
Harmonic Analysis

Recall that if � ∈ L2([0 � 2π]�), then we can write � as

� (�) =
�

�∈Z�

e��·��̂�� (3.1) F:L

where the convergence takes place in L2([0 � 2π]�) and �̂� is the “�th
Fourier coefficient” of � ; that is,

�̂� := (2π)−�
�

[0�2π]�
e��·�� (�) d� for all � ∈ Z��

Eq. (3.1) is the starting point of harmonic analysis in the Lebesgue space
[0 � 2π]�. In this chapter we develop a parallel theory for the Gauss space
(R�� �(R�) �P�).

1. Hermite Polynomials in Dimension One

Before we discuss the general �-dimensional case, let us consider the
special case that � = 1. We may observe the following elementary
computations:

γ�
1(�) = −�γ1(�)� γ��

1 (�) = (�2 − 1)γ1(�)� γ���
1 (�) = −(�3 − 3�)γ1(�)� � � �

etc. It follows from these computations, and induction, that

γ(�)
1 (�) = (−1)�H�(�)γ1(�) [� > 0� � ∈ R]�

where H� is a polynomial of degree at most �. Moreover,

H0(�) := 1� H1(�) := �� H2(�) := �2 − 1� H3(�) := �3 − 3�� � � �

etc.
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32 3. Harmonic Analysis

Definition 1.1. H� is called the Hermite polynomial of degree � > 0.

I should warn you that different authors normalized their Hermite
polynomials differently than I have here. So my notation might differ
from theirs in certain places.

lem:Hermite Lemma 1.2. The following holds for all � ∈ R and � > 0:

(1) H�+1(�) = �H�(�) − H �
�(�);

(2) H �
�+1(�) = (� + 1)H�(�); and

(3) H�(−�) = (−1)�H�(�).

This simple lemma teaches us a great deal about Hermite polynomi-
als. For instance, we learn from (1) and induction that H� is a polynomial
of degree exactly � for every � > 0. Moreover, the coefficient of �� in
H�(�) is one for all � > 0; that is, H�(�) − �� is a polynomial of degree
at most � − 1 for all � > 1.

Proof. We prove part (1) by direct computation:

(−1)�+1H�+1(�)γ1(�) = γ(�+1)
1 (�) = d

d� γ(�)
1 (�) = (−1)� d

d� [H�(�)γ1(�)]

= (−1)�
�
H �

�(�)γ1(�) + H�(�)γ�
1(�)

�

= (−1)�
�
H �

�(�) − �H�(�)
�

γ1(�)�

Divide both sides by (−1)�+1γ1(�) to finish.
Part (2) is clearly correct when � = 0. We now apply induction:

Suppose H �
�+1(�) = (� + 1)H� (�) for all 0 6 � 6 � − 1. We plan to prove

this for � = �. By (1) and the induction hypothesis, H�+1(�) = �H�(�) −
�H�−1(�). Therefore, we can differentiate to find that

H �
�+1(�) = H�(�) + �H �

�(�) − �H �
�−1(�) = H�(�) + ��H�−1(�) − �H �

�−1(�)�

thanks to a second appeal to the induction hypothesis. Because of (1),
�H�−1(�) − H �

�−1(�) = H�(�). This proves that H �
�+1(�) = (� + 1)H�(�),

and (2) follows.
We apply (1) and (2), and induction, in order to see that H� is odd

[and H �
� is even] if and only if � is. This proves (3). ⇤

The following is the raison d’être for our study of Hermite polynomi-
als. Specifically, it states that the sequence {H�}∞

�=0 plays the same sort of
harmonic-analyatic role in the 1-dimensional Gauss space (R � �(R) �P1)
as do the complex exponentials in Lebesgue spaces.



1. Hermite Polynomials in Dimension One 33

th:Hermite:1 Theorem 1.3. The collection�
1√
�!

H�

�∞

�=0

is a complete, orthonormal basis in L2(P1).

Before we prove Theorem 1.3 let us mention the following corollary.

co:Hermite:1 Corollary 1.4. For every � ∈ L2(P1),

� = � (Z) =
∞�

�=0

1
�! �� � H��L2(P1) H�(Z) =

∞�

�=0

1
�! E [�H�] H� a.s.

To prove this we merely apply Theorem 1.3 and the Riesz–Fischer
theorem. Next is another corollary which also has a probabilistic flavor.

co:Hermite:Wiener:1 Corollary 1.5 (Wiener XXX). For all �� � ∈ L2(P1),

E[�� ] =
∞�

�=0

1
�! E[�H�]E[�H�]� and

Cov(� � �) =
∞�

�=1

1
�! E[�H�]E[�H�]�

Proof. Multiply both sides of the first identity of Corollary 1.4 by �(�)
and integrate [dP1] in order to obtain

�� � ��L2(P1) =
∞�

�=0

1
�! �� � H��L2(P1) �� � H��L2(P1)�

The exchange of sums and integrals is justified by Fubini’s theorem.
The preceding is another way to say the first result. The second

follows from the first and the fact that H0 ≡ 1. ⇤

We now prove Theorem 1.3.

Proof of Theorem 1.3. Recall the adjoint operator A from (2.3), page
27. Presently, � = 1; therefore, in this case, A maps a scalar function to
scalar function. Since polynomials are in the domain of definition of A
[Proposition 3.3], Parts (1) and (2) of Lemma 1.2 respectively say that:1

H�+1 = AH� and DH�+1 = (� + 1)H� for all � > 0� (3.2) A:D:H

1It is good to remember that H� plays the same role in the Gauss space (R � �(R) �P1) as does
the monomial �� in the Lebesgue space. Therefore, DH�+1 = (� + 1)H� is the analogue of the
statement that d(��+1)/d� = (� + 1)�� . As it turns out the adjoint operator behaves a little like
an integral operator and the identity AH� = H�+1 is the Gaussian analogue of the anti-derivative
identity

�
�� d� ∝ ��+1 , valid in Lebesgue space.
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Consequently,

E(H2
�) =

� ∞

−∞
H2

� dP1 =
� ∞

−∞
H�(AH�−1) dP1 =

� ∞

−∞
(DH�)H�−1 dP1

= �
� ∞

−∞
H2

�−1 dP1 = �E(H2
�−1)�

Since E(H2
0 ) = 1, induction shows that E(H2

�) = �! for all integers � > 0.
Next we prove that

E(H�H�+�) :=
�

H�H�+� dP1 = 0 for integers � > � > 0� (3.3) Hermite:off:diag

By (3.2),

E(H�H�+�) =
�

H�(AH�+�−1) dP1 =
�

(DH�)H�+�−1 dP1

= �
�

H�−1H�+�−1 dP1�

Now iterate this identity to find that

E (H�H�+�) = �!
�

H0H� dP1 = �!
� ∞

−∞
H�(�)γ1(�) d� = 0�

since H� γ1 = (−1)�γ(�)
1 . It follows that {(�!)−1/2H�}∞

�=0 is an orthonormal
sequence of elements of L2(P1).

In order to complete the proof, suppose � ∈ L2(P1) is orthogonal—in
L2(P1)—to H� for all � > 0. It remains to prove that � = 0 P1-a.s.

Part (1) of Lemma 1.2 shows that H�(�) = �� − �(�) where � is a
polynomial of degree � − 1 for every � > 1. Consequently, the span of
H0� � � � � H� is the same as the span of the monomials 1� �� · · · � �� for all
� > 0, and hence

� ∞
−∞ � (�)��γ1(�) d� = 0 for all � > 0. Multiply both

sides by (−��)�/�! and add over all � > 0 in order to see that
� ∞

−∞
� (�)e−���γ1(�) d� = 0 for all � ∈ R� (3.4) pre:Hermite

If the Fourier transform �̂ of a function � ∈ C�(R) is absolutely inte-
grable, then by the inversion theorem of Fourier transforms,

�(�) = 1
2π

� ∞

−∞
e−����̂(�) d� for all � ∈ R�

Multiply both sides of (3.4) by �̂(�) and integrate [d�] in order to see from
Fubini’s theorem that

�
�� dP1 = 0 for all � ∈ C�(R) such that �̂ ∈ L1(R).

Since the class of such functions � is dense in L2(P1), it follows that�
�� dP1 = 0 for every � ∈ L2(P1). Set � ≡ � to see that � = 0 a.s. ⇤

Finally, I mention one more corollary.
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co:Nash Corollary 1.6 (Nash’s Poincaré Inequality). For all � ∈ D1�2(P1),

Var(� ) 6 E
�

|D� |2
�

�

Proof. We apply Corollary 1.5 and (3.2) to obtain

Var(� ) =
∞�

�=0

1
(� + 1)! |E[�H�+1]|2 =

∞�

�=0

1
(� + 1)! |E[�A(H�)]|2

=
∞�

�=0

1
(� + 1)! |E[D(� )H�]|2 6

∞�

�=0

1
�! |E[D(� )H�]|2 �

The right-most quantity is equal to E(|D� |2), thanks to Corollary 1.5. ⇤

2. Hermite Polynomials in General Dimensions

For every � ∈ Z�
+ and � ∈ R� define

��(�) :=
��

�=1
H�� (�� ) [� ∈ R�]�

These are �-variable extensions of Hermite polynomials. Though, when
� = 1, we will continue to write H�(�) in place of ��(�) in order to
distinguish the high-dimensional case from the case � = 1.

Clearly, � �� ��(�) is a polynomial, in � variables, of degree �� in
the variable �� . For instance, when � = 2,

�(0�0)(�) = 1� �(1�0)(�) = �1� �(0�1)(�) = �2�
�(1�1)(�) = �1�2� �(1�2)(�) = �1(�2

2 − 1)� � � �

etc. Because each measure P� has the product form P� = P1 × · · · ×P1,
Theorem 1.3 immediately extends to the following.

th:Hermite Theorem 2.1. For every integer � > 1, the collection
�

1√
�!

��

�

�∈Z�
+

is a complete, orthonormal basis in L2(P�), where

�! :=
��

�=1
��! for all � ∈ Z�

+�

Corollaries 1.4 has the following immediate extension as well.
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co:Hermite Corollary 2.2. For every � > 1 and � ∈ L2(P�),

� =
�

�∈Z�
+

E(���)
�! ���

a.s., where the infinite sum converges in L2(P�).

Similarly, the following immediate extension of Corollary 1.5 com-
putes the covariance between two arbitrary square-integrable random
variables in the Gauss space.

co:Hermite:Wiener Corollary 2.3 (Wiener XXX). For all � > 1 and �� � ∈ L2(P�),

E[�� ] =
�

�∈Z�
+

1
�! E[���]E[���]� and

Cov(� � �) =
�

�∈Z�
+

� �=0

1
�! E(���)E(���)�

The following generalizes Corollary 1.6 to several dimensions.

pr:Nash Proposition 2.4 (The Poincaré Inequality). For all � ∈ D1�2(P�),

Var(� ) 6 E
�

�D��2
�

�

Proof. By Corollary 2.2, the following holds a.s. for all 1 6 � 6 �:

D�� =
�

�∈Z�
+

E[D�(� )��]
�! �� =

�

�∈Z�
+

E[�A�(��)]
�! ���

where we recall A� denotes the �th coordinate of the vector-valued ad-
joint operator. By orthogonality and (3.2),

E
�

�D��2
�

=
��

�=1

�

�∈Z�
+

1
�! |E[�A�(��)]|2

=
��

�=1

�

�∈Z�
+

1
�!

��������
E

⎡
⎢⎢⎣� (Z)H��+1(Z�)

�

16�6�
� �=�

H�� (Z�)

⎤
⎥⎥⎦

��������

2

�



2. Hermite Polynomials in General Dimensions 37

Fix an integer 1 6 � 6 � and relabel the inside sum as �� := �� if � �= �
and �� := �� + 1. In this way we find that

E
�

�D��2
�
>

��

�=1

�

�∈Z�
+

��>1

1
�1! · · · ��!

��������
E

⎡
⎢⎢⎣� (Z)H�� (Z�)

�

16�6�
� �=�

H�� (Z�)

⎤
⎥⎥⎦

��������

2

=
��

�=1

�

�∈Z�
+

��>1

1
�1! · · · ��!

��E
�
���

���2 �

using only the fact that 1/(�� −1)! > 1/��!. This completes the proof since
the right-hand side is simply

�

�∈Z�
+

1
�1! · · · ��!

��E
�
���

���2 − |E[��0]|2 �

which is equal to the variance of � (Z) [Corollary 2.3]. ⇤

Consider a Lipschitz-continuous function � : R� → R. Recall [Exam-
ple 1.6, page 22] that this means that Lip(� ) < ∞, where

Lip(� ) := sup
���∈R�

� �=�

|� (�) − � (�)|
�� − �� � (3.5) Lip

Since � ∈ D1�2(P�) and �D�� 6 Lip(� ) a.s., Nash’s Poincaré inequality has
the following ready consequence:

co:Nash:Lip Corollary 2.5. For every Lipschitz-continuous function � : R� → R,

Var(� ) 6 |Lip(� )|2�

If � is almost constant, then � ≈ E(� ) with high probability and hence
Var(� ) ≈ 0. The preceding estimate is an a priori way of saying that “in
high dimensions, most Lipschitz-continuous functions are almost con-
stant.” This assertion is somewhat substantiated by the following two
examples.

Example 2.6. The function � (�) := �−1 ��
�=1 �� is Lipschitz continuous

and Lip(� ) = 1/�. In this case, Corollary 2.5 implies that

Var
�

�−1 ��
�=1 Z�

�
6 �−1�

The inequality is in fact an identity; this example shows that the bound
in the Poincaré inequality can be attained.
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Example 2.7. For a more interesting example consider either the func-
tion � (�) := max16�6� |��| or the function �(�) := max16�6� ��. Both �
and � are Lipschitz-continuous functions with Lipschitz constant at most
1; for example,

|� (�) − � (�)| 6 �� − ���
A similar calculation shows that Lip(�) 6 1 also. Nash’s inequality implies
that

Var(M�) 6 1� 2 (3.6) Var:max

where M� denotes either max16�6� Z� or max16�6� |Z�|. This is a non-
trivial result about, for example, the absolute size of the centered random
variable M� −EM�. The situation changes completely once we remove
the centering. Indeed by Proposition 1.3 (p. 7) and Jensen’s inequality,

E(M2
�) > |E(M�)|2 = (2 + �(1)) log � as � → ∞�

Similar examples can be constructed for more general Gaussian ran-
dom vectors than Z, thanks to the following.

pr:Poincare:X Proposition 2.8. Suppose X is distributed as N�(0 � Q) for some posi-
tive semidefinite matrix Q, and define σ2 := max16�6� Var(X�)� Then,

Var[� (X)] 6 σ2E
�

�(D� )(X)�2
�

for every � ∈ D1�2(P�)�

Proof. We can write Q = A2 where A is an � × � matrix [A := a square
root of Q]. Define �(�) := � (A�) [� ∈ R�], and observe that: (i) X has
the same distribution as AZ; and therefore (ii) Var[� (X)] = Var[�(Z)] 6
E(�(D�)(Z)�2) thanks to Proposition 2.4. A density argument shows that
(D��)(Z) = A���(D�� )(X) a.s., whence

�D�(Z)�2 =
��

�=1
A2

���|(D�� )(X)|2 6 max
16�6�

A2
��� �(D� )(X)�2 a.s.

Since A2
��� 6 ��

�=1 A2
��� = Q��� 6 σ2 for all 1 6 � 6 �, this concludes the

proof. ⇤
ex:Var:max Example 2.9. Suppose X has a N�(0 � Q) distribution. We can argue as

we did in the preceding proof, and see that AZ and X have the same
distribution where A is a square root of Q. Therefore, max�6� X� has the
same distribution as � (Z) where � (�) := max�6�(A�)� for all 1 6 � 6 �.
We saw also that � is Lipschitz continuous with Lip(� ) 6 max�6� Var(X�).
Therefore, Proposition 2.8 shows that for any such random vector X,

Var
�

max
16�6�

X�

�
6 max

16�6�
Var(X�)� (3.7) eq:VarM:MVar

2This bound is sub optimal. The optimal bound is Var(M�) = O(1/ log �).
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We can prove similarly that

Var
�

max
16�6�

|X�|
�

6 max
16�6�

Var(X�)�


