
Gaussian Processes

1. Basic Notions

Let T be a set, and X := {X�}�∈T a stochastic process, defined on a suitable
probability space (Ω� � �P), that is indexed by T .

Definition 1.1. We say that X is a Gaussian process indexed by T when
(X�1 � � � � � X�� ) is a Gaussian random vector for every �1� � � � � �� ∈ T and
� > 1. The distribution of X—that is the Borel measure RT � A �� µ(A) :=
P{X ∈ A}—is called a Gaussian measure.

Lemma 1.2. Suppose X := (X1� � � � � X�) is a Gaussian random vector. If
we set T := {1� � � � � �}, then the stochastic process {X�}�∈T is a Gaussian
process. Conversely, if {X�}�∈T is a Gaussian process, then (X1� � � � � X�)
is a Gaussian random vector.

The proof is left as exercise.

Definition 1.3. If X is a Gaussian process indexed by T , then we define
µ(�) := E(X� ) [� ∈ T] and C(� � �) := Cov(X� � X� ) for all �� � ∈ T . The
functions µ and C are called the mean and covariance functions of X
respectively.

Lemma 1.4. A symmetric � × � real matrix C is the covariance of some
Gaussian random vector if and only if C is positive semidefinite. The
latter property means that

��C� =
��

�=1

��

�=1
����C��� > 0 for all �1� � � � � �� ∈ R�

Proof. Consult any textbook on multivariate normal distributions. ⇤
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80 6. Gaussian Processes

Corollary 1.5. A function C : T × T → R is the covariance function
of some T-indexed Gaussian process if and only if (C(�� � �� ))16���6� is a
positive semidefinite matrix for all �1� � � � � �� ∈ T .

Definition 1.6. From now on we will say that a function C : T × T → R is
positive semidefinite when (C(�� � �� ))16���6� is a positive semidefinite matrix
for all �1� � � � � �� ∈ T .

Note that we understand the structure of every Gaussian process by
looking only at finitely-many Gaussian random variables at a time. As a
result, the theory of Gaussian processes does not depend a priori on the
topological structure of the indexing set T . In this sense, the theory of
Gaussian processes is quite different from Markov processes, martingales,
etc. In those theories, it is essential that T is a totally-ordered set [such as
R or R+], for example. Here, T can in principle be any set. Still, it can
happen that X has particularly-nice structure when T is Euclidean, or more
generally, has some nice group structure. We anticipate this possibility and
introduce the following.

Definition 1.7. Suppose T is an abelian group and {X�}�∈T a Gaussian
process indexed by T . Then we use the additive notation for T , and say that
X is stationary when (X�1 � � � � � X�� ) and (X�+�1 � � � � � X�+�� ) have the same law
for all �� �1� � � � � �� ∈ T .

Lemma 1.8. Let T be an abelian group and let X := {X�}�∈T denote
a T-indexed Gaussian process with mean function � and covariance
function C. Then X is stationary if and only if � and C are “translation
invariant.” That means that

�(� + �) = �(�) and C(�1 � �2) = C(� + �1 � � + �2) for all �� �1� �2 ∈ RM �

The proof is left as exercise.

2. Examples of Gaussian Processes

§1. Brownian Motion. By Brownian motion X, we mean a Gaussian pro-
cess, indexed by R+ := [0 � ∞), with mean function 0 and covariance func-
tion

C(� � �) := min(� � �) [�� � > 0]�

In order to justify this definition, it suffices to prove that C is a posi-
tive semidefinite function on T × T = R2

+. Suppose �1� � � � � �� ∈ R and



2. Examples of Gaussian Processes 81

�1� � � � � �� > 0. Then,
��

�=1

��

�=1
����C(�� � �� ) =

��

�=1

��

�=1
����

� ∞

0
1[0���](�)1[0��� ](�) d�

=
� ∞

0

� ��

�=1
��1[0���](�)

� ⎛

⎝
��

�=1
��1[0��� ](�)

⎞

⎠d�

=
� ∞

0

�����

��

�=1
��1[0���](�) d�

�����

2

> 0�

Therefore, Brownian motion exists.

§2. The Brownian Bridge. A Brownian bridge is a mean-zero Gaussian
process, indexed by [0 � 1], and with covariance

C(� � �) = min(� � �) − �� [0 6 �� � 6 1]� (6.1) Cov:BB

The most elegant proof of existence, that I am aware of, is due to J. L.
Doob: Let B be a Brownian motion, and define

X� := B� − �B1 [0 6 � 6 1]�
Then, X := {X�}06�61 is a mean-zero Gaussian process that is indexed by
[0 � 1] and has the covariance function of (6.1).

subsec:OU

§3. The Ornstein–Uhlenbeck Process. An Ornstein–Uhlenbeck process
is a stationary Gaussian process X indexed by R+ with mean function 0
and covariance

C(� � �) = e−|�−�| [�� � > 0]�
It remains to prove that C is a positive semidefinite function. The proof
rests on the following well-known formula:1

e−|�| = 1
π

� ∞

−∞

e���

1 + �2 d� [� ∈ R]� (6.2) FT:Cauchy

Thanks to (6.2),
��

�=1

��

�=1
����C(�� � ��) = 1

π

� ∞

−∞

d�
1 + �2

��

�=1

��

�=1
����e��(��−��)

= 1
π

� ∞

−∞

d�
1 + �2

������

��

�=1
��e����

������

2

> 0�

1In other words, if Y has a standard Cauchy distribution on the line, then its characteristic function
is E exp(��Y ) = exp(−|�|).
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§4. Brownian Sheet. An N-parameter Brownian sheet X is a Gaussian
process, indexed by RN

+ := [0 � ∞)N , whose mean function is zero and
covariance function is

C(� � �) =
��

�=1
min(�� � �� ) [� := (�1� � � � � �N )� � := (�1� � � � � �N ) ∈ RN

+]�

Clearly, a 1-parameter Brownian sheet is Brownian motion; in that case,
the existence problem has been addressed. In general, we may argue as
follows: For all �1� � � � � �� ∈ R and �1� � � � � �� ∈ RN

+ ,
��

�=1

��

�=1
����

N�

�=1
min(��

� � ��
�) =

��

�=1

��

�=1
����

N�

�=1

� ∞

0
1[0���

� ](�)1[0���
�](�) d�

=
��

�=1

��

�=1
����

�

RN
+

N�

�=1
1[0���

� ](�� )1[0���
�](�� ) d��

It is harmless to take the complex conjugate of �� since �� is real valued.
But now �1/N

� = ��
1/N is in general complex-valued, and we may write

��

�=1

��

�=1
����

N�

�=1
min(��

� � ��
�) =

�

RN
+

��

�=1

��

�=1

N�

�=1
(����)1/N1[0���

� ](�� )1[0���
�](�� ) d�

=
�

RN
+

������

��

�=1

N�

�=1
�1/N

� 1[0���
� ](�� )

������

2

d� > 0�

This proves that the Brownian sheet exists.

§5. Fractional Brownian Motion. A fractional Brownian motion [or fBm]
is a Gaussian process indexed by R+ that has mean function 0, X0 := 0,
and covariance function given by

E(|X� − X�|2) = |� − �|2α [�� � > 0]� (6.3) Var:fBm

for some constant α > 0. The constant α is called the Hurst parameter
of X.

Note that (6.3) indeed yields the covariance function of X: Since Var(X� ) =
E(|X� − X0|2) = �2α,

|� − �|2α = E
�

X2
� + X2

� − 2X�X�
�

= �2α + �2α − 2Cov(X� � X� )�

Therefore,

Cov(X� � X� ) = �2α + �2α − |� − �|2α

2 [�� � > 0]� (6.4) Cov:fBm
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Direct inspection shows that (6.4) does not define a positive-definite func-
tion C when α 6 0. This is why we have limited ourselves to the case that
α > 0.

Note that an fBm with Hurst index α = 1/2 is a Brownian motion. The
reason is the following elementary identity:

� + � − |� − �|
2 = min(� � �) [�� � > 0]�

which can be verified by considering the cases � > � and � > � separately.
The more interesting “if” portion of the following is due to Mandelbrot

and Van Ness (1968).

th:fBm:exists Theorem 2.1. An fBm with Hurst index α exists if and only if α 6 1.

Fractional Brownian motion with Hurst index α = 1 is a trivial process
in the following sense: Let N be a standard normal random variable, and
define X� := �N . Then, X := {X�}�>0 is fBm with index α = 1. For this
reason, many experts do not refer to the α = 1 case as fractional Brownian
motion, and reserve the teminology fBm for the case that α ∈ (0 � 1). Also,
fractional Brownian motion with Hurst index α = 1/2 is Brownian motion.

Proof. First we examine the case that α < 1. Our goal is to prove that

C(� � �) := �2α + �2α − |� − �|2α

2
is a covariance function.

Consider the function

Φ(� � �) := (� − �)α−(1/2)
+ − (−�)α−(1/2)

+ � (6.5) Phi1

defined for all � > 0 and � ∈ R, where �+ := max(� � 0) for all � ∈ R.
Direct inspection yields that

� ∞
−∞[Φ(� � �)]2 d� < ∞, since α < 1, and in fact

a second computation on the side yields
� ∞

−∞
Φ(� � �)Φ(� � �) d� = κC(� � �) for all �� � > 0� (6.6) Phi2

where κ is a positive and finite constant that depends only on α. In partic-
ular,

��

�=1

��

�=2
����C(�� � �� ) = 1

κ

��

�=1

��

�=2
����

� ∞

−∞
Φ(�� � �)Φ(�� � �) d�

= 1
κ

� ∞

−∞

� ��

�=1
��Φ(�� � �)

�2

d� > 0�
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This proves the Theorem in the case that α < 1. We have seen already that
theorem holds [easily] when α = 1. Therefore, we now consider α > 1,
and strive to prove that fBm does not exist in this case.

The proof hinges on a technical fact which we state without proof; this
and much more will be proved later on in Theorem 2.3 on page 97. Recall
that Ȳ is a modification of Y when P{Y� = Ȳ�} = 1 for all � .

pr:KCT:Gauss Proposition 2.2. Let Y := {Y�}�∈[0�τ] denote a Gaussian process indexed
by T := [0 � τ], where τ > 0 is a fixed constant. Suppose there exists a
finite constant C and a constant η > 0 such that

E
�

|Y� − Y�|2
�
6 C|� − �|η for all 0 6 �� � 6 τ�

Then Y has a Hölder-continuous modification Ȳ . Moreover, for every
non-random constant ρ ∈ (0 � η/2),

sup
06� �=�6τ

|Ȳ� − Ȳ�|
|� − �|ρ < ∞ almost surely� (6.7) eq:KCT:Gauss

We use Proposition 2.2 in the following way: Suppose to the contrary
that there existed an fBm X with Hurst parameter α > 1. By Proposition
2.2, X would have a continuous modification X̄ such that for all ρ ∈ (0 � α)
and τ > 0,

V (τ) := sup
06� �=�6τ

|X̄� − X̄�|
|� − �|ρ < ∞ almost surely�

Choose ρ ∈ (1 � α) and observe that
���X̄� − X̄�

��� 6 V (τ)|� − �|ρ for all �� � ∈ [0 � τ]�

almost surely for all τ > 0. Divide both side by |� − �| and let � → � in
order to see that X̄ is differentiable and its derivative is zero everywhere,
a.s. Since X̄0 = X0 = 0 a.s., it then follows that X̄� = 0 a.s. for all � > 0.
In particular, P{X� = 0} = 1 for all � > 0. Since the variance of X� is
supposed to be �2α, we are led to a contradiction. ⇤

subsec:WN

§6. White Noise and Wiener Integrals. LetH be a complex Hilbert space
with norm � � � � �H and corresponding inner product �· � ·�H.

Definition 2.3. A white noise indexed by T = H is a Gaussian process
{ξ(�)}�∈H, indexed by H, with mean function 0 and covariance function,

C(�1 � �2) = ��1 � �2�H [�1� �2 ∈ H]�
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The proof of existence is fairly elementary: For all �1� � � � � �� ∈ R and
�1� � � � � �� ∈ H,

��

�=1

��

�=1
����C(�� � ��) =

��

�=1

��

�=1
���� ��� � ���H

=
� ��

�=1
���� �

��

�=1
����

�

H

=

������

��

�=1
����

������

2

H

�

which is clearly > 0.
The following simple result is one of the centerpieces of this section,

and plays an important role in the sequel.

lem:WN:Lin Lemma 2.4. For every �1� � � � � �� ∈ R and �1� · · · � �� ∈ H,

ξ

⎛

⎝
��

�=1
����

⎞

⎠ =
��

�=1
��ξ(�� ) a.s.

Proof. We plan to prove that: (a) For all � ∈ R and � ∈ H,
ξ(��) = �ξ(�) a.s.; (6.8) WN:Lin1

and (b) For all �1� �2 ∈ H,
ξ(�1 + �2) = ξ(�1) + ξ(�2) a.s. (6.9) WN:Lin2

Together, (6.8) and (6.9) imply the lemma with � = 2; the general case
follows from this case, after we apply induction. Let us prove (6.8) then:

E
�

|ξ(��) − �ξ(�)|2
�

= E
�

|ξ(��)|2
�

+ �2E
�

|ξ(�)|2
�

− 2�Cov (ξ(��) � ξ(�))

= ����2
H + �2���2

H − 2���� � ��H = 0�
This proves (6.8). As regards (6.9), we note that

E
�

|ξ(�1 + �2) − ξ(�1) − ξ(�2)|2
�

= E
�

|ξ(�1 + �2)|2
�

+ E
�

|ξ(�1) + ξ(�2)|2
�

− 2Cov (ξ(�1 + �2) � ξ(�1) + ξ(�2))

= ��1 + �2�2
H + ��1�2

H + ��2�2
H + 2��1 � �2�H
− 2 [��1 + �2 � �1�H + ��1 + �2 � �2�H]

= ��1 + �2�2
H − 2��1 � �2�H − ��1�2

H − ��2�2
H�

which is zero, thanks to the Pythagorean rule on H. This proves (6.9) an
hence the lemma. ⇤

Lemma 2.4 can be rewritten in the following essentially-equivalent
form.
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th:Wiener Theorem 2.5 (Wiener). The map ξ : H → L2(Ω � ��P) := L2(P) is a linear
Hilbert-space isometry.

Because of its isometry property, white noise is also referred to as the
iso-normal or iso-gaussian process.

Very often, the Hilbert space H is an L2-space itself; say, H = L2(µ) :=
L2(A � �� µ). Then, we can think of ξ(�) as an L2(P)-valued integral of
� ∈ H� In such a case, we sometimes adopt an integral notation; namely,

�
�(�) ξ(d�) :=

�
� dξ := ξ(�)�

This operation has all but one of the properties of integrals: The triangle
inequality does not hold.2

Definition 2.6. The random variable
�

� dξ is called the Wiener integral
of � ∈ H = L2(µ). One also defines definite Wiener integrals as follows:
For all � ∈ L2(µ) and E ∈ �,

�

E
�(�) ξ(d�) :=

�

E
� dξ := ξ(�1E )�

This is a rational definition since ��1E�L2(µ) 6 ���L2(µ) < ∞.

An important property of white noise is that, since it is a Hilbert-space
isometry, it maps orthogonal elements of H to orthogonal elements of
L2(P). In other words:

E[ξ(�1)ξ(�2)] = 0 if and only if (�1 � �2)H = 0�
Because (ξ(�1) � ξ(�2)) is a Gaussian random vector of uncorrelated co-
ordindates, we find that

ξ(�1) and ξ(�2) are independent if and only if (�1 � �2)H = 0�
The following is a ready consequence of this rationale.

pr:uncorr:indep Proposition 2.7. If H1�H2� � � � are orthogonal subspaces of H, then
{ξ(�)}�∈H� � = 1� 2� � � �

are independent Gaussian processes.

The following highlights the strength of the preceding result.
pr:KL Proposition 2.8. Let {ψ�}∞

�=1 be a complete orthonormal basis forH. Then,
we can find a sequence of i.i.d. standard normal random variables X1� X2� � � �
such that

ξ(�) =
∞�

�=1
��X� �

2In fact, |ξ(�)| > 0 a.s., whereas ξ(|�|) is negative with probability 1/2.
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where �� := �� � ψ��H and the sum converges in L2(P).

Remark 2.9. Proposition 2.8 yields a 1-1 identification of the white noise ξ
with the i.i.d. sequence {X�}∞

�=1. Therefore, in the setting of Proposition 2.8,
some people refer to a sequence of i.i.d. standard normal random variables
as white noise.

Proof. Thanks to Proposition 2.7, X� := ξ(ψ� ) defines an i.i.d. sequence
of standard normal random variables. According to the Riesz–Fischer
theorem

� =
∞�

�=1
��ψ� for every � ∈ H�

where the sum converges in H. Therefore, Theorem 2.5 ensures that

ξ(�) =
∞�

�=1
��ξ(ψ� ) =

∞�

�=1
��X� for every � ∈ H�

where the sum converges in L2(P). We have implicitly used the following
ready consequence of Wiener’s isometry [Theorem 2.5]: If �� → � in H
then ξ(��) → ξ(�) in L2(P). It might help to recall that the reason is simply
that �ξ(�� − �)�L2(P) = ��� − ��H. ⇤

Next we work out a few examples of Hilbert spaces that arise in the
literature.

Example 2.10 (Zero-Dimensional Hilbert Spaces). We can identifyH = {0}
with a Hilbert space in a canonical way. In this case, white noise indexed
by H is just a normal random variable with mean zero and variance 0 [i.e.,
ξ(0) := 0].

Example 2.11 (Finite-Dimensional Hilbert Spaces). Choose and fix an in-
teger � > 1. The space H := R� is a real Hilbert space with inner product
(� � �)H :=

��
�=1 ���� and norm ���2

H :=
��

�=1 �2
� . Let ξ denote white noise

indexed by H = R� and define a random vector X := (X1 � � � � � X�) via

X� := ξ(�� ) � = 1� 2� � � � � ��

where �1 := (1 � 0 � � � � � 0)�� � � � � �� := (0 � � � � 0 � 1)� denote the usual orthonor-
mal basis elements of R� . According to Proposition 2.8 and its proof,
X1� � � � � X� are i.i.d. standard normal random variables and for every �-
vector � := (�1 � � � � � ��),

ξ(�) =
��

�=1
��X� = ��X� (6.10) MVN
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Now consider � points �1� � � � � �� ∈ R� and write the �th coordinate of ��
and ��

� . Define

Y :=

⎛
⎜⎝

ξ(�1)
...

ξ(��)

⎞
⎟⎠ �

Then Y is a mean-zero Gaussian random vector with covariance matrix
A�A where A is an � × � matrix whose �th column is �� . Then we can
apply (6.10) to see that Y = A�X. In other words, every multivariate normal
random vector with mean vector 0 and covariance matrix A�A can be
written as a linear combination A�X of i.i.d. standard normals.

Example 2.12 (Lebesgue Spaces). Consider the usual Lebesgue spaceH :=
L2(R+). Since 1[0��] ∈ L2(R+) for all � > 0, we can define a mean-zero
Gaussian process B := {B�}�>0 by setting

B� := ξ(1[0��]) =
� �

0
dξ� (6.11) B:xi

Then, B is a Brownian motion because
E[B�B� ] =

�
1[0��] �1[0��]

�
L2(R+) = min(� � �)�

Since E(|B� − B�|2) = |� − �|, Kolmgorov’s continuity theorem [Proposition
2.2] shows that B has a continuous modification B̄. Of course, B̄ is also
a Brownian motion, but it has continuous trajectories [Wiener’s Brownian
motion]. Some authors intepret (6.11) somewhat loosely and present white
noise as the derivative of Brownian motion. This viewpoint can be made
rigorous in the following way: White noise is the weak derivative of Br-
ownian motion, in the sense of distribution theory. We will not delve into
this matter further though.

I will close this example by mentioning, to those that know Wiener
and Itô’s theories of stochastic integration against Brownian motion, that
the Wiener integral

� ∞
0 �� dB� of a non-random function � ∈ L2(R+) is

the same object as
� ∞

0 � dξ = ξ(�) here. Indeed, it suffices to prove this
assertion when �� = 1[0��](�) for some fixed number � > 0. But then the
assertion is just our definition (6.11) of the Brownian motion B.

Example 2.13 (Lebesgue Spaces, Continued). Here is a fairly general re-
ceipe for constructing mean-zero Gaussian processes from white noise:
Suppose we could write

C(� � �) =
�

K(� � �)K(� � �) µ(d�) [�� � ∈ T]�

where µ is a locally-finite measure on some measure space (A � �), and
K : A × T → R is a function such that K(� � •) ∈ L2(µ) for all � ∈ T . Then,
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the receipe is this: Let ξ be white noise on H := L2(µ), and define

X� :=
�

K(� � �) ξ(d�) [� ∈ T]�

Then, X := {X�}�∈T defines a mean-zero T-indexed Gaussian process with
covariance function C. Here are some examples of how we can use this
idea to build mean-zero Gaussian processes from white noise.

(1) Let A := R+, µ := Lebesgue measure, and K(� � �) := 1[0��](�). These
choices lead us to the same white-noise construction of Brownian
motion as the previous example.

(2) Given a number α ∈ (0 � 1), let ξ be a white noise on H := L2(R).
Because of (6.6) and our general discussion, earlier in this exam-
ple, we find that

X� := 1
κ

�

R

�
(� − �)α−(1/2)

+ − (−�)α−(1/2)
+

�
ξ(d�) [� > 0]

defines an fBm with Hurst index α.
(3) For a more interesting example, consider the covariance function

of the Ornstein–Uhlenbeck process whose covariance function is,
we recall,

C(� � �) = e−|�−�| [�� � > 0]�
Define

µ(d�) := 1
π

d�
1 + �2 [−∞ < � < ∞]�

According to (6.2), and thanks to symmetry,

C(� � �) =
�

e�(�−�)� µ(d�) =
�

cos(�� − ��) µ(d�)

=
�

cos(��) cos(��) µ(d�) +
�

sin(��) sin(��) µ(d�)�

Now we follow our general discussion, let ξ and ξ� are two inde-
pendent white noises on L2(µ), and then define

X� :=
�

cos(��) ξ(d�) −
�

sin(��) ξ�(d�) [� > 0]�

Then, X := {X�}�>0 is an Ornstein–Uhlenbeck process.3

3One could just as easily put a plus sign in place of the minus sign here. The rationale for this
particular way of writing is that if we study the “complex-valued white noise” ζ := ξ + �ξ� , where ξ�

is an independent copy of ξ , then X� = Re
�

exp(���) ζ(d�)� A fully-rigorous discussion requires facts
about “complex-valued” Gaussian processes, which I will not develop here.


