
Heat Flow

1. The Ornstein–Uhlenbeck Operator

The Laplacian ∆ := D · D :=
��

�=1 ∂2
��� is one of the central differential

operators in the analysis of Lebesgue spaces. In other words, ∆ is the
dot product of D with the negative of its adjoint. The analogue of the
Laplacian in Gauss space is the generalized differential operator

� := −A · D := −
��

�=1
A�D� (4.1) L

which is called the Ornstein–Uhlenbeck operator on the Gauss space.
We can think of � in the form, (� �)(�) =

��
�=1(D2

����)(�)−
��

�=1 ��(D��)(�)�
or as random variables as

� � =
��

�=1
D2

���� − Z · (D�) =
��

�=1
D2

���� − Z · (D�)(Z)� (4.2) LL

The preceding makes sense as an identity in L2(P�) whenever � ∈
D2�2(P�) and Z�(D��)(Z) is in L2(P�) for every 1 6 � 6 �. And when
� ∈ C2(R), then

(� �)(�) = (∆�)(�) − � · (∇�)(�)�

for every � ∈ R.

Definition 1.1. The domain of the definition of � is

Dom[�] :=
�

� ∈ D2�2(P�) : Z · (D�)(Z) ∈ L2(P�)
�

�
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42 4. Heat Flow

If � ∈ D2�2(P�), then

E
�

|Z · (D�)(Z)|2
�
6 E

�
�Z�2

�
E

�
�D��2

�
6 ����2

2�2� (4.3) Dom:L:n

Therefore, we see immediately that

Dom[�] = D2�2(P�)�

I will sometimes emphasize the domain of � by writing it as Dom[�]
rather than D2�2(P�), since in infinite dimensions the domain of � is
frequently not all of D2�2(P�). Technically, this assertion manifests itself
in (4.3) via the appearance of the multiplicative factor �, which becomes
infinitely large in infinite dimensions.

It is not difficult to see how � acts on Hermite polynomials. The
following hashes out the details of that computation.

lem:L:H Lemma 1.2. � �� = −|�|�� for every � ∈ Z�
+, where |�| :=

��
�=1 ��.

Proof. We apply (3.2) [p. 33] to see that A�D��� = ���� for all � ∈ Z�
+

and 1 6 � 6 �. Sum over � to finish. ⇤

In other words, for every � ∈ Z�
+, the Hermite polynomial �� is an

eigenfunction of �, with eigenvalue −|�|. Since

� =
�

�∈Z�
+

E(���)
�! �� in L2(P�)�

it follows readily that

� � = −
�

�∈Z�
+

|�|
�! E(���)�� in L2(P�)� (4.4) L

whence

Dom[�] = D2�2(P�) =

⎧
⎨

⎩� ∈ L2(P�) :
�

�∈Z�
+

|�|2
�! |E(���)|2 < ∞

⎫
⎬

⎭ � (4.5) Dom:L

Define, for every � > 0,

P�� := P(�)� :=
�

�∈Z�
+

e−|�|�

�! E(���)��� (4.6) P(t)

where the identity holds in L2(P�).

pr:heat Proposition 1.3. If � ∈ Dom[�], then P�� ∈ Dom[�] for all � > 0. More-
over, �(�) := P�� is the unique L2(P�)-valued solution to the generalized
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partial differential equation,
⎡

⎣
∂
∂� �(�) = �[�(�)]� for all � > 0, subject to

�(0) = ��
(4.7) heat

Definition 1.4. The family {P�}�>0 is called the Ornstein–Uhlenbeck
semigroup, and the linear partial differential equation (4.7) is the heat
equation for the Ornstein–Uhlenbeck operator �.

Proof. By (4.6),
E [P�(� )��] = e−|�|� E [���] for all � > 0 and � ∈ Z�

+�
Therefore,

�

�∈Z�
+

|�|
�! |E [P�(� )��]|2 =

�

�∈Z�
+

|�|e−|�|�

�! |E [���]|2 6
�

�∈Z�
+

|�|
�! |E [���]|2

is finite. This proves that P�� ∈ Dom[�] for all � > 0.
It is intuitively clear from (4.4) and (4.6) that ∂P��/∂� = � � , when �

solves (4.7). But since P�� and � � are not numbers, rather elements of
L2(P�), let us write the details: We know that �(�) ∈ L2(P�) for every
� > 0, and that

E[��(�)] =
�

�∈Z�
+

e−|�|�

�! E [���]E [���] �

for all � > 0 and � ∈ L2(P�). It is not hard to see that the time derivative
operator commutes with the sum to yield

d
d� E[��(�)] = −

�

�∈Z�
+

|�|e−|�|�

�! E [���]E [���]

= E [� �[�(�)]] for all � > 0�

since E(�� �[�(�)]) = −|�|(�!)−1E[�(�)��] for all � > 0, by (4.4). Thus,
� solves the PDE (4.7).

If � is another L2(P�)-valued solution to (4.7), then φ := � − � solves
⎡

⎣
∂
∂� φ(�) = �[φ(�)]� subject to

φ(0) = 0�
Project φ on to ��, where � ∈ Z�

+ is fixed, in order to find that
d
d� E [φ(�)��] = −|�|E [φ(�)��] �

by (4.4). Since E[φ(0)��] = 0, it follows that E[φ(�)��] = 0 for all � > 0
and � ∈ Z�

+. The completeness of the Hermite polynomials [Theorem
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2.1] ensures that φ(�) = 0 for all � > 0. This implies the remaining
uniqueness portion of the proposition. ⇤

OU:Semigrp Proposition 1.5. The family {P�}�>0 is a symmetric Markov semigroup
on L2(P�). That is:

(1) Each P� is a linear operator from L2(P�) to L2(P�), and P�1 = 1;
(2) P0 := the identity map. That is, P0� = � for all � ∈ L2(P�);
(3) Each P� is self-adjoint. That is,

E[�P�(� )] = E[P�(�)� ] for all �� � ∈ L2(P�) and � > 0;
(4) Each P� : L2(P�) → L2(P�) is non expansive. That is,

E(|P�� |2) 6 E(|� |2) for all � ∈ L2(P�) and � > 0;
(5) {P�}>0 is a semigroup of linear operators. That is,

P�+� = P�P� = P�P� for all �� � > 0.
Finally, P� is invariant for {P�}�>0. That is,

E [P�� ] =
�

P�� dP� =
�

� dP� = E(� ) = lim
�↑∞

P�� a.s. and in L2(P�).

Proof. Parts (1) and (2) are immediate consequences of the definition
(4.6) of P� . [For example, P�1 = 1 because �0 = 1.]

Part (3) follows since

E [�P�� ] =
�

�∈Z�
+

e−|�|�

�! E [���]E [���] �

which is clearly a symmetric form in (� � �). Part (4) is a consequence of
the following calculation.

E
�

|P�� |2
�

=
�

�∈Z�
+

e−2|�|�

�! |E [���]|2 6
�

�∈Z�
+

1
�! |E [���]|2 = E

�
|� |2

�
�

Finally, we observe that E[P����] = e−|�|�/(�!)E[���] for all real num-
bers � > 0 and integral vectors � ∈ Z�

+. Therefore,

P� [P�� ] =
�

�∈Z�
+

e−|�|�

�! E [P�(� )��] �� = P�+�� �

Since P�+� = P�+� , this shows also that P�P� = P�P� , and verifies (5).
In order to finish the proof we need to verify the invariance of P�.

First of all note that 1(�) := 1 is in L2(P�). Therefore,

E[P�� ] =
�

�∈Z�
+

e−|�|�

�! E [���]E(��)�
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which is equal to E(��0) = E(� ) since E(��) = E(�0��) = 0 for all
� ∈ Z�

+ \ {0} [Theorem 2.1]. By (4.6),

P�� =
�

�∈Z�
+

e−|�|�

�! E [���] �� a.s., (4.8) P(t)f:H

where the convergence holds in L2(P�).
The Cauchy–Schwarz inequality yields |�� � ���L2(P�)| 6 ���L2(P�), valid

for all � ∈ Z�
+. Therefore, the identity ����L2(P�) = 1 and the Minkowski

inequality together imply that
������
sup
�>0

�

�∈Z�
+

e−|�|�

�! |E [���] ��|

������
L2(P�)

6 ���L2(P�)
�

�∈Z�
+

1
�! < ∞�

In particular, the sum in (4.8) also converges absolutely, uniformly in
� > 0, with P�-probability one. Consequently,

lim
�↑∞

P�� =
�

�∈Z�
+

lim
�→∞

e−|�|�

�! E [���] �� = E [��0] �

almost surely. The final quantity is equal to E(� ), as desired. ⇤

2. Mehler’s Formula

The heat equation (4.7) for the OU operator � is just the initial-value
problem,

⎡

⎣
∂
∂� �(� � �) = (∆�)(� � �) + � · (∇�)(� � �) [� > 0� � ∈ R�]�

�(0 � �) = � (�) [� ∈ R�]�
but written out in an infinite-dimensional manner. As such, it can be
solved by other, more elementary, methods as well. We have taken this
route in order to introduce the OU semigroup {P�}�>0 and the associated
OU operator �. These objects will play a central role in Gaussian analy-
sis, more so than does the heat equation itself. Still, it might be good to
know that every L2(P�)-valued solution is also a classical solution when,
for example, � is in C2

0(P�). Among many other things, this fact follows
immediately from the following interesting formula and the dominated
convergence theorem.

Mehler Theorem 2.1 (Mehler’s Formula). If � ∈ L2(P�) and � > 0, then

(P�� )(�) = E
�
�

�
e−�� +

�
1 − e−2� Z

��
�

for almost every � ∈ R.
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rem:Mehler Remark 2.2. One of the many by-products of Mehler’s formula is the
fact that each mapping � �� P�� is a Bochner integral; in particular, every
P� satisfies the “Cauchy–Schwarz inequality,” which is stronger than the
non-expansiveness of P� :

|P�� |2 6 P�(�2) a.s. for all � > 0 and � ∈ L2(P�)�

Proof. I will first prove the result for � = 1 since the notation is simpler
in that case.

By density it suffices to prove the result for all � ∈ C∞
0 (P1). Define

for such functions � and � > 0,

(T�� )(�) := E
�
�

�
e−�� +

�
1 − e−2� Z

��
�

for every � ∈ R. Both sides are C∞ functions in either variable � and
� [dominated convergence]. Our goal is to prove that T� = P�� for all
� > 0. This will complete the proof. Note that

(T�� )(�) =
�

R�
�

�
e−�� +

�
1 − e−2� �

�
γ�(�) d�

=
�

R�
� (�)γ�

�
� − e−��√

1 − e−2�

�
d��

Since � ∈ C∞
0 (P�), we can differentiate under the integral any number of

times we want in order to see that ∂(T�� )/∂� = �(T�� ), after a few lines
of calculus applied to the function γ�. Since T0� = � , the uniqueness
portion of Proposition 1.3 implies that T�� = P�� for all � > 0. ⇤

3. A Covariance Formula

One of the highlights of our analysis so far is that it leads to an explicit
formula for Cov(� � �) for a large number of nice functions � and � .
Before we discuss that formula, let us observe the following.

lem:DP:PD Lemma 3.1. For all � > 0 and 1 6 � 6 �,

D�P� = e−�P�D� and A�P� = P�A� �

Consequently, �(P�� ) = exp(−�)P�(� � ), also.

Proof. First consider the case that � = 1. In that case,

P�� =
∞�

�=0

e−��

�! E(�H�)H��
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for all � ∈ L2(P1). Therefore, whenever � ∈ D1�2(P1),

DP�� =
∞�

�=0

e−��

�! E(�H�)DH� =
∞�

�=0

�e−��

�! E(�H�)H�−1

= e−�
∞�

�=0

e−��

�! E [�H�+1] H��
(4.9) lala1

by (3.2) [page 33]. Similarly, E[D(� )H�] = E[�A(H�)] = E[�H�+1] for all
� > 0. Therefore,

P�D� =
∞�

�=0

e−��

�! E [�H�+1] H��

Match this expression with (4.9) in order to see that DP� = exp(−�)P�D
when � = 1. A similar argument shows that AP� = P�A in this case as
well.

When � > 1 and � = �1 ⊗ · · · ⊗ �� for �1� � � � � �� ∈ D1�2(P1), we can
check that

�
D�P��

�
(�) =

�

16�6�
� �=�

�
P(�)

� ��
�

(��) × (D�P(�)
� �� )(�� ) = e−�(P�D� � )(�)�

by the one-dimensional part of the proof that we just developed. Since
every � ∈ D1�2(P�) can be approximated arbitrarily well by functions
of the form �1 ⊗ · · · ⊗ ��, where �� ∈ D1�2(P1), it follows that D�P� =
exp(−�)P�D� on D1�2(P�).

Similarly, one proves that A�P� = P�A� in general.
To finish note that

� P� = −
��

�=1
A�D�P� = −e−�

��

�=1
A�P�D� = −e−�

��

�=1
P�A�D� = e−� � P� �

This completes the proof. ⇤

Lemma 3.1 has the following important corollary.

pr:Cov Proposition 3.2. For every �� � ∈ D1�2(P�),

Cov(� � �) =
� ∞

0
e−� E [(D� ) · (P�D�)] d��

where P�D� = (P�D1� � � � � � P�D��).

Proof. Recall from Proposition 1.5 that P�� → E[� ] in L2(P�) as � → ∞,
and P0� = � . Therefore,

�(�) − E[� ] = −
� ∞

0

∂
∂� (P��)(�) d��
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where the identity is understood to hold in L2(P�), and the integral con-
verges in L2(P�) as well. Therefore, by Fubini’s theorem,

Cov(� � �) = E [� (Z)(�(Z) − E[� ])] = −
� ∞

0
E

�
� (Z) ∂

∂� (P��)(Z)
�

d�

= −
� ∞

0
E [� (Z)(� P��)(Z)] d��

since P�� solves the heat equation for the operator �. Next we may
observe that, since � = −A · D and A� is the adjoint to D� ,

E [� (Z)(� P��)(Z)] = −
��

�=1
E

�
(D� � )(Z)(D�P��)(Z)

�

= −e−�
��

�=1
E

�
(D� � )(Z)(P�D��)(Z)

�
�

We have appealed to Lemma 3.1 in the second line. This concludes the
proof. ⇤

Let us conclude with a quick application of Proposition 3.2.

A Second Proof of the Poincaré Inequality. For every � ∈ D1�2(P�)
and � > 0,

|E [(D� ) · (P�D� )]| 6
���E

�
�D��2

�
E

�
�P�D��2

��1/2
�

is at most E(�D��2) since P� is non-expanding on L2(P�) [Proposition 1.5].
Therefore, the Poincaré inequality follows from Proposition 3.2. ⇤

4. The Resolvent of the Ornstein–Uhlenbeck Semigroup

The classical theory of linear semigroups tells us that it is frequently
better to study a semigroup of linear operators via its “resolvent.” In the
present context, this leads us to the following.

Definition 4.1. The resolvent of the OU semigroup {P�}�>0 is the family
{Rλ}λ>0 of linear operators defined via

(Rλ� )(�) :=
� ∞

0
e−λ�(P�� )(�) d�� (4.10) R

for all bounded and measurable functions � : R� → R and all λ > 0.

Informally speaking, R(λ) :=
� ∞

0 exp(−λ�)P(�) d� defines the Laplace
transform of the semigroup {P(�)}�>0, and knowing R should in principle
be the same as knowing P. We will see soon that this is the case. But
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first let us define the resolvent not pointwise, as we just did, but as an
element of the Hilbert space L2(P�).

According to Mehler’s formula [Theorem 2.1], if � is bounded and
measurable, then P�� is also; in fact, sup� |(P�� )(�)| 6 sup� |� (�)|, whence
the integral in (4.10) converges absolutely, uniformly in � ∈ R�. One can
extend the domain of the definition of Rλ further by standard means. In
fact, because P� is non expensive on L2(P�) [Proposition 1.5],

E
�

|P�� |2
�
6 E(�2)� whence E

�
|Rλ� |2

�
6 λ−2E(�2)�

for all bounded functions � ∈ L2(P�) and every �� λ > 0. If � ∈ L2(P�) then
we can find bounded functions �1� �2� � � � ∈ L2(P�) such that E(|�� − � |2) 6
2−� for all � > 1, and hence the preceding inequality shows that

E
�

|Rλ�� − Rλ�� |2
�
6 λ−2E

�
|�� − �� |2

�
6 2−� + 2−�

λ2 �

for all �� � > 1. Therefore, � �� Rλ�� is a Cauchy sequence in L2(P�) and
hence Rλ� := lim�→∞ Rλ�� is a well-defined limit in L2(P�). Since every
P� is non expansive on L2(P�), it follows similarly that (4.10) holds a.s.
for all � ∈ L2(P�) and λ > 0. Let us pause and record these observations
before going further.

pr:R Proposition 4.2. For every λ > 0, Rλ is a bounded continuous linear
map from L2(P�) to L2(P�), with operator norm 6 λ−2. Finally, (4.10)
holds a.s. for all � ∈ L2(P�) and λ > 0, and

Rλ� =
�

�∈Z�
+

E(���)
�!(λ + |�|) �� a.s., (4.11) R:H

where the sum converges in L2(P�).

Proof. The only unproved part of the assertion is (4.11), which repre-
sents Rλ� in terms of Hermite polynomials.

If � ∈ L2(P�), then Rλ� ∈ L2(P�) for all λ > 0, and Theorem 2.1
ensures that

Rλ� =
�

�∈Z�

1
�! E [(Rλ� )��] ���

By Fubini’s theorem, (4.10), and (4.6),

E [(Rλ� )��] =
� ∞

0
e−λ� E [(P�� )��] d� = e−(|�|+λ)� E(���)�

for all � ∈ Z�, � > 0, and λ > 0. Multiply the preceding by ��/�! and
sum over � ∈ Z� to finish. ⇤
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pr:RE Proposition 4.3 (The Resolvent Equation). For all � ∈ L2(P�), and for
every distinct pair α� λ > 0,

RλRα� = RαRλ� = −Rλ� − Rα�
λ − α a.s. (4.12) RE

Proof. We apply the Fubini theorem and (4.10) a few times back-to-back
as follows: Almost surely,

RλRα� =
� ∞

0
e−λ�P�(Rα� ) d� =

� ∞

0
e−λ�P�

�� ∞

0
e−α� P�� d�

�
d�

=
� ∞

0
e−λ� d�

� ∞

0
e−α� d� P�+�� =

� ∞

0
e−(λ−α)� d�

� ∞

�
e−α�d� P��

=
� ∞

0
e−α�P�� d�

� �

0
e−(λ−α)� d� =

� ∞

0
e−α�P�(� )

�
1 − e−(λ−α)�

λ − α

�
d��

Reorganize the integral to finish. ⇤

Eq. (4.12) is called the resolvent equation, and readily implies the
following.

co:RE Corollary 4.4. For every λ > 0, Rλ maps L2(P�) bijectively onto its
range

Rλ
�

L2(P�)
�

:=
�

Rλ� : � ∈ L2(P�)
�

�
The preceding range does not depend on λ > 0. Moreover, the range is
dense in L2(P�); in fact, limλ→∞ λRλ� = � in L2(P�) for every � ∈ L2(P�).

Proof. First, we observe that � �� (Rλ� )(�) is a.s. equal to a continu-
ous function for all � ∈ L2(P�) and λ > 0. This follows from Mehler’s
formula [Proposition 2.1, page 45] and the dominated convergence the-
orem. Therefore, we can always redefine it so that Rλ� is continuous.
In particular, if Rλ� = 0 a.s. for some λ > 0, then Rλ� ≡ 0 and hence
Rα� ≡ 0 for all α > 0 thanks to the resolvent equation. The uniqueness
theorem for Laplace transforms now shows that if Rλ� = 0 a.s. for some
λ > 0 then � = 0 a.s. By linearity we find that if Rλ� = Rλ� a.s. for some
�� � ∈ L2(P�) and λ > 0, then � = � a.s. Consequently, Rλ is a one-to-one
and onto map from L2(P�) to its range Rλ(L2(P�)).

Next, let us suppose that � is the range of Rα; that is, � = Rα� for
some � ∈ L2(P�). By the resolvent equation,

Rλ� = −Rλ� − �
λ − α � � = (λ − α)Rλ� − Rλ� = Rλ��

for � = (λ − α)� − � . This shows that � is in the range of Rλ , whence
Rα(L2(P�)) ⊂ Rλ(L2(P�)). Reverse the roles of α and λ to see that
Rλ(L2(P�)) does not depend on λ > 0.



4. The Resolvent of the Ornstein–Uhlenbeck Semigroup 51

Finally, we verify the density assertion. Let � ∈ L2(P�), and recall
[Proposition 1.5, page 44] that P�� → � in L2(P�) as � ↓ 0. By this and the
dominated convergence theorem,

λRλ� = λ
� ∞

0
e−λ�P�� d� =

� ∞

0
e−�P�/λ� d� → � in L2(P�)�

as λ ↑ ∞. This implies that the range of the resolvent in dense in L2(P�)
because it proves that for all ε > 0 there exists an elements of the range
R1(L2(P�)) = ∪α>0Rα(L2(P�))—namely λRλ� = Rλ(λ� ) for a sufficiently
large λ—that is close to within ε of � in the L2(P�) norm. ⇤

Corollary 4.4 tells us that we can in principle compute the entire
semigroup {P�}�>0 from the operator Rλ for a given λ > 0. And of
course the converse is also true by (4.10). From now on we will consider
λ = 1 only.

Definition 4.5. If � ∈ L2(P�) then R1� is called the one-potential of � .
The linear operator R1 is also known as the [one-] potential operator.

lem:R Lemma 4.6. R1 is a non-expansive and symmetric linear operator on
L2(P�).

Proof. Linearity is obvious. We need to prove that for all �� � ∈ L2(P�):
(1) E(|R1� |2) 6 E(�2); and
(2) E[�(R1� )] = E[(R1�)� ].

They follow from the corresponding properties of the semigroup {P�}�>0,
and (4.10). ⇤

The potential operator arises naturally in a number of ways. For
example, Proposition 3.2 can be recast in terms of the potential operator
as follows:

th:Cov:1 Theorem 4.7 (Houdré, Pérez-Abreu, and Surgailis, XXX). For every �� � ∈
D1�2(P�),

Cov(� � �) = E [�D� � D��R1 ] �
where

�� � ��R1 := � · (R1�) for all �� � ∈ L2(P� × χ�)� (4.13) energy

and R1� = (R1�1 � � � � � R1�2) =
� ∞

0 exp(−�)(P��) d�.

The bilinear symmetric form (� � �) �� E[�D� � D��R1 ] is known as
a Dirichlet form, and the integral E[�D� � D��R1 ] is called the Dirichlet
energy between � and � . Thus, Theorem 4.7 is another way to state
that the covariance between the random variables � (Z) and �(Z) is the
Dirichlet energy between the functions � and � .
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Let us mention another property of the potential operator.

pr:R1:L Proposition 4.8 (Hille, XXX and Yoshida, XXX). The range of R1 coin-
cides with Dom[�], and

� � = � − R−1
1 � a.s. for all � ∈ Dom[�]�

Proposition 4.8 is a carefully-crafted way of saying that � = I −R−1
1 —

equivalently R1 = (I −�)−1—where I denotes the identity operator, I(� ) :=
� .

Proof. Choose and fix an arbitrary � ∈ R1(L2(P�)). There exists � ∈
L2(P�) such that � = R1� , equivalently � = R−1

1 � . Therefore, by (4.11),

E[���] = E [(R1�)��] = E(���)
1 + |�| for all � ∈ Z�.

It follows that

R−1
1 � = � =

�

�∈Z�

E[���]
�! �� =

�

�∈Z�

1 + |�|
�! E[���] ��� (4.14) R11

Conversely, the preceding infinite sum defines an element of L2(P�) as
long as it converges in L2(P�). Consequently,

R1
�

L2(P�)
�

=
�

� ∈ L2(P�) :
�

�∈Z�

(1 + |�|)2
�! |E(���)|2 < ∞

�
�

For all � ∈ Z�, 1 + |�|2 6 (1 + |�|)2 6 2(1 + |�|2). Therefore,
�

�∈Z�

(1 + |�|)2
�! |E[���]|2 < ∞ iff

�

�∈Z�

|�|2
�! |E[���]|2 < ∞�

valid for every � ∈ L2(P�). This observation and (4.5) together imply that
R1(L2(P�)) = Dom[�].

The identity � � = � − R−1
1 � is a consequence of (4.4) and (4.14). ⇤


