
Integration by Parts
and Its Applications

The following is an immediate consequence of Theorem 4.7 [page 51]
and the chain rule [Lemma 1.7, p. 23].

Theorem 0.1. For every � ∈ D1�2(P�) and � ∈ D1�2(P1),

Cov(� � �(� )) = E [(D�)(� ) × �D� � D��R1 ] �

where � · � ·�R1 was defined in (4.13), page 51.

Theorems 4.7 and its corollary Theorem 0.1 are integration by parts
formula on Gauss space. In order to see this claim more clearly, suppose
for example that � ∈ D1�2(P1) and X := � (Z) where � ∈ C1

0(P�). Then
Theorem 0.1 reduces to the assertion that

E [X�(X)] = E(X)E[�(X)] + E
�
��(X)�DX � DX�R1

�
� (5.1)

where I am writing ��(X) in place of the more appropriate notation,
(D�)(X) for the sake of clarity. In this chapter we explore some of the
consequence of these integration by parts results.

1. Concentration of Measure

As a first application of Theorem 0.1 we deduce the concentration of
measure property of P� that was alluded to in the first chapter. The
claim is simply that with very high probability every Lipschitz-continuous
function is very close to its mean, regardless of the value of the ambient
dimension �. One can obtain a crude version of this assertion by ap-
pealing to the Poincaré inequality of Nash [Corollary 2.5, page 37] and
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54 5. Integration by Parts and Its Applications

Chebyshev’s inequality:

P {|� − E(� )| > �} 6 [Lip(� )]2
�2 for all � > 0�

The following is a more precise estimate.

Theorem 1.1. For every Lipschitz-continuous function � : R� → R,

P� {|� − E � | > �} 6 2 exp
�

− �2

2[Lip(� )]2

�
for all � > 0�

There are many proofs of this fact. Perhaps the most elegant is the
following, which is due to Houdré et al, XXX.

Proof. Without loss of generality, we may assume that E(� ) = 0 and
Lip(� ) = 1; else, we replace � by [� − E(� )]/Lip(� ) everywhere below.

According to Example 1.6 [page 22], � ∈ D1�2(P�) and �D�� 6 1 a.s.
Also, Mehler’s formula implies that �P�D�� 6 1 for all � > 0, and hence
�R1D�� 6 1 a.s. [Theorem 2.1, page 45]. Consequently,

�D� � D��R1 6 �D�� �R1D�� 6 1 a.s.

Choose and fix some number λ > 0. We apply Corollary 0.1 with �(�) :=
exp(λ�) to see that

E
�
�eλ�

�
= λE

�
eλ� �D� � D��R1

�
6 λE

�
eλ�

�
�

In other words, the function M(λ) := E[exp(λ� )] [λ > 0] satisfies the
differential inequality M �(λ) 6 λM(λ) for all λ > 0. It is easy to solve
this differential inequality: Divide both sides by M(λ) and compute an-
tiderivatives. Since M(0) = 1 it follows that

E eλ� 6 eλ2/2 for all λ > 0�

By Chebyshev’s inequality, if � > 0 then

P�{� > �} = P
�

eλ� > eλ�
�
6 exp

�
−λ� + λ2

2

�
�

Optimize this [λ := �] to find that

P�{� > �} 6 e−�2/2 [� > 0]�

Finally, apply the same inequality to the function −� in place of � to
deduce the theorem. ⇤
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2. The Borell, Sudakov–Tsirelson Inequality

Theorem 1.1 itself has a number of noteworthy consequences. The next
result is a particularly useful consequence, as well as a central example
of a broader theorem that is generally known as Borell’s inequality, and
was discovered independently and around the same time by Borell XXX,
and Sudakov and Tsirelson XXX.

Theorem 2.1. Suppose X := (X1 � � � � � X�) has a N�(0 � Q) distribution,
where Q is positive semidefinite, and let M� denote either max16�6� X�
or max16�6� |X�|. Then for all � > 0,

P {|M� − E(M�)| > �} 6 2 exp
�

− �2

2σ2

�
�

provided that σ2 := max16�6� Var(X�) > 0.

Remark 2.2. Frequently, σ2 � E(M�) when � is large. When this
happens, Theorem 2.1 tells us that, with probability very close to one,
M� ≈ E(M�). One way to see this is to integrate by parts:

Var(M�) = 2
� ∞

0
�P {|M� − E(M�)| > �} d� 6 4

� ∞

0
�e−�2/(2σ2) d� = 4σ2�

[The constant 4 can be removed; see Example 2.9, page 38.] For a more
concrete illustration, consider the case that X1 � � � � X� are i.i.d. standard
normal random variables. In this case, σ2 = 1, whereas E(M�) = (1 +
�(1))

√
2 log � as � → ∞ thanks to Proposition 1.3, page 7. In this case,

Borell’s inequality yields

P
�

|M� − E(M�)| >
�

2ε log �
�
6 2�−ε�

for all � > 1 and ε > 0. We first pass to a subsequence [� ↔ 2�] and
then use monotonicity and the Borel–Cantelli lemma, in a standard way,
in order to deduce that, in this case,

lim
�→∞

M�
E(M�) = lim

�→∞
M�√

2 log �
= 1 a.s., (5.2)

provided that we construct all of the X� ’s on the same probability space.
This is of course an elementary statement. It is included here to highlight
the fact that, once we know E(M�), we frequently need to know very little
else in order to analyze the behavior of M�.

Proof of Theorem 2.1. We can write Q = A2 where A is a symmetric
� × � matrix. Consider the functions

� (�) := max
16�6�

(A�)� and �(�) := max
16�6�

|(A�)�| [� ∈ R�]�
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We have seen already that � and � are both Lipschitz continuous with
Lip(� )� Lip(�) 6 σ2� Therefore, Theorem 1.1 implies that

P� {|� (Z) − E[� (Z)]| > �} 6 2 exp
�

− �2

2σ2

�
[� > 0]�

and the very same holds also with �(Z)−E[�(Z)] in place of � (Z)−E[� (Z)].
This proves the result since AZ has the same distribution as X, whence
� (Z) = max�6�[AZ]� has the same distribution as max�6� X� and �(Z)
likewise has the same distribution as max�6� |X�|. ⇤

3. The S-K Model of Spin Glass at High Temperature

Let us pause and discuss an elegant solution of Talgrand XXX to earlier
physical predictions of a model in statistical mechanics XXX. In order
to see how the following fits into the general scheme of science, I will
briefly mention the model that we are about to study.

Before we start let me state, once and for all, that we temporarily sus-
pend the notation P�, E�, etc. that was used to denote the various objects
that act on the Gauss space. In this section we work with the standard
notation of probability theory, and on a suitable abstract probability space
(Ω � � �P).

Imagine � particles charged with unit charges. If the charge of par-
ticle � is σ� ∈ {−1 � 1}, then a simplest model for the total [magnetization]
energy of the system is given by the so-called Hamiltonian,

H�(σ ; �) := 1√
�

�

16�<�6�
σ�σ����� �

for every � > 2, � ∈ R� × R�, and σ ∈ {−1 � 1}�. Since σ� ∈ {−1 � 1},
people refer to σ� as the spin of particle �. Moreover, ���� is a real number
that gauges the strength of the interaction between particle � and particle
� . And 1/

√
� is just a normalization factor.1

A standard model of statistical mechanics for the probability dis-
tribution of the spins is the following: For every possible set of spins
(σ1� � � � � σ�) ∈ {−1 � 1}�, the probability P(�)

� (σ1 � � � � � σ�) that the respective
particle spins are (σ1 � � � � � σ�) is proportional to exp{βH�(σ ; �)}. That is,

P(�)
� (σ1 � � � � � σ�) := eβH�(σ ;�)

Π�(�) �

1In physical terms, we are assuming that there is no external field, and that particles only have
pairwise interactions; all higher-order interactions are negligible and hence suppressed.
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where β ∈ R is a parameter that is called inverse temperature, and
Π�(�) is there to make sure that the probabilities add up to one. That is,

Π�(�) :=
�

σ∈{−1�1}�

eβH�(σ ;�)�

We may, and will, think of Π� as a function of the interactions {����},
in which case Π� is called the partition function of the particle system.
One can think of the partition function combinatorially—as above—or
probabilistically as

Π�(�) = 2� E
�
eβH�(S;�)

�
�

where S := (S1 � � � � � S�) for a system of i.i.d. random variables S1� � � � � S�
with P{S1 = 1} = P{S1 = −1} = 1/2.

Intuitively speaking, a given set {σ1 � � � � � σ�) of possible spins has a
good chance of being realized iff H�(σ ; �) is positive and large. And
that ought to happen iff σ� and σ� have the same sign for most pairs
(� � �) of particles that have positive interactions, and opposite sign for
most pairs with negative interactions. The parameter β ensures the
effect of the interaction on this probability: If |β| is very small [high
temperature], then the interactions matter less; and when |β| is very large
[low temperature], then the interactions play an extremely important
role. In all cases, the spins are highly correlated, except when β =
0. In the case that β = 0 [infinite temperature], the spins are i.i.d. [no
interaction] and distributed as S1� � � � � S�.

Suppose that the partition function behaves as exp{zβ(�)�(1 + �(1))},
when � is large, where zβ(�) is a number in (0 � ∞). Then the number
zβ(�) is called the free energy of the system. A general rule of thumb
is that if the free energy exists then its value says some things about the
system. In any case, if the free energy exists then it is

zβ(�) := lim
�→∞

1
� log Π�(�)�

It is possible to prove a carefully-stated version of the ansatz that free
energy exists for “almost all choices of interaction terms {����}”; see
Guerra XXX. This requires a relatively-simply, standard “subadditivity
argument,” though the details of the problem escaped many attempts
for a long time until Guerra’s work was published. And there are many
conjectures about the value of free energy in various cases where |β| > 1.

A remarkable theorem of Talagrand XXX implies that the free en-
ergy is equal to log(2) + β2/4 “for almost all interaction choices” when
β ∈ (−1 � 1). One way to make this precise is to consider zβ(Z) where
Z := (Z��� )16�<�6� is a system of �(� − 1)/2 i.i.d. standard normal random
variables. We can relabel the Z��� ’s, so that they are labeled as a random
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2�-vector rather than the superdiagonal elements of a random � × �
symmetric matrix. In this way we can apply the theory of Gauss space,
and the following is a way to state Talagrand’s theorem. The resulting
spin glass model behind this is due to Sherrington and Kirkpatrick XXX.

Theorem 3.1 (Talagrand, XXX). For every β ∈ (−1 � 1) there exists a
finite constant Lβ such that for all ε > 0 and � > 1 + (2Lβ/ε)2,

P�

�����
log Π�(Z)

� − 1 −
�

log 2 + β2

4

����� 6 ε
�

> 1 − 2 exp
�

−ε2(� − 1)
2β2

�
�

This theorem addresses the high-temperature case where |β| is small.
The case that |β| > 1 is still relatively poorly understood. The dif-
ference between the two cases is mainly that when |β| is small the
interactions are relatively weak; whereas they are strong when |β| is
large. Mathematically, this manifests itself as follows: When |β| is small,
log Π�(Z) ≈ E[log Π�(Z)] ≈ logE[Π�(Z)] with high probability. Whereas
it is believed that E[log Π�(Z)] is a great deal smaller than logE[Π�(Z)]
when |β| � 1.2 These approximations are useful for small values of β
since E[Π�(Z)] is easy to compute exactly. In fact,

Lemma 3.2. For all β ∈ R and � > 2,

E [Π�(Z)] = 2� exp
�

β2(� − 1)
4

�
�

Proof. Since E exp(αZ1�1) = exp(α2/2) for all α ∈ R,

E[Π�(Z)] =
�

σ∈{−1�1}�

exp

⎛

⎝ β2

2�
�

16�<�6�
[σ�σ� ]2

⎞

⎠ �

which is equal to the expression of the lemma. ⇤

Other moments of Π�(Z) can be harder to compute exactly, in a
way that is useful. The following yields a useful bound for the second
moment in the high-temperature regime.3

2Of course, we always have E[log Π�(Z)] 6 logE[Π�(Z)], by Jensen’s inequality.
3Lemmas (3.2) and 3.3 teach us that, if |β| < 1, then

E
�

|Π�(Z)|2
�

= O
�

|E[Π�(Z)]|2
�

as � → ∞�

This property fails to hold when |β| > 1. Indeed, (5.4) below, and the central limit theorem, together
show that, for all β ∈ R,

lim
�→∞

E
�
|Π�(Z)|2

�

|E[Π�(Z)]|2
= E

�
eβZ1�1Z1�2

�
= E

�
eβ2Z2

1�1/2
�

�

which is infinite when |β| > 1.
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Lemma 3.3. If −1 < β < 1, then for all � > 2,

E
�

|Π�(Z)|2
�
6 4�

�
1 − β2

exp
�

β2(� − 2)
2

�
�

Proof. Let us write

E
�

|Π�(Z)|2
�

=
�

σ�σ �∈{−1�1}�

E

⎡

⎣exp

⎛

⎝ β√
�

�

16�<�6�
(σ�σ� + σ �

�σ �
� )Z���

⎞

⎠

⎤

⎦

=
�

σ�σ �∈{−1�1}�

exp

⎛

⎝ β2

2�
�

16�<�6�
[σ�σ� + σ �

�σ �
� ]2

⎞

⎠ �

If σ� σ � ∈ {−1 � 1}�, then

�

16�<�6�
[σ�σ� + σ �

�σ �
� ]2 = 2

�

16�<�6�

�
1 + σ�σ�σ �

�σ �
�
�

= �(� − 1) + 2
�−1�

�=1
σ�σ �

�

��

�=�+1
σ�σ �

�

= �(� − 2) +
� ��

�=1
σ�σ �

�

�2

�

Therefore,

E
�

|Π�(Z)|2
�

= eβ2(�−2)/2
�

σ�σ �∈{−1�1}�

exp

⎛

⎝ β2

2�

� ��

�=1
σ�σ �

�

�2
⎞

⎠ � (5.3)

If we bound σ�σ �
� by 1, then we will obtain the bound E(|Π�(Z)|2) 6

4� exp{β2(2� − 2)2}. The asserted bound of the proposition is a little
better when � is large since exp{β2(2�−2)/2} � exp{β2(�−2)/2} in that
case. In order to deduce the better inequality, we proceed with a little
more care.

Let S�
1� � � � � S�

� be i.i.d., all independent of the Z ’s and the S’s, and with
P{S�

1 = 1} = P{S�
1 = −1} = 1/2. We can interpret (5.3) as

E
�

|Π�(Z)|2
�

= 4�eβ2(�−2)/2E

⎡

⎣exp

⎛

⎝ β2

2�

� ��

�=1
S�S�

�

�2
⎞

⎠

⎤

⎦

= 4�eβ2(�−2)/2E

⎡

⎣exp

⎛

⎝ β2

2�

� ��

�=1
S�

�2
⎞

⎠

⎤

⎦ �
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because S1S�
1� � � � � S�S�

� are i.i.d. with the same common distribution as
S1. By independence,

E

⎡

⎣exp

⎛

⎝ β2

2�

� ��

�=1
S�

�2
⎞

⎠

⎤

⎦ = E

�
exp

�
Z1�1β√

�

��

�=1
S�

��
� (5.4)

This Khintchine-type trick of reintroducing the Gaussian variable Z1�1
bypasses messy combinatorial arguments. Indeed, for all � ∈ R,

E

�
exp

�
�β√

�

��

�=1
S�

��
=

�
E

�
exp

�
�β√

�S1

����
= {cosh(�β)}� 6 e��2β2/2�

Therefore, we condition on Z1�1 first in order to see that the last term in
(5.4) is at most E[(β2Z2

1�1/2] = (1 − β2)−1/2� as long as β ∈ (−1 � 1). ⇤

And now we come to the next, very important, step of the proof:
Concentration of measure!

Lemma 3.4. If |β| < 1, then

P�

�����
log Π�(Z)

� − 1 − E

�
log Π�(Z)

� − 1

����� > �
�

6 2 exp
�

− �2(� − 1)
β2

�
�

for all � > 0 and � > 2.

Proof. Consider the function � (�) := log Π�(�) [� ∈ R� ×R�]� It is easy
to see that � is linear, hence Lipschitz continuous. This is because

∂
∂����

Π�(�) = 2� ∂
∂����

E
�
eβH�(S;�)

�
= 2�βE

�
eβH�(S;�) · ∂

∂����
H�(S ; �)

�

= 2�βσ�σ�√
� E

�
eβH�(S;�)

�
= βσ�σ�√

� Π�(�)�

Therefore, �(D� )(�)�2 = β2�−1 �
16�<�6� σ2

� σ2
� = 1

2β2(� − 1)� This shows
that Lip(� ) = β

�
(� − 1)/2, and Theorem 1.1 implies the result. ⇤

Now we use the preceding concentration of measure estimate in or-
der to estimate E[log Π�(Z)] accurately for large �. As was mentioned
earlier, the key idea is that when |β| is small the model is mean field; in
this case, this means that E[log Π�(Z)] ≈ logE[Π�(Z)].

Lemma 3.5. For all β ∈ (−1 � 1) there exists Kβ < ∞ such that

� log 2
� − 1 + β2

4 − Kβ√
� − 1

6 E

�
log Π�(Z)

� − 1

�
6 � log 2

� − 1 + β2

4 �

for all � > 2.
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Proof. Recall the Paley–Zygmund inequality XXX: If W > 0 has two
finite moments, then

P
�

W > 1
2 E(W )

�
> (E[W ])2

4E(W2) �

provided that E(W2) > 0. The proof is quick:

E[W ] = E
�
W ; W 6 1

2 E(W )
�

+ E
�
W ; W > 1

2 E(W )
�

6 1
2 E(W ) +

�
E(W2)P

�
W > 1

2 E(W )
�

�

thanks to the Cauchy–Schwarz inequality.
The Paley–Zygmund inequality and Lemmas 3.2 and 3.3 together

show us that

P
�

log Π�(Z) > log
�1

2 E [Π�(Z)]
��

> 1
4
�

1 − β2 e−β2/2�

If � := log(1
2 E(Π�(Z))) − E[log Π�(Z)] > 0, then

1
4
�

1 − β2 e−β2/2 6 P {|log Π�(Z) − E [log Π�(Z)]| > �}

6 2 exp
�

− �2

β2(� − 1)

�
�

thanks to Lemma 3.4. Thus,

� 6
√

� − 1
�

β4

2 + β2

2

����log
�

1 − β2

16

�����
�1/2

:= Cβ
√

� − 1�

And if � 6 0 then certainly the preceding holds also. This proves that in
any case,

E [log Π�(Z)] > logE [Π�(Z)] − Cβ
√

� − 1 − log 2

> logE [Π�(Z)] −
�
Cβ + log 2

� √
� − 1�

since � > 2. Apply Lemma 3.2 to obtain the asserted lower bound with
Kβ := Cβ + log 2.

The upper bound is much simpler to prove, since E[log Π�(Z)] 6
logE[Π�(Z)], owing to Jensen’s inequality. ⇤

Proof of Theorem 3.1. Lemma 3.5 ensures that
����E [log Π�(Z)] −

�
log 2 + β2

4

����� 6
Kβ√
� − 1

+ log 2
� − 1 6 Lβ

2
√

� − 1
�

where Lβ := 2(Kβ + log 2). Therefore, Lemma 3.4 implies that

P

�����
log Π�(Z)

� − 1 −
�

log 2 + β2

4

����� > � + Lβ

2
√

� − 1

�
6 2e−�2(�−1)/β2 �
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The above probability decreases further if we replace Lβ/2
√

� − 1 by � ,
provided that � > Lβ/2

√
� − 1. Let ε := 2� to deduce the theorem. ⇤

4. Absolute Continuity of the Law

Now we turn to a quite delicate consequence of integration by parts.
Recall that the distribution, or law, of a random variable � : R� → R is
the Borel probability measure µ� := P� ◦ �−1, defined via

µ� (A) := P� {� ∈ A} = P� {� ∈ R� : � (�) ∈ A} for all A ∈ �(R�)�

In the remainder of this chapter we address the question of when µ�
is absolutely continuous with respect to the Lebesgue measure on R�.
Moreover, we will say a few things about the structure of the density,

�� (�) :=
dµ� (�)

d� [� ∈ R�]�

if and when it exists.
The existence of a density is not a trivial issue. For example, the ran-

dom variable � (�) ≡ 1 does not have a density with respect to Lebesgue’s
measure; yet � (�) = �1 does and its probability density is exactly γ1 [sort
this out!].

§1. A Simple Condition for Absolute Continuity. Recently, Nourdin
and Peccati XXX have found a necessary and sufficient condition for the
law of a random variable � ∈ D1�2(P�) to have a density with respect to
the Lebesgue measure on R, together with a formula for the density ��
if and when it exists. Before we discuss this beautiful topic, let us present
an easy-to-verify, quite elegant, sufficient condition for the existence of
a density.

Theorem 4.1 (Nualart and Zakai, XXX). If �D�� > 0 a.s., then µ� is
absolutely continuous with respect to the Lebegue measure on R.

It is clear that we need some sort of non-degeneracy condition on D� .
For instance, if D� = 0 a.s., then � = E(� ) a.s. thanks to Nash’s Poincaré
inequality [Proposition 2.4, page 36], and µ� = δE(� ) is not absolutely
continuous.

Proof. Choose and fix an arbitrary bounded Borel set B ⊆ R, and define

�(�) :=
� �

−∞
1B(�) d� [� ∈ R]�

Then, � is Lipschitz continuous with Lip(�) 6 1, and hence � ∈ D1�2(P1)
[Example 1.6, page 22]. We can approximate 1B with a smooth function
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in order to see also that D� = 1B a.s. Therefore, the chain rule of
Malliavin calculus [Lemma 1.7, page 23] implies the almost-sure identity,

D(� ◦ � ) = 1B(� )D(� )�

If, in addition, B were Lebesgue-null, then � ≡ 0 and hence D(� ◦ � ) = 0
a.s. Since �D�� > 0 a.s., it would then follow that 1B(� ) = 0 a.s., which
is to say that P�{� ∈ B} = 0. The Radon–Nikodỳm theorem does the
rest. ⇤

§2. The Support of the Law. The Nourdin–Peccati theory relies on a
few well-known, earlier, facts about the support of the law of � XXX.
Recall that the support of the measure µ� is the smallest closed set
supp(µ� ) such that

µ� (A) = 0 for all Borel sets A that do not intersect supp(µ� )�

Of course, supp(µ� ) is a closed subset of R.
The main goal of this subsection is to verify the following XXX.

Theorem 4.2 (Fang, XXX). If � ∈ D1�2(P�), then supp(µ� ) is an interval.

The proof hinges on the following elegant zero-one law.

Proposition 4.3 (Sekiguchi and Shiota, XXX). Let A be a Borel set in
R�. Then, 1A ∈ D1�2(P�) iff P�(A) = 0 or 1.

Proof. If 1A ∈ D1�2(P�) then by the chain rule [Lemma 1.7, page 23],

D(1A) = D(12
A) = 21AD(1A) a.s.

We consider the function D(1A) separately on and off A in order to see
that D(1A) = 0 a.s. Therefore, the Poincaré inequality [Proposition 2.4,
page 36] implies that Var(1A) = 0 whence 1A = P�(A) a.s. This proves
one direction of the theorem. The other direction is trivial: If P�(A) = 0
or 1 then 1A is a constant [as an element of L2(P�)] whence is in D1�2(P�)
since all constants are in D1�2(P�), manifestly. ⇤

Proof of Theorem 4.2. We plan to prove that supp(µ� ) is connected.
Suppose to the contrary that there exist −∞ < � < � < ∞ such that
[� � �] is not in supp(µ� ), yet supp(µ� ) intersects both (−∞ � �] and [� � ∞).
For every ε ∈ (0 � (� − �)/2) define

�ε(�) :=

⎧
⎪⎨

⎪⎩

1 if � < � + ε�
ε−1[−� + � + 2ε] if � + ε 6 � 6 � + 2ε�
0 if � > � + 2ε�
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Clearly, �ε is a Lipschitz-continuous function for every ε > 0, in fact
piecewise linear, and Lip(�ε) = ε−1� The chain rule [Lemma 1.7, page 23]
implies that �ε(� ) ∈ D1�2(P�) and

D(�ε ◦ � ) = ��
ε(� )D(� ) a.s.,

where I am writing ��
ε in place of the more precise D�ε for typographical

convenience.
By construction, [� � �] �⊂ supp(µ� ) and ��

ε vanishes [a.s.] off the inter-
val [�+ε � �+2ε] ⊂ (� � �). Therefore, ��

ε(� ) = 0 a.s., whence D(�ε ◦� ) = 0
a.s. This and the Poincaré inequality together imply that �ε ◦ � is a.s. a
constant. Therefore, so is ψ(�) := 1{�6�}(�) [� ∈ R�]. The zero-one law
[Proposition 4.3] then implies that P�{� 6 �} = 0 or 1. In particular,
supp(µ� ) cannot intersect both (−∞ � �] and [� � ∞). This establishes the
desired contradiction. ⇤

§3. The Nourdin–Peccati Formula. We now begin work toward devel-
oping the Nourdin–Peccati formula.

Let us first recall a fact about conditional expectations. Let X : R� →
R denote an arbitrary random variable and Y ∈ L1(P�). Then there exists
a Borel-measurable function GY : R� → R such that E(Y | X) = GY |X (X)
a.s. In particular, it follows that for every random variable � ∈ D1�2(P�)
we can find a Borel–measurable function S� : R� → R such that

E
�
�D� � D��R1

�� �
�

= S� (� ) a.s. (5.5)

The recipe is, S� (�) := G�D� �D��R1 |� (�).
We may apply the integration-by-parts Theorem 0.1 with �(�) := �

in order to that

Var(� ) = E[S� (� )] for all � ∈ D1�2(P�)�

In other words, S� (� ) is an “unbiased estimate” of the variance of � . The
following suggests further that S� might be a good “variance estimator.”

Lemma 4.4. If � ∈ D1�2(P�) has mean zero, then S� (� ) > 0 a.s.

Proof. Let ψ : R → R+ be an arbitrary non-negative, bounded and mea-
surable function. Define

�(�) :=
� �

0
ψ(�) d� [� ∈ R]�

It is possible to check directly that � ∈ D1�2(P�) and D� = ψ a.s. Since
E(� ) = 0, these facts and Theorem 0.1 together imply that

E [��(� )] = E [ψ(� )�D� � D��R1 ] = E
�
ψ(� )S� (� )

�
� (5.6)
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thanks to the tower property of conditional expectations. Since ��(�) >
0 for all � ∈ R, the left-most term in (5.6) is equal to E[� × �(� )] > 0, and
hence

E
�
ψ(� ) × S� (� )

�
> 0�

for all bounded and measurable scalar function ψ > 0. Choose and fix
η > 0 and appeal to the preceding with

ψ(�) := 1(−∞�−η)(S� (�)) [� ∈ R]�
in order to see that P{S� (� ) 6 −η} = 0 for all η > 0. This proves the
remainder of the proposition. ⇤

Thus we see that S� (� ) is always non-negative when E(� ) = 0. A
remarkable theorem of Nourdin and Peccati XXX asserts that strict in-
equality holds—that is S� (� ) > 0 a.s.—if and only if µ� is absolutely contin-
uous. Moreoever, one can obtain a formula for the probability density
of � when S� (� ) > 0 a.s. The precise statement follows.
Theorem 4.5 (Nourdin and Peccati, XXX). Suppose � ∈ D1�2(P�) satis-
fies E(� ) = 0. Then µ� (d�) � d� if and only if S� (� ) > 0 a.s. Moreover,
when S� (� ) > 0 a.s., the probability density function of � is

�� (�) = E(|� |)
2S� (�) exp

�
−

� �

0

� d�
S� (�)

�
� (5.7)

for almost every � ∈ supp(µ� ).
Remark 4.6. Observe that P�{S� (� ) > 0} = 1 iff µ� {S� > 0} = 1.

The proof of Theorem 4.5 is naturally broken into three separate
parts, which we record as Propositions 4.7 through 4.9 below.
Proposition 4.7. Let � be a mean-zero random variable in D1�2(P�). If
S� (� ) > 0 a.s., then µ� (d�) � d�.

Proof. Let B ⊂ R be an arbitrary Borel-measurable set, and define

�(�) :=
� �

0
1B(�) d� [� ∈ R]�

Then � ∈ D1�2(P�) and D� = 1B a.s. The integration-by-parts Theorem
0.1 implies that

E

�
�

� �

0
1B(�) d�

�
= E

�
1B(� ) × S� (� )

�
�

If B were Lebesgue null, then
� �

0 1B(�) d� = 0 a.s., and hence E[1B(� ) ×
S� (� )] = 0. Because we have assumed that S� (� ) > 0 a.s., it follows
that 1B(� ) = 0 a.s., equivalently, P�{� ∈ B} = 0. The Radon–Nikodỳm
theorem does the rest. ⇤
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Proposition 4.8. If � ∈ D1�2(P�) has mean zero and satisfies µ� (d�) �
d�, then S� (� ) > 0 a.s.

Proof. Let �� denote the probability density of � ; that is,
�

B �� (�) d� =
P�{� ∈ B} for all Borel sets B ⊂ R.

If ψ ∈ C�(R), then �(�) :=
� �

−∞ ψ(�) d�[� ∈ R] is bounded and ��(�) =
ψ(�). We may integrate by parts in Gauss space [Theorem 0.1] in order
to see that

E
�
ψ(� ) × S� (� )

�
= E [� × �(� )] =

� ∞

−∞
��(�)�� (�) d��

Since
� ∞

−∞ ��� (�) d� = 0 and � is bounded, we can integrate by parts—in
Lebesgue space—in order to see that

E
�
ψ(� ) × S� (� )

�
=

� ∞

−∞
ψ(�)

�� ∞

�
��� (�) d�

�
d�� (5.8)

Now P�{�� (� ) = 0} = µ� {�� = 0} =
�

{�� =0} �� (�) d� = 0� Therefore, we
can rewrite (5.8) as

E
�
ψ(� ) × S� (� )

�
= E

�
ψ(� ) ×

� ∞
� ��� (�) d�

�� (� )

�
�

for all continuous ψ ∈ C�(R). The preceding holds for all bounded and
measurable functions ψ : R → R by density. Consequently,

S� (� ) =
� ∞

� ��� (�) d�
�� (� ) a.s. (5.9)

It remains to prove that
� ∞

�
��� (�) d� > 0 a.s. (5.10)

Thanks to Theorem 4.2, the law of � is supported in some closed
interval [α � β] where −∞ 6 α 6 β 6 ∞. And since � has mean zero, it
follows that α < 0 < β.

Define
Φ(�) :=

� ∞

�
��� (�) d� [� ∈ R]� (5.11)

Since �� is supported in [α � β], Φ is constant off [α � β] and Φ(α+) =
Φ(β−) = 0. Furthermore, Φ is a.e. differentiable and Φ�(�) = −��� (�)
a.e., thanks to the Lebesgue differentiation theorem. Since �� > 0 a.e.
on [α � β], it follows that Φ is strictly increasing on (α � 0] and strictly
decreasing on [0 � β). As Φ vanishes at α and β, this proves that Φ(�) > 0
for all � ∈ (α � β) whence Φ(� ) > 0 a.s. This implies (5.10) and completes
the proof. ⇤
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Proposition 4.9. If � ∈ D1�2(P�) has mean zero and S� (� ) > 0 a.s., then
the density function of � is given by (5.7).

Proof. Recall the function Φ from (5.11). Then Φ is almost-everywhere
differentiable [Lebesgue’s theorem] with density Φ�(�) = −��� (�) a.e. At
the same time, (5.9) implies that

Φ(�) = S� (�)�� (�) for almost all � ∈ supp(µ� )� (5.12)
It follows that

Φ�(�)
Φ(�) = − �

S� (�) for almost all � ∈ supp(µ� )�

Since 0 ∈ supp(µ� ), we integrate the preceding to obtain

Φ(�) = Φ(0) exp
�

−
� �

0

� d�
S� (�)

�
for all � ∈ supp(µ� )� (5.13)

But Φ(0) =
� ∞

0 ��� (�) d� = E(� ; � > 0) = 1
2 E(|� |), because E(� ) = 0.

Therefore, (5.12) implies the theorem. ⇤

5. Aspects of the Nourdin–Peccati Theory

Recently, Ivan Nourdin and Giovanni Peccati XXX recognized a number
of remarkable consequences of integration by parts [Theorem 4.7, page
51] that lie at the very heart of Gaussian analysis. Theorem 4.5 is only
one such example. I will next decscribe a few other examples. Their
monograph XXX contains a host of others.

§1. A Characterization of Normality. One of the remarkable conse-
quences of the Nourdin–Peccati theory is that it characterizes when a
non-degenerate random variable � ∈ D1�2(P�) has a mean-zero normal
distribution.
Theorem 5.1 (Nourdin and Peccati, XXX). Suppose � ∈ D1�2(P�) satis-
fies E(� ) = 0. Then the random variable � has a normal distribution
iff S� (� ) is a constant a.s.
Remark 5.2. The constancy condition on S� (� ) is equivalent to the con-
dition that

S� (� ) = E[S� (� )] = E [�D� � D��R1 ] = Var(� ) a.s.,
thanks to Theorem 0.1. Therefore, Theorem 5.1 is saying that � is a
normally distributed if and only if its variance estimator S� (� ) is exact.
Remark 5.3. For a stronger result see Example 5.10 below.

The proof of Theorem 5.1 rests on the following “heat kernel esti-
mate,” which is interesting in its own right.
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Theorem 5.4. Suppose � ∈ D1�2(P�) has mean zero, and there exists a
constant σ > 0 such that S� (� ) > σ2 a.s. Then supp(µ� ) = R, and

�� (�) > E(|� |)
2S� (�) exp

�
− �2

2σ2

�
� (5.14)

for almost every � ∈ R. Suppose, in addition, that there exists a con-
stant Σ < ∞ such that

S� (� ) 6 Σ2 a.s. (5.15)

Then, for almost every � ∈ R,

E(|� |)
2σ2 exp

�
− �2

2Σ2

�
> �� (�) > E(|� |)

2Σ2 exp
�

− �2

2σ2

�
� (5.16)

Remark 5.5. If � is Lipschitz continuous, then we have seen that � ∈
D1�2(P�) [Example 1.6, p. 22]. Furthermore, �D�� 6 Lip(� ) a.s., whence
�R1D�� 6 Lip(� ) a.s., by the Mehler formula [Theorem 2.1, page 45].
Thus, whenever � is Lipschitz continuous, condition (5.15) holds with
Σ := Lip(� ).

Proof. Recall Φ from (5.11). According to (5.13),

Φ(�) > 1
2 E(|� |) exp

�
− �2

2σ2

�
for all � ∈ supp(µ� )� (5.17)

It follows from the fact that E(� ) = 0 that Φ(�) → 0 as � tends to the
boundary of supp(µ� ). Since supp(µ� ) is an interval [Theorem 4.2, page
63], (5.17) shows that supp(µ� ) must be unbounded. This proves that
supp(µ� ) = R. The inequality (5.14) follows from (5.17), and (5.16) follows
from (5.14) readily. ⇤

Now we can verify Theorem 5.1.

Proof of Theorem 5.1. Suppose � has a normal distribution with mean
zero and σ2 := Var(� ) > 0. Since µ� and the Lebesgue measure are
mutually absolutely continuous with respect to one another, (5.9) ensures
that

S� (�) =
� ∞

� ��� (�) d�
�� (�) =

� ∞
� � exp(−�2/(2σ2)) d�

exp(−�2/(2σ2)) = σ2�

for µ� -a.e.—whence almost every—� ∈ R. The converse follows from
Theorems 4.5 and 5.4. ⇤

We highlight some of the scope, as well as some of the limitations,
of Theorem 4.5 by studying two elementary special cases.
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Example 5.6 (A Linear Example). Consider the random variable � (�) :=
� · � [� ∈ R�], where � is a non-zero constant �-vector. Equivalently,
� = � · Z, where Z is the standard-normal �-vector from (1.2) [page 3].
Then � ∈ D1�2(P�) and D� = � a.s. Moreover, E(� ) = � · E(Z) = 0 and
Var(� ) = ���2 > 0. Furthermore, Mehler’s formula [Theorem 2.1, page
45] ensures that P�D� = � a.s., whence R1D� =

� ∞
0 e−�� d� = � a.s. It

follows that S� (� ) = ���2 a.s. Therefore, in the linear case, Theorem 5.1
reduces to the obvious statement that linear combinations of Z1� � � � � Z�
are normally distributed.

Example 5.7 (A Quadratic Example). Consider the random variable
� (�) := ���2 − � [� ∈ R�]. Equivalently, � = �Z�2 − E(�Z�2). Clearly,
� ∈ D1�2(P�)—in fact, � ∈ C∞

0 (P�)—and E(� ) = 0 and (D� )(�) = 2�.
Mehler’s formula [Theorem 2.1, page 45] yields (P�D� )(�) = 2e−�� for
almost all � ∈ R�. In particular,

(R1D� )(�) =
� ∞

0
e−�(P�D� )(�) d� = � for almost all � ∈ R��

Since (D� )(�) · (R1D� )(�) = 2���2 = 2� (�) + 2� a.s., it follows that S� (� ) =
E(2� + 2� | � ) = 2� + 2� a.s. Equivalently, S� (�) = 2(� + �) a.s. for all
� ∈ supp(µ� ). Because P{S� = 0} = P{Z = 0} = 0, Theorem 4.5 reduces
to the statement that �Z�2 − � has a probability density ��Z�2−�, and

�
�Z�2−�

(�) =
E

����Z�2 − �
���

4(� + �) exp
�

−1
2

� �

0

�
� + � d�

�
=
E

����Z�2 − �
��� e−�/2

4��/2(� + �)1−(�/2) �

for a.e. � ∈ the support of the law of �Z�2 − �. Equivalently,

�
�Z�2 (�) ∝ e−�/2

�1−(�/2) for a.e. � ∈ the support of the law of �Z�2.

From this we can see that Theorem 4.5 is consistent with the well-known
fact that �Z�2 has a χ2

� distribution.

§2. Distance to Normality. Suppose � ∈ D1�2(P�). Theorem 5.1 sug-
gests that if �D� � D��R1 ≈ τ2 we can then expect the distribution of � to
be approximately N(0 � τ2). We might expect even more. Namely, sup-
pose that X = (X1 � � � � � X�) is a random vector such that X� ∈ D1�2(P�)
has mean zero and Cov(X� � X� ) = Q��� , with �DX� � DX��R1 ≈ Q��� for all
1 6 �� � 6 �. Then we might expect the distribution of X might be close
to the distribution of Z. This is indeed the case, as is shown by the theory
of Nourdin, Peccati, and Reinert, XXX. I will work out the details first in
the case that Q = I is the � × � identity matrix.

Theorem 5.8 (Nourdin, Peccati, and Reinert, XXX). Consider a random
vector X = (X1� � � � � X�), where X� ∈ D1�2(P�), and E(X�) = 0. Then, for
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every Φ ∈ D2�2(P�),

E [Φ(X)] − E [Φ(Z)] = E

⎡

⎣
��

���=1

�
R2D2

���Φ
�

(X) ×
�
I��� − �DX� � DX��R1

�
⎤

⎦ �

where R2 denotes the 2-potential of the OU semigroup. In particular,
|E[Φ(X)] − E[Φ(Z)]|

6 1
2 sup

�∈R�
max

16���6�

���(D2
���Φ)(�)

��� ·
��

���=1
E

�
|I��� − �DX� � DX��R1 |

�
�

for all Φ : R� → R that are bounded and have continuous and bounded
mixed partial derivatives of order 6 2.

Proof. We need only prove the first assertion of the theorem; the second
assertion follows readily from the first because of the elementary fact
that whenever |�(�)| 6 � for all � ∈ R�, |(P��)(�)| 6 � for all � and hence
|(R2�)(�)| 6 �

� ∞
0 exp(−2�) d� = �/2.

The theorem is a fact about the distribution of X, as compared with
the distribution of Z. In the proof we wish to construct X and Z—on the
same Gaussian probability space—so that they have the correct marginal
distributions, but also are independent.

A natural way to achieve our coupling is to define, on R2� = R� ×R�,
two functions X̄ and Z̄, as follows: For all ω = (ω1 � � � � � ω2�) ∈ R2�,

Z̄(ω) := Z(ω1 � � � � � ω�)� and X̄(ω) := X(ω�+1 � � � � � ω2�)�
Then:

(1) Both X̄ and Z̄ are �-dimensional random vectors on the Gauss
space (R2�� �(R2�) �P2�);

(2) The P2�-distribution of X̄ is the same as the P�-distribution of
X; and

(3) The P2�-distribution of Z̄ is the same as the P�-distribution of
Z.

In this way, Theorem 5.8 can be restated as follows:

E2�
�
Φ(X̄)

�
− E2�

�
Φ(Z̄)

�

= E2�

⎡

⎣
��

���=1

�
R2D2

���Φ
�

(X̄) ×
�

I��� − �DX̄� � DX̄��R1

�
⎤

⎦ �
(5.18)

where, we recall, R2� :=
� ∞

0 e−2�P�� d�� We will prove this version of the
theorem next.
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We will use the same “Gaussian interpolation” trick that has been used
a few times already XXX. Note that with P2�-probability one: (P0Φ)(X̄) =
Φ(X̄); and (P�Φ)(X̄) → E2�[Φ(Z̄)] as � → ∞. Therefore, P2�-a.s.,

Φ(X̄) − E2�[Φ(Z̄)] = −
� ∞

0

d
d� (P�Φ)(X̄) d� (5.19)

= −
� ∞

0

d
d� E2�

�
Φ

�
e−�X̄ +

�
1 − e−2� Z̄

� ��� X̄
�

d��

owing to Mehler’s formula [Theorem 2.1, page 45]. We take expecta-
tions of both sides and apply the dominated convergence theorem, to
interchange the derivative with the expectation, in order to find that

E2�[Φ(X̄)] − E2�[Φ(Z̄)]

= −
� ∞

0
E2�

�
d
d� Φ

�
e−�X̄ +

�
1 − e−2� Z̄

��
d� (5.20)

= −
��

�=1

� ∞

0
E2�

�
(D�Φ)

�
e−�X̄ +

�
1 − e−2� Z̄

� �
−e−�X̄� + e−2�

√
1 − e−2�

Z̄�

��
d��

Since E2�(Z̄�) = 0, Theorem 4.7 implies that for all G ∈ D1�2(P�) and
1 6 � 6 �,

E2�
�
G(Z̄)Z̄�

�
= E2�

�
�D(G ◦ Z̄) � DZ̄��R1

�
= E2�

�
D�(G ◦ Z̄)

�
= E2�

�
(D�G)(Z̄)

�
�

Therefore, for every � ∈ R� and 1 6 � 6 �,

E2�

�
(D�Φ)

�
e−�� +

�
1 − e−2� Z̄

� e−2�
√

1 − e−2�
Z̄�

�

= e−2�
√

1 − e−2�
E�

�
D�

�
(D�Φ)

�
e−�� +

�
1 − e−2� •

��
(Z̄)

�

= e−2� E2�
�
(D2

���Φ)
�

e−�� +
�

1 − e−2� Z̄
��

= e−2�
�

P�D2
���Φ

�
(�)�

thanks first to the chain rule [Lemma 1.7, page 23], and then Mehler’s
formula [Theorem 2.1, page 45]. Since X̄ and Z̄ are independent, we can
first condition on X̄ = � and then integrate [d(P� ◦ X̄−1)] to deduce from
the preceding that

E2�

�
(D�Φ)

�
e−�X̄ +

�
1 − e−2� Z̄

� e−2�
√

1 − e−2�
Z̄�

�

= e−2�
��

�=1
E2�

��
P�D2

���Φ
�

(X̄)I���
�

�
(5.21)
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Similarly, because E2�(X̄�) = 0 for all 1 6 � 6 �, we can write

E2�
�
G(X̄)X̄�

�
= E2�

��
D(G ◦ X̄) � DX̄�

�

R1

�
=

2��

�=1
E2�

�
D�(G ◦ X̄) ×

�
R1D�X̄�

��

=
��

�=1

2��

�=1
E2�

�
(D�G)(X̄) × D�(X� ) ×

�
R1D�X̄�

��

=
��

�=1
E2�

�
(D�G)(X̄) ×

�
DX̄� � DX̄�

�

R1

�
�

by the chain rule, and hence

E2�
�

(D�Φ)
�

e−�X̄ +
�

1 − e−2� Z̄
�

e−2�X̄�
�

= e−2�
��

�=1
E2�

�
(D2

���Φ)
�

e−�X̄ +
�

1 − e−2� Z̄
� �

DX̄� � DX̄�
�

R1

�

= e−2�
��

�=1
E�

��
P�D2

���Φ
�

(X̄)
�

DX̄� � DX̄�
�

R1

�
�

(5.22)

We now merely combine (5.20), (5.21), and (5.22) in order to deduce (5.18)
and hence the theorem. ⇤

Theorem 5.8 has a useful extension in which one compares the dis-
tribution of a smooth mean-zero random variable X to that of an arbi-
trary mean-zero normal random variable. That is, we consider E[Φ(X)]−
E[Φ(Q1/2Z)], where Q is a symmetric, positive definite matrix that is not
necessarily the identity matrix. Consider the linear operators {PQ

� }�>0
defined as

(PQ
� � )(�) := E

�
�

�
e−�� +

�
1 − e−2� Q1/2Z

��
�

It is not hard to check that the preceding defines a semigroup {PQ
� }�>0

of linear operators that solve a heat equation of the form
d
d� PQ

� = �Q PQ
� for � > 0�

subject to PQ
0 = the identity operator. Here �Q is a differential operator,

much like �, but with coefficients that come from Q. Also there is a
corresponding resolvent RQ

λ :=
� ∞

0 exp(−λ�)PQ
� d� , etc. Now we begin

with the following variation on (5.20): Define

Ψ(�) := E2�
�
Φ

�
e−�X̄ +

�
1 − e−2� Q1/2Z̄

��
= E

��
PQ

� Φ
�

(X)
�

�
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and notice that Ψ ∈ D1�2(P1), Ψ(0) = E2�[Φ(X̄)], and lim�→∞ Ψ(�) =
E2�[Φ(Q1/2Z̄)]. Therefore,
E2�[Φ(X̄)] − E2�[Φ(Q1/2Z̄)]

= lim
�→∞

Ψ(�) − Ψ(0) =
� ∞

0
Ψ�(�) d�

=
��

�=1

� ∞

0
E2�

�
(D�Φ)

�
e−�X̄ +

�
1 − e−2� Z̄

� �
−e−�X̄� + e−2�

√
1 − e−2�

Q1/2Z̄�

��
d��

Now we translate the proof of Theorem 5.8 in order to obtain the fol-
lowing important generalization.
Theorem 5.9 (Nourdin, Peccati, and Reinert, XXX). Consider a random
vector X = (X1� � � � � X�), where X� ∈ D1�2(P�), and E(X�) = 0. Then, for
every Φ ∈ D2�2(P�) and for all � × � covariance matrices Q,

E [Φ(X)]−E
�
Φ(Q1/2Z)

�
= E

⎡

⎣
��

���=1

�
RQ

2 D2
���Φ

�
(X) ×

�
Q��� − �DX� � DX��RQ

1

�
⎤

⎦ �

where RQ
2 denotes the 2-potential of the semigroup {PQ

� }�>0 and

�D� � D��RQ
1

(�) := (D� )(�) · (RQ
1 D�)(�) a.s.

In particular,
���E[Φ(X)] − E[Φ(Q1/2Z)]

���

6 1
2 sup

�∈R�
max

16���6�

���(D2
���Φ)(�)

��� ·
��

���=1
E

����Q��� − �DX� � DX��RQ
1

���
�

�

for all Φ : R� → R that are bounded and have continuous and bounded
mixed partial derivatives of order 6 2.
Example 5.10. If �DX� � DX��RQ

1
= Q��� a.s. for all 1 6 �� � 6 �, then

Theorem 5.9 ensures that X has a N�(0 � Q) distribution. Conversely,
suppose that X has a N�(0 � Q) distribution. Recall that X has the same
distribution as W := AZ, where A is the [symmetric] square root of Q.
Of course,

(D�W�)(�) = ∂
∂��

([AZ]� (�)) = ∂
∂��

��

�=1
A����� = A����

for all � ∈ R�. Therefore, the fact that RQ
1 1 = 1 implies that for all

1 6 �� � 6 �,

�DX� � DX��RQ
1

=
��

�=1
A���A��� = Q��� a.s.
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Consequently, every centered random vector X such that X� ∈ D1�2(P�)
for all � has a N�(0 � Q) distribution iff �DX� � DX��RQ

1
= Q��� a.s.

The following is an immediate consequence of Theorem 5.9, and pro-
vides an important starting point for proving convergence in distribution
to normality in the analysis of Nourdin and Peccati (?, Theorem 5.3.1, p.
102).

Example 5.11. Suppose X(1)� X(2)� � � � ∈ D1�2(P�), all have mean vector
0 ∈ R�, and for all 1 6 �� � 6 �,

lim
L→∞

�
DX(L)

� � DX(L)
�

�

RQ
1

= Q��� in L1(P�)�

Then, X(L) converges in distribution to N�(0 � Q) as L → ∞.

Theorem 5.9 has other connections to results about asymptotic nor-
mality as well. The following shows how Theorem 5.9 is related to the
classical CLT, for instance.

Example 5.12. Let � > 2, and suppose φ ∈ D1�2(P1) satisfies E1(φ) = 0
and Var1(φ) = σ2 < ∞. Define

X1 := 1√
�

��

�=1
φ(Z�) and X� := 0 for 2 6 � 6 ��

By the chain rule [Lemma 1.7, page 23],

(D�X1)(�) = φ�(��)√
� and (D�X�)(�) = 0 for 2 6 � 6 ��

almost surely for every 1 6 � 6 �. I am writing φ� in place of the more
cumbersome Dφ, as I have done before. In any case, we can see that,
with probability one: �DX� � DX��RQ

1
= 0 unless � = � = 1; and

�DX1 � DX1�RQ
1

= 1
�

��

�=1
φ�(Z�)(RQ

1 φ�)(Z�)�

Define Y� := φ�(Z�)(RQ
1 φ�)(Z�), and observe that Y1� · · · � Y� are i.i.d. with

E�(Y1) = E1
�
�Dφ � Dφ�RQ

1

�
= Var(φ) = σ2�

thanks to integration by parts [see the proof of Theorem 4.7, page 51].
Therefore, Khintchine’s form of the weak law of large numbers implies
that lim�→∞�DX1 � DX1�RQ

1
= σ2 in L1(P�). In particular, we can deduce
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from Theorem 5.9 that for every Φ ∈ C2
�(R),

�����E
�

Φ
�

1√
�

��

�=1
φ(Z�)

��
− E[Φ(σZ1)]

����� 6 CE
����σ2 − �DX1 � DX1�RQ

1

���
�

→ 0 as � → ∞�

where C := 1
2 sup�∈R� max16���6� |(D2

���Φ)(�)|� That is, Theorem 5.9 and
Khintchine’s weak law of large numbers together imply the classical
central limit theorem for sums of the form �−1/2 ��

�=1 φ(Z�), where φ ∈
D1�2(P1) has mean zero and finite variance.4 Moreover, we can see from
the preceding how to estimate the rate of convergence of the distribution
of �−1/2 ��

�=1 φ(Z�) to N(0 � σ2) in terms of the rate of convergence in
Khintchine’s weak law of large numbers. The latter is a very well-studied
topic; see, for example XXX.

§3. Slepian’s Inequality. Slepian’s inequality is a useful comparison prin-
ciple that can sometimes be used to estimate probabilities, or expecta-
tions, that are difficult to compute exactly. There are many variations of
this inequality. Here is the original one that is actually due to D. Slepian.

Theorem 5.13 (Slepian, XXX). Let X and Y be two mean-zero Gaussian
random vectors on R�. Suppose that for every 1 6 �� � 6 �:

(1) Var(X�) = Var(Y�); and
(2) Cov(X� � X� ) 6 Cov(Y� � Y� ).

Then for all �1� � � � � �� ∈ R,

P
�

X� 6 ��
∀1 6 � 6 �

�
6 P

�
Y� 6 ��

∀1 6 � 6 �
�

�

In particular, P {max16�6� X� > �} > P {max16�6� Y� > �} for all � ∈ R.

The following is an immediate consequence of Theorem 5.13 and
integration by parts. It states that less correlated Gaussian vectors tend
to take on larger values.

Corollary 5.14. Under the assumptions of Theorem 5.13,

E

�
max
16�6�

X�

�
> E

�
max
16�6�

Y�

�
�

4One can recast the classical CLT as the statement that the distribution of �−1/2 ��
�=1 φ(Z�) is

asymptotically normal for all φ ∈ L2(P1) with E1(φ) = 0. The present formulation is slightly
weaker since we need the additional smoothness condition that φ ∈ D1�2(P1). It is possible to
obtain the general form from the weaker one by an approximation argument.
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Proof. By integration by parts,

E(W ) =
� ∞

0
P{W > �} d� −

� 0

−∞
(1 − P{W > �}) d��

for all W ∈ L1(P). We apply this once with W := max�6� X� and once
with W := max�6� Y�, and then appeal to Theorem 5.13 to compare the
two formulas. ⇤

One can frequently use Corollary 5.14 in order to estimate the size of
the expectation of the maximum of a Gaussian sequence. The following
example highlights a simple example of the technique that is typically
used.

Example 5.15. Suppose X = (X1 � � � � � X�) is a Gaussian random vector
with E(X�) = 0, Var(X�) = 1, and Cov(X� � X� ) 6 1 − ε for some ε ∈ (0 � 1].
Let Z0 be a standard normal random variable, independent of Z, and
define

Y� :=
√

1 − ε Z0 +
√

ε Z��
Then clearly, E(Y�) = 0, Var(Y�) = 1, and Cov(Y� � Y� ) = 1 − ε when � �=
� . Slepian’s inequality implies that E[max�6� X�] > E[max�6� Y�]. Since
max�6� Y� =

√
1 − ε Z0 +

√
ε max�6� Z�, we find from Proposition 1.3

[page 7] that

E

�
max
16�6�

X�

�
> E

�
max
16�6�

Y�

�
=

√
ε E

�
max
16�6�

Z�

�
= (1 + �(1))

�
2ε log ��

as � → ∞. This is sharp, up to a constant. In fact, the same proof as
in the i.i.d. case shows us the following: For any sequence X1� � � � � X� of
mean-zero, variance-one Gaussian random variables,

E

�
max
16�6�

X�

�
6 (1 + �(1))

�
2 log � as � → ∞�

[For this, one does not even need to know that (X1 � � � � � X�) has a multi-
variate normal distribution.]

Example 5.16. We proceed as we did in the previous example and note
that if W := (W1� � � � � W�) is a Gaussian random vector with E(W�) = 0,
Var(W�) = 1, and Cov(W� � W� ) > −1 + δ for some δ ∈ (0 � 1], then

E

�
max
16�6�

W�

�
6 (1 + �(1))

�
2δ log � as � → ∞.

Proof of Theorem 5.13. Let QX and QY denote the respective covari-
ance matrices of X and Y and let A and B denote the respective square
roots of QX and QY .
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Without loss of generality, we assume that X and Y are defined on the
same Gauss space (R�� �(R�) �P�), and defined as X = AZ and Y = BZ.
Since �DX� � DX��R1 = QX

��� , Theorem 5.9 shows that for all Φ ∈ D1�2(P�)

E [Φ(X)] − E [Φ(Y )] =
��

���=1
E

��
RQY

2 D2
���Φ

�
(X)

�
×

�
QY

��� − QX
���

�
�

Suppose, in addition, that D2
���Φ 6 0 a.s. when � �= � . Because QX

��� 6 QY
���

and QX
��� = QY

���, it follows that E[Φ(X)] 6 E[Φ(Y )]. In particular,

E

� ��

�=1
��(X�)

�
6 E

� ��

�=1
��(Y�)

�
�

whenever �1� � � � � �� ∈ C2
0(P1) are non increasing. Approximate every

1(−∞���] by a non-increasing function �� ∈ C2
0(P�) to finish. ⇤

The following inequality of Fernique XXX refines Slepian’s inequality
in a certain direction.

Theorem 5.17 (Fernique, XXX). Let X and Y be two mean-zero Gauss-
ian random vectors on R�. Suppose that for every 1 6 �� � 6 �:

E
�

|X� − X� |2
�
> E

�
|Y� − Y� |2

�
� (5.23)

Then, P{max16�6� X� > �} > P{max16�6� Y� > �} for all � ∈ R. In
particular, E[max16�6� X�] > E[max16�6� Y�]�

If, in addition, Var(X�) = Var(Y�) for all 1 6 � 6 �, then condition (5.23)
reduces to the covariance condition of Slepian’s inequality. Therefore,
you should view Fernique’s inequality as an improvement of Slepian’s
inequality to the setting of non-stationary Gaussian random vectors. The
proof itself is a variation on the proof of Theorem 5.13, but the variation
is non trivial and involves many computations. The idea is, as before, to
show that, for Φ(�) := max16�6� ��,

d
d� E

�
Φ

�
e−�X +

�
1 − e−2� Y

��
6 0�

whence E[Φ(X)] > E[Φ(Y )]. You can find the details, for example, in
Ledoux and Talagrand XXX and Marcus and Rosen XXX.


