of the preceding subsection. In particu-
lar, X := {X�}�∈T denotes a mean-zero Gaussian process with canonical
distance �(� � �) :=

�
E(|X� − X�|2), and we assume that (T � �) is a com-

pact metric space. In this section we discuss some useful lower bounds
for E[max�∈T X� ], for example when T is countable.

§1. Sudakov Minorization. Recall that Z1� � � � � Z� are i.i.d. with a N(0 � 1)
distribution, and define

µ(�) := E

�
max
16�6�

Z�

�
[� > 1]�

lem:M Lemma 3.1. There exist positive and finite constants K� L such that

K
�

log � 6 µ(�) 6 L
�

log � for all � > 1�

Proof. The Lemma holds trivially when � = 1; we concentrate on � > 2.
Since µ(1) = 0, µ(�) = (1 + �(1))

√
2 log � as � → ∞ [Proposition 1.3, page

7], and µ is increasing, it suffices to prove that µ(2) > 0. But µ(2) is equal
to E[max(Z1 � Z2)] = E[max(Z1 � Z2) − Z1] = E[max(0 � Z2 − Z1)]� It follows
easily from this that µ(2) > 0.4 ⇤

rem:M Remark 3.2. The numerical values of K and L are not very good. For
instance, the best-possible choice for K is

inf
�>2

µ(�)√
log �

6 µ(2)√
log 2

= 1√
π log 2

< 0�7�

which is smaller than the limiting value, lim�→∞ µ(�)/
√

log � =
√

2.

Lemma 3.1 will now be used in order to establish a useful lower
bound for E[sup�∈T X� ].

4In fact, because Z2 − Z1 has a N(0 � 2) distribution, Z2 − Z1 is independent of sign(Z2 − Z1), and
hence µ(2) = 1

2 E(|Z2 − Z2|) = π−1/2�
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pr:Sudakov Proposition 3.3 (Sudakov, XXX). Choose and fix some ε > 0, and let
A be a subset of T with the property that �(� � �) > ε whenever �� � ∈ A.
Then,

E

�
max
�∈A

X�

�
> εµ(|A|) > Kε

�
log(|A|)�

where K is the constant of Lemma 3.1 and | · · · | denotes cardinality.

Proof. In the case that Var(X1) = · · · = Var(X�), this theorem is just a
restatement of Example 5.15 [page 76]. The general case is handled the
same way, but requires an appeal to Fernique’s inequality (Theorem 5.17,
page 77) instead of Slepian’s (Theorem 5.13, page 75). I will work out
the details once more in order to gel the underlying ideas.

Without loss of generality, we can—and will—assume that |A| > 2;
else the statement of the theorem is the tautology that 0 > 0.

Define, for all � ∈ A,
Y� := εZ� + ξ�

where ξ and the Z� ’s are all independent N(0 � 1) random variable. Clearly,
(Y�)�∈A has a mean-zero multivariate normal distribution, and

E
�

|Y� − Y�|2
�

= ε2 > [�(� � �)]2 = E
�

|X� − X� |2
�

�

Therefore, Fernique’s inequality [Theorem 5.17, page 77] yields

E

�
max
�∈A

X�

�
> E

�
max
�∈A

Y�

�
= εE

�
max
�∈A

Z�

�
= εµ(|A|)�

by the definition of µ. ⇤
Definition 3.4. Choose and fix some � > 0. We say that �1� � � � � �� ∈ T
is an �-packing of T if �(�� � �� ) > � whenever 1 6 � �= � 6 �. Let PT (�)
denote the largest integer � > 1 for which there exists an �-packing of
T . The function � �� PT (�) is the [Kolmogorov] capacity of the pseudo-
metric space (T � �).

lem:N:C Lemma 3.5. NT (�) 6 PT (�) 6 NT (�/2) for every � > 0.

Proof. If PT (�) = �, then we can find �1� � � � � �� ∈ T such that: (i)
�(�� � �� ) > � when � �= �; and (ii) min�6� �(�� � �) 6 � for all � ∈ T . This
shows that �1� � � � � �� is an �-covering of T . Since NT (�) is the minimum
size of all �-coverings of T , it follows that NT (�) 6 PT (�). Conversely,
suppose we can find �1� � � � � �ν ∈ T such that ∪ν

�=1B�(�� � �/2) = T . If �1 and
�2 are two points in T such that �(�1 � �2) > �, then �1 and �2 cannot be
in the same ball B�(�� � �/2) for any 1 6 � 6 ν. In particular, PT (�) 6 ν.
The minimum such ν is of course NT (�/2). ⇤

We can summarize the results of this section as follows.
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pr:Sudakov:1 Proposition 3.6 (Sudakov Minorization). We always have

sup
S⊂T :

S finite

E

�
max
�∈S

X�

�
> sup

0<ε<�(T)
εµ (PT (ε)) > sup

0<ε<�(T)
εµ (NT (ε))

> K sup
0<ε<�(T)

ε
�

log NT (ε) > K lim sup
ε→0

ε
�

log NT (ε)�

where K is the constant of Lemma 3.1.

§2. Fernique’s Theorem. Sudakov minorization tells us that if

lim sup
ε→0

ε
�

log NT (ε) = ∞�

then X does not have continuous trajectories. Whereas Dudley’s theo-
rem [Theorem 2.6] implies that the condition

�

0+

�
log NT (ε) dε < ∞

is sufficient for the continuity of X.
There is a small gap between these two conditions in the sense that

there are examples where the metric entropy integral
�

0+
�

log NT (ε) dε
diverges and yet lim supε→0+ ε

�
log NT (ε) < ∞ (see, for example, XXX).

As it turns out, this is because neither condition is always sharp. The
sharp condition is a “majorizing-measure condition,” which you can find
in XXX. I will not discuss that condition in this course primarily because
it is difficult to verify in concrete settings. In fact, there are only a
few instances where majorizing measures have been found. In addition,
the Sudakov and Dudley theorems have broad utility XXX that extend
beyond the particular applications that we have in mind in these lectures.

Still, it would be a pity to say nothing about the beautiful general
theory. As a compromise, I will state and prove Fernique’s theorem
which states that, for stationary Gaussian processes, the Dudley condi-
tion is necessary as well as sufficient. Recall that if (T � �) is a compact
abelian group, then we say that X := {X�}�∈T is stationary if �(� � �) =�
E(|X� − X�|2) is a function of � − � , equivalently, � −�, where I am using

the additive notation for the group T in order to be be concise.

th:Fernique:1 Theorem 3.7 (Fernique, XXX). Let X := {X�}�∈T be a stationary, mean-
zero Gaussian process, where (T � �) is a metric abelian group; in par-
ticular, �(� � �) = �(� − � � 0) for all �� � ∈ T . Then, for all denumerable
sets S ⊂ T ,

E

�
max
�∈S

X�

�
> K2

16

� �(S)

0

�
log NS(ε) dε�

where K is the constant of Lemma 3.1.
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One can prove Fernique’s theorem, fairly readily, using the follow-
ing improvement of Sudakov minorization [Proposition 3.6], due to Ta-
lagrand XXX.

pr:Talagrand Proposition 3.8 (Talagrand, XXX). Let X := {X�}�∈T be any mean-zero
Gaussian process, indexed by a general compact (T � �), and consider
A ⊂ T , a non-empty ε-packing of T for some ε > 0. Then,

E

�
max
�∈A

X�

�
> 1

2εµ(|A|) + min
�∈A

E

�
max

�∈B(��Kε/8)
X�

�

> K
2 ε

�
log |A| + min

�∈A
E

�
max

�∈B(��Kε/8)
X�

�
�

where K was defined in Lemma 3.1.

Proof. I will present essentially the original proof of Talagrand XXX,
since it is straightforward. Marcus and Rosen XXX have devised a clever
argument which yields slightly better constants, but their argument is
more involved.

By considering {X�}�∈A, it suffices to consider the case that T = A
and �(� � �) > ε for all �� � ∈ T . If |T| = 1, then the proposition states that
0 > 0. Therefore, we may consider only the case that |T| > 2.

Define, for all � ∈ T and � > 0,

Y�(�) := max
�∈B(�� �)

(X� − X�) = max
�∈B(�� �)

X� − X� �

Since max�∈B(�� �)E(|X� − X� |2) 6 �2, the Borel, Sudakov–Tsirelson in-
equality (Theorem 2.1, page 55) implies that

max
�∈T

P {|Y�(�) − E[Y�(�)]| > λ} 6 2 exp
�

− λ2

2�2

�
�

for all λ > 0. In particular,

P

�
max
�∈T

|Y�(�) − E[Y�(�)]| > λ
�

6 2|T| exp
�

− λ2

2�2

�
∧ 1�

and hence,

E

�
max
�∈T

|Y�(�) − E[Y�(�)]|
�

6
� ∞

0

�
2|T| exp

�
− λ2

2�2

�
∧ 1

�
dλ

= �
�

2 log(2|T|) + 2|T|
� ∞

�
√

2 log(2|T|)
exp

�
− λ2

2�2

�
dλ

= �
�

2 log(2|T|) + 2�|T|
√

2π P
�

U >
�

2 log(2|T|)
�

�
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where U has a N(0 � 1) distribution. Define
V := max

�∈T
|Y�(�) − E[Y�(�)]| �

Since P{U > �} 6 1
2 exp(−�2/2) [see proof of Lemma 2.4], the preceding

and the triangle inequality together yield

E(V ) 6 �
�

2 log(2|T|) + �
�

π
2 6 4�

�
log |T|�

thanks to the assumption that |T| > 2. Since Y�(�) > E[Y�(�)] − V , the
definition of Y�(�) yields

max
�∈B(�� �)

X� > X� + E
�

max
�∈B(�� �)

X�

�
− V a.s. for all � ∈ T and � > 0�

Maximize over all � ∈ T and take expectations to find that

E

�
max
�∈T

max
�∈B(�� �)

X�

�
> E

�
max
�∈T

X�

�
+ min

�∈T
E

�
max

�∈B(�� �)
X�

�
− 4�

�
log |T|

> εµ(|T|) + min
�∈T

E

�
max

�∈B(�� �)
X�

�
− 4�

K µ(|T|)�

We have appealed to Sudakov’s inequality [Proposition 3.3] to bound
E[max�∈T X� ] and Lemma 3.1 to bound 4�

�
log |T|. Set � := Kε/8 to

deduce the lemma. ⇤
lem:Fernique:comb Lemma 3.9. Suppose (T � �) is a compact abelian group, and �(� � �) =

�(� − � � 0) for all �� � ∈ T . Then, NT (α) 6 NT (β) · NB(�0� β)(α) for all
0 < α < β such that B(�0 � β) ⊂ T .

Proof. Observe that, regardless of the respective values of β > α > 0,
the stationarity of X implies that NB(�� β)(α) does not depend on � ∈ T . Let
K := NT (β) so that we can find �1� � � � � �K ∈ T such that the balls B(�� � β)
cover T . We can cover every ball B(�� � β) by L := NB(�1� β)(α)-many balls
of radius α. Therefore, we can certainly cover T with KL-many balls
of radius α. By the minimality property of the covering number NT (α),
this implies that NT (α) 6 KL, which is the lemma. ⇤

Proof of Theorem 3.7. Throughout the proof, we may [and will] as-
sume without loss of generality that S = T is a countable set.

Let K denote the constant of Lemma 3.1 and recall that K < 1 [Re-
mark 3.2], and define

R := 8
K > 1�

Choose and fix some �0 ∈ T and observe that T = B(�0 � R�), where
� ∈ Z is the unique integer defined so that

R� > �(T) > R�−1�
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With this observation in mind, we deduce from Talagrand’s inequality
[Proposition 3.8] that

E

�
max

�∈B(�0�R�)
X�

�
> K

2 R�−1
�

log PT
�
R�−1�

+ min
�∈T

E

�
max

�∈B(��R�−1)
X�

�
�

By stationarity, E[maxB(��ε) X] does not depend on � ∈ T . Therefore,
Lemma 3.5 implies that

E

�
max

�∈B(�0�R�)
X�

�
> K

2 R�−1
�

log NT
�
R�−1�

+ E
�

max
�∈B(�0�R�−1)

X�

�

= K
2 R�−1

��
log NT

�
R�−1�

−
�

log NT (R�)
�

+ E
�

max
�∈B(�0�R�−1)

X�

�
�

since NT (R�) = 1. We are set up nicely to carry out an induction ar-
gument: Appeal to Talagrand’s inequality [Proposition 3.8] once again to
see that

E

�
max

�∈B(�0�R�−1)
X�

�
> K

2 R�−2
�

log NB(�0�R�−1)
�
R�−2�

+ E
�

max
�∈B(�0�R�−2)

X�

�

> K
2 R�−2

�
log NT

�
R�−2�

− log NT
�
R�−1�

+ E
�

max
�∈B(�0�R�−2)

X�

�
�

by Lemma 3.9. The concavity of � (�) :=
√

� implies that
√

log � − log � >√
log � −

√
log � for all � > � > 1. Define

J� := E

�
max

�∈B(�0� R�)
X�

�
[� ∈ Z]�

We apply the preceding, inductively, in order to find that

E

�
max
�∈T

X�

�
= J�

> K
2

1�

�=0
R�−�−1

��
log NT

�
R�−�−1�

−
�

log NT
�
R�−��

�
+ J�−1

...
...

...
...

> K
2

L�

�=0
R�−�−1

��
log NT

�
R�−�−1�

−
�

log NT
�
R�−��

�
+ J−�−L−1�

for every integer L > 1. Because T is a finite set, we can choose the
integer L > 1 large enough to ensure that B(�0 � R�−L−1) = {�0}� Since
J−�−L−1 = 0 and log NT (R�−� ) = 0 for all � > L, we can deduce the
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following:

E

�
max
�∈T

X�

�
> K

2

∞�

�=0
R�−�−1

��
log NT

�
R�−�−1�

−
�

log NT
�
R�−��

�

> K
2

∞�

�=0

�
R�−�−1 − R�+�+2

� �
log NT

�
R�−�−1�

= K
2R

∞�

�=0

� R�−�

R�−�−1

�
log NT

�
R�−�−1�

dε > K
2R

� R�

0

�
log NT (ε) dε�

The result follows since R� > �(T). ⇤


