
The Canonical
Gaussian Measure on
R�

1. Introduction

The main goal of this course is to study “Gaussian measures.” The sim-
plest example of a Gaussian measure is the canonical Gaussian mea-
sure P� on R� where � > 1 is an arbitrary integer. The measure P� is
one of the main objects of study in this course, and is defined as

P�(A) :=
�

A
γ�(�) d� for all Borel sets A ⊆ R��

where

γ�(�) := e−���2/2

(2π)�/2 [� ∈ R�]� (1.1) gamma_n

The function γ1 describes the famous “bell curve.” In dimensions � > 1,
the curve of γ� looks like a suitable “rotation” of the curve of γ1.

We frequently drop the subscript � from P� when it is clear which
dimension we are in. We also choose and fix the integer � > 1, tacitly,
consider the probability space (Ω � � �P) where we have dropped the
subscript � from P� [as we will some times], and set

Ω := R�� and � := �(R�)�

Throughout we designate by Z the random vector,

Z� (�) := �� for all � ∈ R� and 1 6 � 6 �� (1.2) Z

3



4 1. The Canonical Gaussian Measure on R�

Then Z := (Z1 � � � � � Z�) is a random vector of � i.i.d. standard normal
random variables on our probability space. In particular,

P�(A) = P{Z ∈ A} for all Borel sets A ⊆ R�.

One of the elementary, though important, properties of the measure
P� is that its “tails” are vanishingly small.

lem:tails Lemma 1.1. As � → ∞,

P {� ∈ R� : ��� > �} = 2 + �(1)
2�/2Γ(�/2)

��−2e−�2/2�

Proof. Since

S� := �Z�2 =
��

�=1
Z2

� (1.3) S_n

has a χ2
� distribution,

P{� ∈ R� : ��� > �} = P{S� > �2} = 1
2�/2Γ(�/2)

� ∞

�2
�(�−2)/2e−�/2 d��

for all � > 0. Now apply l’Hôpital’s rule of calculus. ⇤

The following large-deviations estimate is one of the consequences
of Lemma 1.1:

lim
�→∞

1
�2 logP {� ∈ R� : ��� > �} = −1

2 � (1.4) eq:LD

Of course, this is a weaker statement than Lemma 1.1. But it has the
advantage of being “dimension independent.” Dimension independence
properties play a prominent role in the analysis of Gaussian measures.
Here, for example, (1.4) teaches us that the tails of P� behave roughly
as do the tails of P1 for all � > 1.

Still, many of the more interesting properties of P� are radically
different from those of P1 when � is large. In low dimensions—say
1 6 � 6 3—one can visualize the probability density function γ� from
(1.1). Based on that, or other methods, one knows that in low dimensions
most of the mass of P� lies near the origin. For example, an inspection
of the standard normal table reveals that more than half of the total
mass of P1 is within one unit of the origin; in fact, P1[−1 � 1] ≈ 0�68268�

In higher dimensions, however, the structure of P� can be quite dif-
ferent. Recall the random variable S� from (1.3), and apply Khintchine’s
weak law of large numbers XXX to see that S�/� converges in prob-
ability to one, as � → ∞.1 This is another way to say that for every

1In the present setting, it does not make sense to discuss almost-sure convergence since the un-
derlying probability space is (R� � �(R�) �P�).
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ε > 0,

lim
�→∞

P
�

� ∈ R� : (1 − ε)�1/2 6 ��� 6 (1 + ε)�1/2
�

= 1� (1.5) ex:CoM

The proof is short and can reproduced right here: Let E denote the
expectation operator for P := P�, Var := the variance, etc. Since ES� =
Var S� = �� Chebyshev’s inequality yields P{|S� −ES�| > ε�} 6 ε−2�−1.
Equivalently,

P
�

� ∈ R� : (1 − ε)�1/2 6 ��� 6 (1 + ε)�1/2
�
> 1 − 1

�ε2 � (1.6) WLLN

Thus we see that, when � is large, the measure P� concentrates much
of its total mass near the boundary of the centered ball of radius �1/2,
very far from the origin. A more careful examination shows that, in
fact, very little of the total mass of P� is elsewhere when � is large. The
following theorem makes this statement more precise. Theorem 1.2 is
a simple example of a remarkable property of Gaussian measures that
is known commonly as concentration of measure XXX. We will discuss
this topic in more detail in due time.

th:CoM:n Theorem 1.2. For every ε > 0,

P
�

� ∈ R� : (1 − ε)�1/2 6 ��� 6 (1 + ε)�1/2
�
> 1 − 2e−�ε� (1.7) CoM:n

Theorem 1.2 does not merely improve the crude bound (1.6). Rather,
it describes an entirely new phenomenon in high dimensions. To wit,
suppose we are working in dimension � = 500. When ε = 0, the left-
hand side of (1.7) is equal to 0. But if we increase ε slightly, say to
ε = 0�01, then the left-hand side of (1.7) increases to a probability > 0�986
(!). By comparison, (1.6) reports a silly bound in this case.

Proof. From now on, we let E := E� denote the expectation operator
for P := P�. That is,

E(� ) := E�(� ) :=
�

� dP� =
�

� dP for all � ∈ L1(P�)�

Since S� :=
��

�=1 Z2
� has a χ2

� distribution,

E eλS� = (1 − 2λ)−�/2 for −∞ < λ < 1/2� (1.8) mgf:chi2

and E exp(λS�) = ∞ when λ > 1/2.
We use the preceding as follows: For all � > 0 and λ ∈ (0 � 1/2),

P
�

� : ��� > �1/2�
�

= P{S� > ��2} = P
�

eλS� > eλ��2
�
6 (1−2λ)−�/2e−λ��2 �
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thanks to Chebyshev’s inequality. Since the left-hand side is independent
of λ ∈ (0 � 1/2), we may optimize the right-hand side over λ ∈ (0 � 1/2) to
find that

P
�

� : ��� > �1/2�
�
6 exp

�
−� sup

0<λ<1/2

�
λ�2 + 1

2 log(1 − 2λ)
��

= exp
�

−�
2

�
�2 − 1 − 2 log �

��
�

Taylor expansion yields log � < � − 1 − 1
2 (� − 1)2 when � > 1. This and the

previous inequality together yield

P
�

� : ��� > �1/2�
�
6 e−��(�−1) < e−�|�−1|� (1.9) BooBooBound

When � = 1, the same inequality holds vacuously. Therefore, it suffices
to consider the case that � < 1.

In that case, we argue similarly and write

P
�

� : ��� < �1/2�
�

= P
�

e−λS� > e−λ��2
�

[for all λ > 0]

6 exp
�

−� sup
λ>0

�
−λ�2 + 1

2 log(1 + 2λ)
��

= exp
�

−�
2

�
1 − �2 − 2 log �

��
�

Since � < 1, a Taylor expansion yields −2 log � > 2(1−�)+(1−�)2, whence

P
�

� : ��� < �1/2�
�
6 exp

�
−�

2

�
1 − �2 − 2 log �

��
6 e−�(1−�)�

This estimate and (1.9) together complete the proof. ⇤

The preceding discussion shows that when � is large, P{�Z� ≈ �1/2}
is extremely close to one. One can see from another appeal to the weak
law of large numbers that for all ε > 0,

P
�

(1 − ε)µ��1/� 6 �Z�� 6 (1 + ε)µ��1/�
�

→ 1 as � → ∞�

for all � ∈ [1 � ∞), where µ� := E(|Z1|�) and � · �� [temporarily] denotes
the ��-norm on R�; that is,

���� :=
����

�=1 |��|�
�1/� if 1 6 � < ∞�

max16�6� |��| if � = ∞�

for all � ∈ R�. These results suggest that the �-dimensional Gauss space
(R�� �(R�) �P�) has unexpected geometry when � � 1.

Interestingly enough, the case � = ∞ is different still. The following
might help us anticipate which �∞-balls might carry most of the measure
P� when � � 1.
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pr:max Proposition 1.3. Let M� := max16�6� |Z�| or := max16�6� Z�. Then,

lim
�→∞

1√
2 log �

E(M�) = 1�

It is possible to compute E(M�) directly, but the preceding bound
turns out to be more informative for our ends, and good enough for
our present needs.

Proof. For all � > 0,

P {M� > �} 6 1 ∧ �P{|Z1| > �} 6 1 ∧ 2�e−�2/2�

Now choose and fix some ε ∈ (0 � 1) and write, using this bound,

E

�
max
16�6�

|Z�|
�

=
� ∞

0
P

�
max
16�6�

|Z�| > �
�

d� =
� 2(1+ε) log �

0
+

� ∞

2(1+ε) log �

6
�

2(1 + ε) log � + 2�
� ∞
√

2(1+ε) log �
e−�2/2 d�

=
�

2(1 + ε) log � + �
�
�−ε�

�

Thus, we have E(M�) 6 (1 + �(1))
√

2 log �, which implies half of the
proposition. For the other half, we use Lemma 1.1 to see that,

P

�
max
16�6�

Z� 6
�

2(1 − ε) log �
�

=
�

1 − 1√
2π

� ∞
√

2(1−ε) log �
e−�2/2 d�

��

=
�

1 − 1 + �(1)√
2π log �

�−1+ε
��

= �(1)�

for example because 1 − � 6 exp(−�) for all � ∈ R. Therefore,

E

�
max
16�6�

Z�; max
16�6�

Z� > 0
�

> E

�
max
16�6�

Z�; max
16�6�

Z� >
�

2(1 − ε) log �
�

> (1 + �(1))
�

2(1 − ε) log ��

On the other hand,
����E

�
max
16�6�

Z�; max
16�6�

Z� < 0
����� 6

��

�=1
E

�
|Z�|; max

16�6�
Z� < 0

�

6 �

�

P

�
max
16�6�

Z� < 0
�

= �2−�/2 = �(1)�

as � → ∞, thanks to the Cauchy–Schwarz inequality. The preceding two
displays together imply that EM� > (1 + �(1))

�
2(1 − ε) log � as � → ∞

for every ε ∈ (0 � 1), and prove the remaining half of the proposition. ⇤
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2. The Projective CLT

The characteristic function of the random vector Z is
�P�(�) := E e��·Z = e−���2/2 [� ∈ R�]�

If M denotes any � × � orthogonal matrix, then

E e��·MZ = e−�M��2/2 = e−���2/2�

Therefore, the distribution of MZ is P� as well. In particular, the normal-
ized random vectors Z/�Z� and MZ/�MZ� have the same distribution.
Since the uniform distribution on the �-sphere S�−1 := {� ∈ R� : ��� =
1} is the unique probability measure on S�−1 that is invariant under or-
thogonal transformations, it follows that Z/�Z� is distributed uniformly
on S�−1. By the weak law of large numbers, �Z�/

√
� converges to 1

in probability as � → ∞. Therefore, for all fixed � > 1, the random
vector

√
�(Z1 � � � � Z�)/�Z� converges weakly to a �-vector of i.i.d. N(0 � 1)

random variables as � → ∞.
In other words, we have proved the following.

pr:ProjCLT Proposition 2.1. Choose and fix an integer � > 1 and a bounded and
continuous function � : R� → R. Let µ� denote the uniform measure
on

√
�S�−1. Then,

lim
�→∞

�
√

�S�−1
� (�1 � � � � � ��) µ�(d�1 · · · d��) =

�

R�
� dP��

In other words, this means roughly that the conditional distribution
of Z, given that (1 − ε)�1/2 6 �Z� 6 (1 + ε)�1/2, is close to the uniform
distribution on

√
�S�−1 as � → ∞ and ε → 0. It is in fact possible to make

this statement precise using a Bayes-type argument. But we will not do
so here. Instead we end this section by noting the following: Since the
probability of the conditioning event {(1 − ε)�1/2 6 �Z� 6 (1 + ε)�1/2} is
almost one—see (1.5)—we can see that Proposition 2.1 is a way of stating
that the canonical Gaussian measure on R� is very close to the uniform
distribution on

√
�S�−1 when � � 1.

Proposition 2.1 has other uses as well.

3. Anderson’s Shifted-Ball Inequality

One of the deep properties of P� is that it is “unimodal,” in a certain
sense that we will describe soon. That result hinges on a theorem of T.
W. Anderson XXX in convex analysis. Anderson’s theorem has many
deep applications in probability theory, as well as multivariate statistics,
which originally was one of the main motivations for Anderson’s work.
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We will see some applications later on. For now we contend ourselves
with a statement and proof.

In order to state Anderson’s theorem efficiently, let us recall a few
basic notions from [undergraduate] real analysis.

Recall that a set E ⊂ R� is convex if λ� + (1 − λ)� ∈ E for all �� � ∈ E
and λ ∈ [0 � 1]. You should check that E is convex if and only if

E = λE + (1 − λ)E for all λ ∈ [0 � 1]�

where for all α� β ∈ R and A� B ⊆ R�,

αA + βB := {α� + β� : � ∈ A � � ∈ B}�

pr:convex:meas Proposition 3.1. Every convex set E ⊂ R� is Lebesgue measurable.

Remark 3.2. Suppose � > 2 and E = B(0 � 1) ∪ F , where B(0 � 1) is the
usual notation for the Euclidean ball of radius one about 0 ∈ R�, and
F ⊂ ∂B(0 � 1). Then E is always convex. But E is not Borel measurable
unless F is. Still, E is always Lebesgue measurable, in this case because
F is Lebesgue null in R�.

Proof. We will prove Claim. Every bounded convex set is measurable.
This does the job since whenever E is convex and � > 1, E ∩ B(0 � �)

is a bounded convex set, which is measurable according to the Claim.
Therefore, E = ∪∞

�=1E ∩ B(0 � �) is also measurable.
Since ∂E is closed, it is measurable. We will prove that |∂E| = 0. This

shows that the difference between E and the open set E0 is null, whence
E is Lebesgue measurable. There are many proofs of this fact. Here is
an elegant one, due to Lang XXX.

Define

� :=
�

B ∈ �(R�) : |B ∩ ∂E| 6
�
1 − 3−��

|B|
�

�

Then � is clearly a monotone class, and closed under disjoint unions.
We plan to prove that every upright rectangle, that is every nonempty
set of of the form

��
�=1(�� � ��], is in �. If so, then the monotone class

theorem implies that � = �(R�). That would show, in turn, that |∂E| =
|∂E ∩ ∂E| 6 (1 − 3−�)|∂E|, which proves the claim.

Choose and fix a rectangle B :=
��

�=1(�� � ��], where �� < �� for all
1 6 � 6 �. Subdivide each 1-D interval (�� � ��] into 3 equal-sized parts:
(�� � �� +��], (�� +�� � �� +2��], and (�� +2�� � �� +3��] where �� := (�� −��)/3�
We can write B as a disjoint union of 3� equal-sized rectangles, each of
which has the form

��
�=1(�� + ���� � �� + (1 + ��]��] where �� ∈ {0 � 1 � 2}.

Call these rectangles B1� � � � � B3� . Direct inspection shows that there
must exist an integer 1 6 � 6 3� such that ∂E ∩ B� = ?. For otherwise
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the middle rectangle
��

�=1(�� + �� � �� + 2��] would have to lie entirely in
E0 and intersect ∂E at the same time; this would contradict the existence
of a supporting hyperplane at every point of ∂E. Let us fix the integer �
alluded to here.

Since the B� ’s are translates of one another they have the same mea-
sure. Therefore,

|B ∩ ∂E| 6
�

16�63�

� �=�

|B� | = |B| − |B� | =
�
1 − 3−��

|B|�

This proves that every rectangle B ∈ �, and completes the proof. ⇤

We will also recall two standard definitions.

Definition 3.3. A set E ∈ R� is symmetric if E = −E�

Definition 3.4. If � : R� → R is a measurable function, then its level set
at level � ∈ R is defined as �−1[� � ∞) := {� ∈ R� : � (�) > �} := {� > �}�

The main result of this section is Anderson’s inequality XXX, which
I mention next.

th:Anderson Theorem 3.5 (Anderson’s inequality). Let � ∈ L1(R�) be a non-negative
symmetric function that has convex level sets. Then,

�

E
� (� − λ�) d� >

�

E
� (� − �) d��

for all symmetric convex sets E ⊂ R�, every � ∈ R�, and all λ ∈ [0 � 1].

Remark 3.6. It follows immediately from Theorem 3.5 that the map
λ ��

�
E � (� − λ�) d� is non increasing for λ ∈ [0 � 1].

The proof will take up the remainder of this chapter. For now, let us
remark briefly on how the Anderson inequality might be used to analyse
the Gaussian measure P�.

Recall γ� from (1.1), and note that for every � > 0, the level set

γ−1
� [� � ∞) =

�
� ∈ R� : ��� 6

�
2 log � + � log(2π)

�

is a closed ball, whence convex and symmetric. Therefore, we can apply
Anderson’s inequality with λ = 0 to see the following immediate corol-
lary.

co:Anderson Corollary 3.7. For all symmetric convex sets E ⊂ R�, 0 6 λ 6 1, and
� ∈ R�, P�(E + λ�) > P�(E + �). In particular,

P�(E + �) 6 P�(E)�
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It is important to emphasize the remarkable fact that Corollary 3.7 is
a “dimension-free theorem.” Here is a typical consequence: P{�Z −�� 6
�} is maximized at � = 0 for all � > 0. For this reason, Corollary 3.7 is
sometimes referred to as a “shifted-ball inequality.”

One can easily generalize the preceding example with a little extra
effort. Let us first note that if M is an � × � positive-semidefinite matrix,
then E := {� ∈ R� : � · M� 6 �} is a symmetric convex set for every
real number � > 0. Equivalently, E is the event—in our probability space
(R�� �(R�) �P�)—that Z · MZ 6 �. Therefore, Anderson’s shifted-ball
inequality implies that

P� {(Z − µ) · M(Z − µ) 6 �} 6 P� {Z · MZ 6 �} ∀� > 0 and µ ∈ R��

This inequality has applications in multivariate statistics, particularly to
the analysis of “Hotelling’s T2 statistic.” We will see other interesting
examples later on.

§1. Part 1. The Brunn–Minkowski Inequality. The Brunn–Minkowski
inequality XXX is a classical result from convex analysis, and has pro-
found connections to several other areas of research. In this subsection
we state and prove the Brunn–Minkowski inequality.

It is easy to see that if A and B are compact, then so is A+B, since the
latter is clearly bounded and closed. In particular, A + B is measurable.

The Brunn–Minkowski inequality relates the Lebesgue measure of
the Minkowski sum A + B to those of A and B. Let | · · · | denote the
Lebesgue measure on R�. Then we have the following.

Theorem 3.8 (The Brunn–Minkowski Inequality). For all compact sets
A� B ⊂ R�,

|A + B|1/� > |A|1/� + |B|1/��

We can replace A by λA and B by (1 − λ)B, where 0 6 λ 6 1, and
recast the Brunn–Minkowski inequality in the following equivalent form:

|λA + (1 − λ)B|1/� > λ|A|1/� + (1 − λ)|B|1/��

for all compact sets A� B ⊂ R� and λ ∈ [0 � 1]. This formulation suggests
the existence of deeper connections to convex analysis because if A and
B are convex sets, then so is λA + (1 − λ)B for all λ ∈ [0 � 1].

Proof. The proof is elementary but tricky. In order to clarify the un-
derlying ideas, we will divide it up into 3 small steps.
Step 1. Say that K ⊂ R� is a rectangle when K has the form,

K = [�1 � �1 + �1] × · · · × [�� � �� + ��]�
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for some � := (�1 � � � � � ��) ∈ R� and �1� � � � � �� > 0. We refer to the point
� as the lower corner of K, and � := (�1 � � � � � ��) as the length of K.

In this first step we verify the theorem in the case that A and B are
rectangles with respective lengths � and �. In this case, we can see
that A + B is an rectangle of sidelength � + �. The Brunn–Minkowski
inequality, in this case, follows from the following application of Jensen’s
inequality [the arithmetic–geometric mean inequality]:
� ��

�=1

��
�� + ��

�1/�

+
� ��

�=1

��
�� + ��

�1/�

6 1
�

��

�=1

�
��

�� + ��

�
+ 1

�

��

�=1

�
��

�� + ��

�

= 1�

Step 2. Now we consider the case that A and B are interior-disjoint [or
“ID”] finite unions of rectangles.

For every compact set K let us write K+ := {� ∈ K : �1 > 0} and
K− := {� ∈ K : �1 6 0}.

Now we apply a so-called “Hadwiger–Ohmann cut”: Notice that if we
translate A and/or B, then we do not alter |A + B|, |A|, or |B|. Therefore,
after we translate the sets suitably, we can always ensure that: (a) A+ and
B+ are rectangles; (b) A− and B− are ID unions of rectangles; and (c)

|A+|
|A| = |B+|

|B| �

With this choice in mind, we find that

|A + B| > |A+ + B+| + |A− + B−| >
�

|A+|1/� + |B+|1/�
��

+ |A− + B−|�

thanks to Step 1 and the fact that A+ +B+ is disjoint from A− +B−. Now,
�

|A+|1/� + |B+|1/�
��

= |A+|
�

1 + |B+|1/�

|A+|1/�

��
= |A+|

�
1 + |B|1/�

|A|1/�

��
�

whence

|A + B| > |A+|
�

1 + |B|1/�

|A|1/�

��
+ |A− + B−|�

Now split up, after possibly also translating, A− into A−�± and B− into B−�±

such that: (i) A−�± are interior disjoint; (ii) B−�± are interior disjoint; and
(iii) |A−�+|/|A−| = |B−�+|/|B−|. Thus, we can apply the preceding to A−

and B− in place of A and B in order to see that

|A + B| > |A+|
�

1 + |B|1/�

|A|1/�

��
+ |A−�+|

�
1 + |B|1/�

|A|1/�

��
+ |A−�− + B−�−|

=
�
|A+| + |A−�−|

� �
1 + |B|1/�

|A|1/�

��
+ |A−�− + B−�−|�
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And now continue to split and translate A−�− and B−�−, etc. In this way
we obtain a countable sequence A0 := A+, A1 := A−�+, . . . , B0 := B+,
B1 := B−�+, . . . of ID rectangles such that: (i) ∪∞

�=0B� = B [after translation];
(ii) ∪∞

�=0A� = A [after translation]; and (iii)

|A+B| >
∞�

�=0
|A� |

�
1 + |B|1/�

|A|1/�

��
= |A|

�
1 + |B|1/�

|A|1/�

��
=

�
|A|1/� + |B|1/�

��
�

This proves the result in the case that A and B are ID unions of rectan-
gles.

Step 3. Every compact set can be written as an countable union of ID
rectangles. In other words, we can find A1� A2� � � � and B1� B2� � � � such
that: (i) Every A� and B� is a finite union of ID rectangles; (ii) A� ⊆ A�+1

and B� ⊆ B�+1 for all �� � > 1; and (iii) A = ∪∞
�=1A� and B = ∪∞

�=1B� . By the
previous step, |A+B|1/� > |A� +B�|1/� > |A�|1/� + |B�|1/� for all � > 1.
Let � ↑ ∞ and appeal to the inner continuity of Lebesgue measure in
order to find deduce the theorem in its full generality. ⇤

§2. Part 2. Change of Variables. In the second part of the proof we
develop an elementary fact from integration theory.

Let A ⊆ R� be a Borel set, and � : A → R+ a Borel-measurable
function.

Definition 3.9. The distribution function of � is the function Ḡ : [0 � ∞) →
R+, defined as

Ḡ(�) :=
����−1[� � ∞)

��� := |{� ∈ A : �(�) > �}| := |{� > �}| for all � > 0.

This is standard notation in classical analysis, and should not be mis-
taken with the closely-related definition of cumulative distribution func-
tions in probability and statistics. In any case, the following should be
familiar to you.

pr:ChangeofVar Proposition 3.10 (Change of Variables Formula). For every Borel mea-
surable function F : R+ → R+,

�

A
F (�(�)) d� = −

� ∞

0
F (�) dḠ(�)�

If, in addition, A is compact and F is absolutely continuous, then
�

A
F �(�(�)) d� =

� ∞

0
F �(�)Ḡ(�) d��
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Proof. First consider the case that F = 1[���) for some � > � > 0. In
that case,

� ∞

0
F (�) dḠ(�) = Ḡ(�−) − Ḡ(�) = − |{� ∈ A : � 6 �(�) < �}|

= −
�

A
F (�(�)) d��

This proves our formula when F is a simple function. By linearity, it
holds also when F is an elementary function. The general form of
the first assertion of the proposition follows from this and Lebesgue’s
dominated convergence theorem. The second follows from the first and
integration by parts for Stieldjes integrals. ⇤

§3. Part 3. The Proof of Anderson’s Inequality. Let us define a new
number α ∈ [0 � 1] by α := (1 + λ)/2. The number α is chosen so that

α� + (1 − α)(−�) = λ��

Since E is convex, we have E = αE + (1 − α)E. Therefore, the preceding
display implies that

(E + λ�) ⊇ α(E + �) + (1 − α)(E − �)�

And because the intersection of two convex sets is a convex set, we may
infer that

(E+λ�)∩�−1[� � ∞) ⊇ α
�
(E + �) ∩ �−1[� � ∞)

�
+(1−α)

�
(E − �) ∩ �−1[� � ∞)

�
�

Now we apply the Brunn–Minkowski inequality in order to see that
���(E + λ�) ∩ �−1[� � ∞)

���
1/�

> α
���(E + �) ∩ �−1[� � ∞)

���
1/�

+ (1 − α)
���(E − �) ∩ �−1[� � ∞)

���
1/�

�

Since E is symmetric, E − � = −(E + �). Because of this identity and the
fact that � has symmetric level sets, it follows that

(E − �) ∩ �−1[� � ∞) = −
�
(E + �) ∩ �−1[� � ∞)

�
�

Therefore,
���(E + �) ∩ �−1[� � ∞)

���
1/�

=
���(E − �) ∩ �−1[� � ∞)

���
1/�

�

whence

H̄λ(�) :=
���(E + λ�) ∩ �−1[� � ∞)

��� >
���(E + �) ∩ �−1[� � ∞)

��� := H̄1(�)�
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Now two applications of the change of variables formula [Proposition
3.10] yield the following:

�

E
� (� − λ�) d� −

�

E
� (� − �) d� =

�

E+λ�
� (�) d� −

�

E+�
� (�) d�

= −
� ∞

0
�dH̄λ(�) +

� ∞

0
� dH̄1(�)

=
� ∞

0

�
H̄λ(�) − H̄1(�)

�
d� > 0�

This completes the proof of Anderson’s inequality. ⇤

4. Gaussian Random Vectors

Let (Ω � � �Q) be a probability space, and recall the following.

Definition 4.1. A random �-vector X = (X1 � � � � � X�) in (Ω � � �Q) is
Gaussian if � · X has a normal distribution for every non-random �-
vector �.

General theory ensures that we can always assume that Ω = R�,
� = �(R�), and Q = P�, which we will do from now on without further
mention in order to save on the typography.

If X is a Gaussian random vector in R� then � · X has moments of
all orders. Let µ and Q respectively denote the mean vector and the
covariance matrix of X.2 Then it is easy to see that � · X must have a
N(� · µ � � · Q�) distribution. In particular, the characteristic function of
X is given by

E
�
e��·X

�
= exp

�
�� · µ − 1

2� · Q�
�

for all � ∈ R��

Definition 4.2. Let X be a Gaussian random vector in R� with mean µ
and covariance matrix Q. The distribution of X is then called a multi-
variate normal distribution on R� and is denoted by N�(µ � Q).

When Q is non singular we can invert the Fourier transform to find
that the probability density function of X is

�X (�) = 1
(2π)�/2 | det Q|1/2 exp

�
−1

2 (� − µ) · Q−1(� − µ)
�

[� ∈ R�]�

When Q is singular, the distribution of X is singular with respect to the
Lebesgue measure on R�, and hence does not have a density.

2This means that µ� = E(X�) and Q��� = Cov(X� � X� ) respectively denote the expectation and covari-
ance operators with respect to P.
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Example 4.3. Suppose � = 2 and W has a N(0 � 1) distribution on the
line [which you might recall is denoted by P1]. Then, the distribution
of X = (W � W ) is concentrated on the diagonal {(� � �) : � ∈ R} of
R2. Since the diagonal has zero Lebesgue measure, it follows that the
distribution of X is singular with respect to the Lebesgue measure on
R2.

The following are a series of simple, though useful, facts from ele-
mentary probability theory.

lem:G1 Lemma 4.4. Suppose X has a N�(µ � Q) distribution. Then for all � ∈
R� and every � × � matrices A, the distribution of AX + � is N�(Aµ +
� � A · QA).

lem:G2 Lemma 4.5. Suppose X has a N�(µ � Q) distribution. Choose and fix
an integer 1 6 K 6 �, and suppose in addition that I1� � � � � IK are K
disjoint subsets of {1 � � � � � �} such that

Cov(X� � X� ) = 0 whenever � and � lie in distinct I� ’s�
Then, (X�)�∈I1 � � � � � (X�)�∈IK are independent, each having a multivariate
normal distribution.

lem:G3 Lemma 4.6. Suppose X has a N�(µ � Q) distribution, where Q is a sym-
metric, non-singular, � × � covariance matrix. Then Q−1/2X has the
same distribution as Z.

We can frequently use one, or more, of these results to study the
general Gaussian distribution on R� via the canonical Gaussian measure
P�. Here is a typical example.

th:Anderson:Gauss Theorem 4.7 (Anderson’s Shifted-Ball Inequality). If X has a N�(0 � Q)
distribution and Q is positive definite, then for all convex symmetric
sets F ⊂ R� and � ∈ R�,

P{X ∈ � + F} 6 P{X ∈ F}�

Proof. Since Q−1/2X has the same distribution as Z,

P{X ∈ � + F} = P
�

Z ∈ Q−1/2� + Q−1/2F
�

�

Now Q−1/2F is symmetric and convex because F is. Apply Anderson’s
shifted-ball inequality for P� [Corollary 3.7] to see that

P
�

Z ∈ Q−1/2� + Q−1/2F
�
6 P

�
Z ∈ Q−1/2F

�
�

This proves the theorem. ⇤

The following comparison theorem is one of the noteworthy corol-
laries of the preceding theorem.
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th:Anderson:Gauss:2 Corollary 4.8. Suppose X and Y are respectively distributed as N�(0 � QX )
and N�(0 � QY ), where QX − QY is positive semidefinite. Then,

P{X ∈ F} 6 P{Y ∈ F}�

for all symmetric, closed convex sets F ⊂ R�.

Proof. First consider the case that QX , QY , and QX − QY are positive
definite. Let W be independent of Y and have a N�(0 � QX − QY ) distribu-
tion. The distribution of W has a probability density �W , and W + Y is
distributed as X, whence

P{X ∈ F} = P{W + Y ∈ F} =
�

R�
P{Y ∈ −� + F}�W (�) d� 6 P{Y ∈ F}�

thanks to Theorem 4.7. This proves the theorem in the case that QX −QY
is positive definite. If QY is positive definite and QX − QY is positive
semidefinite, then we define for all 0 < δ < ε < 1,

X(ε) := X + εU� Y (δ) := Y + δU�

where U is independent of (X � Y ) and has the same distribution N�(0 � I)
as Z. The respective distributions of X(ε) and Y (δ) are N�(0 � QX(ε) ) and
N�(0 � QY (δ) ), where QX(ε) := QX + εI and QY (δ) := QY + δI� Since QX(ε) , QY (δ) ,
and QX(ε) − QY (δ) are positive definite, the portion of the theorem that
has been proved so far implies that P{X(ε) ∈ F} 6 P{Y (δ) ∈ F}, for all
symmetric convex sets F ⊂ R�. Let ε and δ tend down to zero, all the
while ensuring that δ < ε. Since F = F̄ , this proves the result. ⇤

Example 4.9 (Comparison of Moments). For every 1 6 � 6 ∞, the
��-norm of � ∈ R� is

���� :=
����

�=1|��|�
�1/� if � < ∞�

max16�6� |��| if � = ∞�

It is easy to see that all centered ��-balls of the form {� ∈ R� : ���� 6
�} are convex and symmetric. Therefore, it follows immediately from
Corollary 4.8 that if QX − QY is positive semidefinite, then

P {�X�� > �} > P {�Y�� > �} for all � > 0 and 1 6 � 6 ∞�

Multiply both sides by ���−1 and integrate both sides [d�] from � = 0 to
� = ∞ in order to see that

E
�
�X��

�
�
> E

�
�Y��

�
�

for � > 0 and 1 6 � 6 ∞�

These are examples of moment comparison, and can sometimes be use-
ful in estimating expectation functionals of X in terms of expectation
functionals of a Gaussian random vector Y with a simpler covariance
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matrix than that of X. Similarly, P{�X + ��� > �} > P{�X�� > �} for all
� ∈ R�, � > 0, and 1 6 � 6 ∞ by Theorem 4.7. Therefore,

E
�
�X��

�
�

= inf
�∈R�

E
�
�X + ���

�
�

for all 1 6 � 6 ∞ and � > 0�

This is a nontrivial generalization of the familiar fact that when � = 1,
Var(X) = inf�∈RE(|X − �|2).


