Secture 6

Gaussian Processes

1. Basic Notions

Let *T* be a set, and $X := \{X_t\}_{t \in T}$ a stochastic process, defined on a suitable probability space $(\Omega, \mathcal{F}, \mathbb{P})$, that is indexed by *T*.

Definition 1.1. We say that *X* is a *Gaussian process indexed by T* when $(X_{t_1}, \ldots, X_{t_n})$ is a Gaussian random vector for every $t_1, \ldots, t_n \in T$ and $n \ge 1$. The distribution of *X*—that is the Borel measure $\mathbb{R}^T \ni A \mapsto \mu(A) := \mathbb{P}\{X \in A\}$ —is called a *Gaussian measure*.

Lemma 1.2. Suppose $X := (X_1, \ldots, X_n)$ is a Gaussian random vector. If we set $T := \{1, \ldots, n\}$, then the stochastic process $\{X_t\}_{t \in T}$ is a Gaussian process. Conversely, if $\{X_t\}_{t \in T}$ is a Gaussian process, then (X_1, \ldots, X_n) is a Gaussian random vector.

The proof is left as exercise.

Definition 1.3. If *X* is a Gaussian process indexed by *T*, then we define $\mu(t) := \mathbb{E}(X_t)$ [$t \in T$] and $C(s, t) := \operatorname{Cov}(X_s, X_t)$ for all $s, t \in T$. The functions μ and *C* are called the *mean* and *covariance* functions of *X* respectively.

Lemma 1.4. A symmetric $n \times n$ real matrix *C* is the covariance of some Gaussian random vector if and only if *C* is positive semidefinite. The latter property means that

$$z'Cz = \sum_{i=1}^{n} \sum_{j=1}^{n} z_i z_j C_{i,j} \ge 0 \quad \text{for all } z_1, \dots, z_n \in \mathbb{R}.$$

Proof. Consult any textbook on multivariate normal distributions.

79

Corollary 1.5. A function $C : T \times T \to \mathbb{R}$ is the covariance function of some *T*-indexed Gaussian process if and only if $(C(t_i, t_j))_{1 \le i,j \le n}$ is a positive semidefinite matrix for all $t_1, \ldots, t_n \in T$.

Definition 1.6. From now on we will say that a function $C : T \times T \to \mathbb{R}$ is *positive semidefinite* when $(C(t_i, t_j))_{1 \le i,j \le n}$ is a positive semidefinite matrix for all $t_1, \ldots, t_n \in T$.

Note that we understand the structure of every Gaussian process by looking only at finitely-many Gaussian random variables at a time. As a result, the theory of Gaussian processes does not depend *a priori* on the topological structure of the indexing set *T*. In this sense, the theory of Gaussian processes is quite different from Markov processes, martingales, etc. In those theories, it is essential that *T* is a totally-ordered set [such as \mathbb{R} or \mathbb{R}_+], for example. Here, *T* can in principle be any set. Still, it can happen that *X* has particularly-nice structure when *T* is Euclidean, or more generally, has some nice group structure. We anticipate this possibility and introduce the following.

Definition 1.7. Suppose *T* is an abelian group and $\{X_t\}_{t \in T}$ a Gaussian process indexed by *T*. Then we use the additive notation for *T*, and say that *X* is *stationary* when $(X_{t_1}, \ldots, X_{t_k})$ and $(X_{s+t_1}, \ldots, X_{s+t_k})$ have the same law for all $s, t_1, \ldots, t_k \in T$.

Lemma 1.8. Let *T* be an abelian group and let $X := \{X_t\}_{t \in T}$ denote a *T*-indexed Gaussian process with mean function *m* and covariance function *C*. Then *X* is stationary if and only if *m* and *C* are "translation invariant." That means that

$$m(s + t) = m(t)$$
 and $C(t_1, t_2) = C(s + t_1, s + t_2)$ for all $s, t_1, t_2 \in \mathbb{R}^M$.

The proof is left as exercise.

2. Examples of Gaussian Processes

§1. Brownian Motion. By Brownian motion *X*, we mean a Gaussian process, indexed by $\mathbb{R}_+ := [0, \infty)$, with mean function 0 and covariance function

$$C(s, t) := \min(s, t) \qquad [s, t \ge 0].$$

In order to justify this definition, it suffices to prove that *C* is a positive semidefinite function on $T \times T = \mathbb{R}^2_+$. Suppose $z_1, \ldots, z_n \in \mathbb{R}$ and

 $t_1, \ldots, t_n \ge 0$. Then,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} \overline{z_{j}} C(t_{i}, t_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} z_{i} \overline{z_{j}} \int_{0}^{\infty} \mathbb{1}_{[0, t_{i}]}(s) \mathbb{1}_{[0, t_{j}]}(s) \,\mathrm{d}s$$
$$= \int_{0}^{\infty} \left(\sum_{i=1}^{n} z_{i} \mathbb{1}_{[0, t_{i}]}(s) \right) \overline{\left(\sum_{j=1}^{n} z_{j} \mathbb{1}_{[0, t_{j}]}(s) \right)} \,\mathrm{d}s$$
$$= \int_{0}^{\infty} \left| \sum_{i=1}^{n} z_{i} \mathbb{1}_{[0, t_{i}]}(s) \,\mathrm{d}s \right|^{2} \ge 0.$$

Therefore, Brownian motion exists.

§2. The Brownian Bridge. A *Brownian bridge* is a mean-zero Gaussian process, indexed by [0, 1], and with covariance

$$C(s, t) = \min(s, t) - st \qquad [0 \leqslant s, t \leqslant 1]. \tag{6.1}$$

The most elegant proof of existence, that I am aware of, is due to J. L. Doob: Let B be a Brownian motion, and define

$$X_t := B_t - tB_1 \quad [0 \leqslant t \leqslant 1].$$

Then, $X := {X_t}_{0 \le t \le 1}$ is a mean-zero Gaussian process that is indexed by [0, 1] and has the covariance function of (6.1).

§3. The Ornstein–Uhlenbeck Process. An Ornstein–Uhlenbeck process is a stationary Gaussian process X indexed by \mathbb{R}_+ with mean function 0 and covariance

$$C(s, t) = e^{-|t-s|}$$
 $[s, t \ge 0]$

It remains to prove that C is a positive semidefinite function. The proof rests on the following well-known formula:¹

$$e^{-|x|} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{e^{ixa}}{1+a^2} da \qquad [x \in \mathbb{R}].$$
 (6.2) FT:Cauchy

Thanks to (6.2),

$$\begin{split} \sum_{j=1}^{n} \sum_{k=1}^{n} z_j \overline{z_k} C(t_j, t_k) &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}a}{1+a^2} \sum_{j=1}^{n} \sum_{k=1}^{n} z_j \overline{z_k} \mathrm{e}^{ia(t_j-t_k)} \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}a}{1+a^2} \left| \sum_{j=1}^{n} z_j \mathrm{e}^{iat_j} \right|^2 \ge 0. \end{split}$$

¹In other words, if Y has a standard Cauchy distribution on the line, then its characteristic function is $\mathbb{E} \exp(ixY) = \exp(-|x|)$.

§4. Brownian Sheet. An *N*-parameter *Brownian sheet X* is a Gaussian process, indexed by $\mathbb{R}^N_+ := [0, \infty)^N$, whose mean function is zero and covariance function is

$$C(s, t) = \prod_{j=1}^{n} \min(s^{j}, t^{j}) \qquad [s := (s^{1}, \dots, s^{N}), t := (t^{1}, \dots, t^{N}) \in \mathbb{R}^{N}_{+}].$$

Clearly, a 1-parameter Brownian sheet is Brownian motion; in that case, the existence problem has been addressed. In general, we may argue as follows: For all $z_1, \ldots, z_n \in \mathbb{R}$ and $t_1, \ldots, t_n \in \mathbb{R}^N_+$,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} z_j z_k \prod_{\ell=1}^{N} \min(s_j^{\ell}, s_k^{\ell}) = \sum_{j=1}^{n} \sum_{k=1}^{n} z_j z_k \prod_{\ell=1}^{N} \int_0^{\infty} \mathbb{1}_{[0, s_j^{\ell}]}(r) \mathbb{1}_{[0, s_k^{\ell}]}(r) dr$$
$$= \sum_{j=1}^{n} \sum_{k=1}^{n} z_j \overline{z_k} \int_{\mathbb{R}^N_+} \prod_{\ell=1}^{N} \mathbb{1}_{[0, s_j^{\ell}]}(r^{\ell}) \mathbb{1}_{[0, s_k^{\ell}]}(r^{\ell}) dr.$$

It is harmless to take the complex conjugate of z_k since z_k is real valued. But now $z_k^{1/N} = \overline{z_k}^{1/N}$ is in general complex-valued, and we may write

$$\sum_{j=1}^{n} \sum_{k=1}^{n} z_j z_k \prod_{\ell=1}^{N} \min(s_j^{\ell}, s_k^{\ell}) = \int_{\mathbb{R}^N_+} \sum_{j=1}^{n} \sum_{k=1}^{n} \prod_{\ell=1}^{N} (z_j \overline{z_k})^{1/N} \mathbb{1}_{[0, s_j^{\ell}]}(r^{\ell}) \mathbb{1}_{[0, s_k^{\ell}]}(r^{\ell}) dr$$
$$= \int_{\mathbb{R}^N_+} \left| \sum_{j=1}^{n} \prod_{\ell=1}^{N} z_j^{1/N} \mathbb{1}_{[0, s_j^{\ell}]}(r^{\ell}) \right|^2 dr \ge 0.$$

This proves that the Brownian sheet exists.

§5. Fractional Brownian Motion. A *fractional Brownian motion* [or fBm] is a Gaussian process indexed by \mathbb{R}_+ that has mean function 0, $X_0 := 0$, and covariance function given by

$$\mathbb{E}(|X_t - X_s|^2) = |t - s|^{2\alpha} \quad [s, t \ge 0], \quad (6.3) \quad \text{Var:fBm}$$

for some constant $\alpha > 0$. The constant α is called the *Hurst parameter* of *X*.

Note that (6.3) indeed yields the covariance function of X: Since $Var(X_t) = \mathbb{E}(|X_t - X_0|^2) = t^{2\alpha}$,

$$|t - s|^{2\alpha} = \mathbb{E}\left(X_t^2 + X_s^2 - 2X_s X_t\right) = t^{2\alpha} + s^{2\alpha} - 2\mathrm{Cov}(X_s, X_t).$$

Therefore,

$$Cov(X_s, X_t) = \frac{t^{2\alpha} + s^{2\alpha} - |t - s|^{2\alpha}}{2}$$
 [s, t \ge 0]. (6.4) Cov:fBm

Direct inspection shows that (6.4) does not define a positive-definite function *C* when $\alpha \leq 0$. This is why we have limited ourselves to the case that $\alpha > 0$.

Note that an fBm with Hurst index $\alpha = 1/2$ is a Brownian motion. The reason is the following elementary identity:

$$\frac{t+s-|t-s|}{2} = \min(s,t) \qquad [s,t \ge 0],$$

which can be verified by considering the cases $s \ge t$ and $t \ge s$ separately.

The more interesting "if" portion of the following is due to Mandelbrot and Van Ness (1968).

th:fBm:exists **Theorem 2.1.** An fBm with Hurst index α exists if and only if $\alpha \leq 1$.

Fractional Brownian motion with Hurst index $\alpha = 1$ is a trivial process in the following sense: Let *N* be a standard normal random variable, and define $X_t := tN$. Then, $X := \{X_t\}_{t \ge 0}$ is fBm with index $\alpha = 1$. For this reason, many experts do not refer to the $\alpha = 1$ case as fractional Brownian motion, and reserve the teminology fBm for the case that $\alpha \in (0, 1)$. Also, fractional Brownian motion with Hurst index $\alpha = \frac{1}{2}$ is Brownian motion.

Proof. First we examine the case that $\alpha < 1$. Our goal is to prove that

$$C(s, t) := \frac{t^{2\alpha} + s^{2\alpha} - |t - s|^{2\alpha}}{2}$$

is a covariance function.

Consider the function

$$\Phi(t,r) := (t-r)_{+}^{\alpha - (1/2)} - (-r)_{+}^{\alpha - (1/2)}, \qquad (6.5) \quad \text{Phil}$$

defined for all $t \ge 0$ and $r \in \mathbb{R}$, where $a_+ := \max(a, 0)$ for all $a \in \mathbb{R}$. Direct inspection yields that $\int_{-\infty}^{\infty} [\Phi(t, r)]^2 dr < \infty$, since $\alpha < 1$, and in fact a second computation on the side yields

$$\int_{-\infty}^{\infty} \Phi(t, r) \Phi(s, r) \, \mathrm{d}r = \kappa C(s, t) \qquad \text{for all } s, t \ge 0, \tag{6.6}$$

where κ is a positive and finite constant that depends only on α . In particular,

$$\sum_{i=1}^{n} \sum_{j=2}^{n} z_i z_j C(t_i, t_j) = \frac{1}{\kappa} \sum_{i=1}^{n} \sum_{j=2}^{n} z_i z_j \int_{-\infty}^{\infty} \Phi(t_i, r) \Phi(t_j, r) dr$$
$$= \frac{1}{\kappa} \int_{-\infty}^{\infty} \left[\sum_{i=1}^{n} z_i \Phi(t_i, r) \right]^2 dr \ge 0.$$

This proves the Theorem in the case that $\alpha < 1$. We have seen already that theorem holds [easily] when $\alpha = 1$. Therefore, we now consider $\alpha > 1$, and strive to prove that fBm does not exist in this case.

The proof hinges on a technical fact which we state without proof; this and much more will be proved later on in Theorem 2.3 on page 97. Recall that \bar{Y} is a *modification* of Y when $\mathbb{P}\{Y_t = \bar{Y}_t\} = 1$ for all t.

Proposition 2.2. Let $Y := {Y_t}_{t \in [0,\tau]}$ denote a Gaussian process indexed by $T := [0, \tau]$, where $\tau > 0$ is a fixed constant. Suppose there exists a finite constant *C* and a constant $\eta > 0$ such that

$$\mathbb{E}\left(|Y_t - Y_s|^2\right) \leqslant C|t - s|^{\eta} \quad \text{for all } 0 \leqslant s, t \leqslant \tau.$$

Then Y has a Hölder-continuous modification \overline{Y} . Moreover, for every non-random constant $\rho \in (0, \eta/2)$,

$$\sup_{0 \leqslant s \neq t \leqslant \tau} \frac{|\bar{Y}_t - \bar{Y}_s|}{|t - s|^{\rho}} < \infty \qquad almost \ surely. \tag{6.7} \quad eq: \texttt{KCT:Gauss}$$

We use Proposition 2.2 in the following way: Suppose to the contrary that there existed an fBm X with Hurst parameter $\alpha > 1$. By Proposition 2.2, X would have a continuous modification \bar{X} such that for all $\rho \in (0, \alpha)$ and $\tau > 0$,

$$V(\tau) := \sup_{0 \leqslant s \neq t \leqslant \tau} rac{|\bar{X}_t - \bar{X}_s|}{|t - s|^{
ho}} < \infty$$
 almost surely.

Choose $\rho \in (1, \alpha)$ and observe that

$$\left| \bar{X}_t - \bar{X}_s \right| \leqslant V(\tau) |t - s|^{
ho}$$
 for all $s, t \in [0, \tau]$,

almost surely for all $\tau > 0$. Divide both side by |t - s| and let $s \to t$ in order to see that \bar{X} is differentiable and its derivative is zero everywhere, a.s. Since $\bar{X}_0 = X_0 = 0$ a.s., it then follows that $\bar{X}_t = 0$ a.s. for all $t \ge 0$. In particular, $\mathbb{P}\{X_t = 0\} = 1$ for all $t \ge 0$. Since the variance of X_t is supposed to be $t^{2\alpha}$, we are led to a contradiction.

subsec:WN

§6. White Noise and Wiener Integrals. Let \mathbb{H} be a complex Hilbert space with norm $\| \dots \|_{\mathbb{H}}$ and corresponding inner product $\langle \cdot, \cdot \rangle_{\mathbb{H}}$.

Definition 2.3. A *white noise* indexed by $T = \mathbb{H}$ is a Gaussian process $\{\xi(h)\}_{h \in \mathbb{H}}$, indexed by \mathbb{H} , with mean function 0 and covariance function,

$$C(h_1 ext{,} h_2) = \langle h_1 ext{,} h_2
angle_{\mathbb{H}} \qquad [h_1 ext{,} h_2 \in \mathbb{H}].$$

pr:KCT:Gauss

The proof of existence is fairly elementary: For all $z_1, \ldots, z_n \in \mathbb{R}$ and $h_1, \ldots, h_n \in \mathbb{H}$,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} z_j z_k C(h_j, h_k) = \sum_{j=1}^{n} \sum_{k=1}^{n} z_j z_k \langle h_j, h_k \rangle_{\mathbb{H}}$$
$$= \left\langle \sum_{j=1}^{n} z_j h_j, \sum_{k=1}^{n} z_k h_k \right\rangle_{\mathbb{H}} = \left\| \sum_{j=1}^{n} z_j h_j \right\|_{\mathbb{H}}^2$$

which is clearly ≥ 0 .

The following simple result is one of the centerpieces of this section, and plays an important role in the sequel.

lem:WN:Lin

Lemma 2.4. For every $a_1, \ldots, a_m \in \mathbb{R}$ and $h_1, \cdots, h_m \in \mathbb{H}$,

$$\xi\left(\sum_{j=1}^m a_j h_j\right) = \sum_{j=1}^m a_j \xi(h_j)$$
 a.s.

Proof. We plan to prove that: (a) For all $a \in \mathbb{R}$ and $h \in \mathbb{H}$,

$$\xi(ah) = a\xi(h) \qquad \text{a.s.;} \qquad (6.8) \qquad \text{WN:Lin1}$$

and (b) For all $h_1, h_2 \in \mathbb{H}$,

$$\xi(h_1 + h_2) = \xi(h_1) + \xi(h_2)$$
 a.s. (6.9) WN:Lin2

Together, (6.8) and (6.9) imply the lemma with m = 2; the general case follows from this case, after we apply induction. Let us prove (6.8) then:

$$\mathbb{E}\left(|\xi(ah) - a\xi(h)|^2\right) = \mathbb{E}\left(|\xi(ah)|^2\right) + a^2 \mathbb{E}\left(|\xi(h)|^2\right) - 2a\operatorname{Cov}\left(\xi(ah), \xi(h)\right)$$
$$= \|ah\|_{\mathbb{H}}^2 + a^2 \|h\|_{\mathbb{H}}^2 - 2a\langle ah, h \rangle_{\mathbb{H}} = 0.$$

This proves (6.8). As regards (6.9), we note that

$$\begin{split} & \mathbb{E}\left(|\xi(h_1+h_2)-\xi(h_1)-\xi(h_2)|^2\right) \\ &= \mathbb{E}\left(|\xi(h_1+h_2)|^2\right) + \mathbb{E}\left(|\xi(h_1)+\xi(h_2)|^2\right) - 2\operatorname{Cov}\left(\xi(h_1+h_2),\xi(h_1)+\xi(h_2)\right) \\ &= \|h_1+h_2\|_{\mathrm{H}}^2 + \|h_1\|_{\mathrm{H}}^2 + \|h_2\|_{\mathrm{H}}^2 + 2\langle h_1,h_2\rangle_{\mathrm{H}} \\ &\quad -2\left[\langle h_1+h_2,h_1\rangle_{\mathrm{H}} + \langle h_1+h_2,h_2\rangle_{\mathrm{H}}\right] \\ &= \|h_1+h_2\|_{\mathrm{H}}^2 - 2\langle h_1,h_2\rangle_{\mathrm{H}} - \|h_1\|_{\mathrm{H}}^2 - \|h_2\|_{\mathrm{H}}^2, \end{split}$$

which is zero, thanks to the Pythagorean rule on \mathbb{H} . This proves (6.9) an hence the lemma. \Box

Lemma 2.4 can be rewritten in the following essentially-equivalent form.

th:Wiener

Theorem 2.5 (Wiener). The map $\xi : \mathbb{H} \to L^2(\Omega, \mathcal{F}, \mathbb{P}) := L^2(\mathbb{P})$ is a linear Hilbert-space isometry.

Because of its isometry property, white noise is also referred to as the *iso-normal* or *iso-gaussian* process.

Very often, the Hilbert space \mathbb{H} is an L^2 -space itself; say, $\mathbb{H} = L^2(\mu) := L^2(A, \mathcal{A}, \mu)$. Then, we can think of $\mathcal{E}(h)$ as an $L^2(\mathbb{P})$ -valued integral of $h \in \mathbb{H}$. In such a case, we sometimes adopt an integral notation; namely,

$$\int h(x)\,\xi(\mathrm{d}x) := \int h\,\mathrm{d}\xi := \xi(h)$$

This operation has all but one of the properties of integrals: The triangle inequality does not $\mathrm{hold.}^2$

Definition 2.6. The random variable $\int h d\xi$ is called the *Wiener integral* of $h \in \mathbb{H} = L^2(\mu)$. One also defines definite Wiener integrals as follows: For all $h \in L^2(\mu)$ and $E \in \mathcal{A}$,

$$\int_E h(x)\,\xi(\mathrm{d}x) := \int_E h\,\mathrm{d}\xi := \xi(h\mathbbm{1}_E).$$

This is a rational definition since $\|h\mathbb{1}_E\|_{L^2(\mu)} \leq \|h\|_{L^2(\mu)} < \infty$.

An important property of white noise is that, since it is a Hilbert-space isometry, it maps orthogonal elements of \mathbb{H} to orthogonal elements of $L^2(\mathbb{P})$. In other words:

 $\mathbb{E}[\xi(h_1)\xi(h_2)] = 0 \quad \text{if and only if} \quad (h_1, h_2)_{\mathbb{H}} = 0.$

Because $(\xi(h_1), \xi(h_2))$ is a Gaussian random vector of uncorrelated coordindates, we find that

 $\xi(h_1)$ and $\xi(h_2)$ are independent if and only if $(h_1, h_2)_{\mathbb{H}} = 0$.

The following is a ready consequence of this rationale.

pr:uncorr:indep

pr:KL

Proposition 2.7. If $\mathbb{H}_1, \mathbb{H}_2, \ldots$ are orthogonal subspaces of \mathbb{H} , then

$$\{\xi(h)\}_{h\in\mathbb{H}_i}$$
 $i=1,2,\ldots$

are independent Gaussian processes.

The following highlights the strength of the preceding result.

Proposition 2.8. Let $\{\psi_i\}_{i=1}^{\infty}$ be a complete orthonormal basis for \mathbb{H} . Then, we can find a sequence of i.i.d. standard normal random variables X_1, X_2, \ldots such that

$$\xi(h) = \sum_{j=1}^{\infty} c_j X_j,$$

²In fact, $|\xi(h)| \ge 0$ a.s., whereas $\xi(|h|)$ is negative with probability ¹/₂.

where $c_j := \langle h, \psi_j \rangle_{\mathbb{H}}$ and the sum converges in $L^2(\mathbb{P})$.

Remark 2.9. Proposition 2.8 yields a 1-1 identification of the white noise ξ with the i.i.d. sequence $\{X_i\}_{i=1}^{\infty}$. Therefore, in the setting of Proposition 2.8, some people refer to a sequence of i.i.d. standard normal random variables as white noise.

Proof. Thanks to Proposition 2.7, $X_j := \xi(\psi_j)$ defines an i.i.d. sequence of standard normal random variables. According to the Riesz–Fischer theorem

$$h = \sum_{j=1}^{\infty} c_j \psi_j$$
 for every $h \in \mathbb{H}$,

where the sum converges in H. Therefore, Theorem 2.5 ensures that

$$\xi(h) = \sum_{j=1}^{\infty} c_j \xi(\psi_j) = \sum_{j=1}^{\infty} c_j X_j$$
 for every $h \in \mathbb{H}$,

where the sum converges in $L^2(\mathbb{P})$. We have implicitly used the following ready consequence of Wiener's isometry [Theorem 2.5]: If $h_n \to h$ in \mathbb{H} then $\xi(h_n) \to \xi(h)$ in $L^2(\mathbb{P})$. It might help to recall that the reason is simply that $\|\xi(h_n - h)\|_{L^2(\mathbb{P})} = \|h_n - h\|_{\mathbb{H}}$.

Next we work out a few examples of Hilbert spaces that arise in the literature.

Example 2.10 (Zero-Dimensional Hilbert Spaces). We can identify $\mathbb{H} = \{0\}$ with a Hilbert space in a canonical way. In this case, white noise indexed by \mathbb{H} is just a normal random variable with mean zero and variance 0 [i.e., $\xi(0) := 0$].

Example 2.11 (Finite-Dimensional Hilbert Spaces). Choose and fix an integer $n \ge 1$. The space $\mathbb{H} := \mathbb{R}^n$ is a real Hilbert space with inner product $(a, b)_{\mathbb{H}} := \sum_{j=1}^{n} a_j b_j$ and norm $||a||_{\mathbb{H}}^2 := \sum_{j=1}^{n} a_j^2$. Let \mathcal{E} denote white noise indexed by $\mathbb{H} = \mathbb{R}^n$ and define a random vector $X := (X_1, \ldots, X_n)$ via

$$X_j := \xi(\mathbf{e}_j) \qquad j = 1, 2, ..., n,$$

where $\mathbf{e}_1 := (1, 0, \dots, 0)', \dots, \mathbf{e}_n := (0, \dots, 0, 1)'$ denote the usual orthonormal basis elements of \mathbb{R}^n . According to Proposition 2.8 and its proof, X_1, \dots, X_n are i.i.d. standard normal random variables and for every *n*-vector $\mathbf{a} := (a_1, \dots, a_n)$,

$$\xi(\alpha) = \sum_{j=1}^{n} \alpha_j X_j = \alpha' X.$$
 (6.10) MVN

Now consider *m* points $a_1, \ldots, a_m \in \mathbb{R}^n$ and write the *j*th coordinate of a_i and a_i^j . Define

$$Y := \begin{pmatrix} \xi(a_1) \\ \vdots \\ \xi(a_m) \end{pmatrix}.$$

Then *Y* is a mean-zero Gaussian random vector with covariance matrix A'A where *A* is an $m \times m$ matrix whose *j*th column is a_j . Then we can apply (6.10) to see that Y = A'X. In other words, every multivariate normal random vector with mean vector **0** and covariance matrix A'A can be written as a linear combination A'X of i.i.d. standard normals.

Example 2.12 (Lebesgue Spaces). Consider the usual Lebesgue space $\mathbb{H} := L^2(\mathbb{R}_+)$. Since $\mathbb{1}_{[0,t]} \in L^2(\mathbb{R}_+)$ for all $t \ge 0$, we can define a mean-zero Gaussian process $B := \{B_t\}_{t\ge 0}$ by setting

$$B_t := \xi(\mathbb{1}_{[0,t]}) = \int_0^t d\xi.$$
 (6.11)
B:xi

Then, B is a Brownian motion because

$$\mathbb{E}[B_s B_t] = \left\langle \mathbb{1}_{[0,t]}, \mathbb{1}_{[0,s]} \right\rangle_{L^2(\mathbb{R}_+)} = \min(s, t).$$

Since $\mathbb{E}(|B_t - B_s|^2) = |t - s|$, Kolmgorov's continuity theorem [Proposition 2.2] shows that *B* has a continuous modification \overline{B} . Of course, \overline{B} is also a Brownian motion, but it has continuous trajectories [Wiener's Brownian motion]. Some authors intepret (6.11) somewhat loosely and present white noise as the derivative of Brownian motion. This viewpoint can be made rigorous in the following way: White noise is the weak derivative of Brownian motion, in the sense of distribution theory. We will not delve into this matter further though.

I will close this example by mentioning, to those that know Wiener and Itô's theories of stochastic integration against Brownian motion, that the Wiener integral $\int_0^{\infty} \varphi_s dB_s$ of a non-random function $\varphi \in L^2(\mathbb{R}_+)$ is the same object as $\int_0^{\infty} \varphi d\xi = \xi(\varphi)$ here. Indeed, it suffices to prove this assertion when $\varphi_s = \mathbb{1}_{[0,t]}(s)$ for some fixed number t > 0. But then the assertion is just our definition (6.11) of the Brownian motion *B*.

Example 2.13 (Lebesgue Spaces, Continued). Here is a fairly general receipe for constructing mean-zero Gaussian processes from white noise: Suppose we could write

$$C(s,t) = \int K(s,r)K(t,r)\,\mu(\mathrm{d}r) \qquad [s,t\in T],$$

where μ is a locally-finite measure on some measure space (A, \mathcal{A}) , and $K: A \times T \to \mathbb{R}$ is a function such that $K(t, \bullet) \in L^2(\mu)$ for all $t \in T$. Then,

the receipe is this: Let ξ be white noise on $\mathbb{H} := L^2(\mu)$, and define

$$X_t := \int K(t, r) \, \xi(\mathrm{d}r) \qquad [t \in T].$$

Then, $X := \{X_t\}_{t \in T}$ defines a mean-zero *T*-indexed Gaussian process with covariance function *C*. Here are some examples of how we can use this idea to build mean-zero Gaussian processes from white noise.

- (1) Let $A := \mathbb{R}_+$, $\mu :=$ Lebesgue measure, and $K(t, r) := \mathbb{1}_{[0,t]}(r)$. These choices lead us to the same white-noise construction of Brownian motion as the previous example.
- (2) Given a number $\alpha \in (0, 1)$, let \mathcal{E} be a white noise on $\mathbb{H} := L^2(\mathbb{R})$. Because of (6.6) and our general discussion, earlier in this example, we find that

$$X_t := \frac{1}{\kappa} \int_{\mathbb{R}} \left[(t - r)_+^{\alpha - (1/2)} - (-r)_+^{\alpha - (1/2)} \right] \xi(\mathrm{d}r) \qquad [t \ge 0]$$

defines an fBm with Hurst index α .

(3) For a more interesting example, consider the covariance function of the Ornstein–Uhlenbeck process whose covariance function is, we recall,

$$C(s, t) = e^{-|t-s|}$$
 [s, t \ge 0].

Define

$$\mu(\mathrm{d} a) := \frac{1}{\pi} \frac{\mathrm{d} a}{1 + a^2} \qquad [-\infty < a < \infty].$$

According to (6.2), and thanks to symmetry,

$$C(s,t) = \int e^{i(t-s)r} \mu(dr) = \int \cos(tr - sr) \mu(dr)$$
$$= \int \cos(tr) \cos(sr) \mu(dr) + \int \sin(tr) \sin(sr) \mu(dr).$$

Now we follow our general discussion, let ξ and ξ' are two independent white noises on $L^2(\mu)$, and then define

$$X_t := \int \cos(tr) \,\xi(\mathrm{d}r) - \int \sin(tr) \,\xi'(\mathrm{d}r) \qquad [t \ge 0].$$

Then,
$$X := \{X_t\}_{t \ge 0}$$
 is an Ornstein–Uhlenbeck process.³

³One could just as easily put a plus sign in place of the minus sign here. The rationale for this particular way of writing is that if we study the "complex-valued white noise" $\xi := \xi + i\xi'$, where ξ' is an independent copy of ξ , then $X_t = \operatorname{Re} \int \exp(itr) \xi'(dr)$. A fully-rigorous discussion requires facts about "complex-valued" Gaussian processes, which I will not develop here.