
Linear Statistical Models
Math 6010-1; Fall 2011

Davar Khoshnevisan

155 SOUTH 1400 EAST JWB 233, DEPARTMENT OF MATHEMATICS, UNI-
VERSITY OF UTAH, SALT LAKE CITY UT 84112–0090

E-mail address: davar@math.utah.edu
URL: http://www.math.utah.edu/˜davar





Contents

Lecture 1. Linear statistical models . . . . . . . . . . . . . . . . . . . . 1
§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
§2. The method of least squares . . . . . . . . . . . . . . . . . . . . 2
§3. Simple linear regression . . . . . . . . . . . . . . . . . . . . . . 4

Lecture 2. Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . 7
§1. Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
§2. Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
§3. Mathematical properties of variance and covariance . . . . . 9
§4. A relation to positive-semidefinite matrices . . . . . . . . . . . 10

Lecture 3. Some linear algebra . . . . . . . . . . . . . . . . . . . . . . 11
§1. Symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . 11
§2. Positive-semidefinite matrices . . . . . . . . . . . . . . . . . . . 13
§3. The rank of a matrix . . . . . . . . . . . . . . . . . . . . . . . . 15
§4. Projection matrices . . . . . . . . . . . . . . . . . . . . . . . . . 18

Lecture 4. Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . 21
§1. Random quadratic forms . . . . . . . . . . . . . . . . . . . . . . 21
§2. Examples of quadratic forms . . . . . . . . . . . . . . . . . . . 22
§3. The variance of a random quadratic form . . . . . . . . . . . 24

Lecture 5. Moment-generating functions and independence . . . . 27

Lecture 6. Gaussian Random Vectors . . . . . . . . . . . . . . . . . . . 31
§1. The multivariate normal distribution . . . . . . . . . . . . . . . 31

iii



iv Contents

§2. The nondegenerate case . . . . . . . . . . . . . . . . . . . . . . 32
§3. The bivariate normal distribution . . . . . . . . . . . . . . . . . 34
§4. A few important properties of multivariate normal distributions

35
§5. Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Lecture 7. Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . 41
§1. The basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
§2. The least-squares estimator of θ := Xβ . . . . . . . . . . . . . 43
§3. The least-squares estimator of β . . . . . . . . . . . . . . . . . 44
§4. Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
§5. Regression and prediction . . . . . . . . . . . . . . . . . . . . . 46
§6. Estimation of σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
§7. The normal model . . . . . . . . . . . . . . . . . . . . . . . . . . 47
§8. Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Lecture 8. Assessing Normality . . . . . . . . . . . . . . . . . . . . . . 51
§1. Visual data exploration . . . . . . . . . . . . . . . . . . . . . . . 51
§2. General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
§3. Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
§4. QQ-Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
§5. The Correlation Coefficient of the QQ-Plot . . . . . . . . . . 54
§6. Some benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Lecture 9. Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . 63
§1. A test for one parameter . . . . . . . . . . . . . . . . . . . . . . 63
§2. Least-squares estimates for contrasts . . . . . . . . . . . . . . 64
§3. The normal model . . . . . . . . . . . . . . . . . . . . . . . . . . 66
§4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Lecture 10. Confidence Intervals and Sets . . . . . . . . . . . . . . . . 75
§1. Confidence intervals for one parameter . . . . . . . . . . . . 75
§2. Confidence ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . 76
§3. Bonferonni bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 77
§4. Scheffé’s simultaneous conservative confidence bounds . . . 78
§5. Confidence bounds for the regression surface . . . . . . . . 80
§6. Prediction intervals . . . . . . . . . . . . . . . . . . . . . . . . . 82

Lecture 11. Polynomial Regression . . . . . . . . . . . . . . . . . . . . 83



Contents v

§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
§2. Orthogonal polynomials . . . . . . . . . . . . . . . . . . . . . . 84
§3. The Forsythe–Hayes 2-step method . . . . . . . . . . . . . . . 86
§4. Quadratic regression via orthogonal polynomials . . . . . . . 88

Lecture 12. Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
§1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
§2. Linear splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
§3. Quadratic splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
§4. Cubic splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93





Lecture 1

Linear statistical
models

1. Introduction

The goal of this course is, in rough terms, to predict a variable y, given
that we have the opportunity to observe variables x1, . . . , xp−1. This is a
very important statistical problem. Therefore, let us spend a bit of time
and examine a simple example:

Given the various vital statistics of a newborn baby, you wish to pre-
dict his height y at maturity. Examples of those “vital statistics” might be
x1 := present height, and x2 := present weight. Or perhaps there are
still more predictive variables x3 := your height and x4 := your spouse’s
height, etc.

In actual fact, a visit to your pediatrist might make it appear that this
prediction problem is trivial. But that is not so [though it is nowadays
fairly well understood in this particular case]. A reason the problem
is nontrivial is that there is no a priori way to know “how” y depends
on x1, . . . , x4 [say, if we plan to use all 4 predictive variables]. In such
a situation, one resorts to writing down a reasonable model for this
dependence structure, and then analyzing that model. [Finally, there
might be need for model verification as well.]

In this course, we study the general theory of “linear statistical mod-
els.” That theory deals with the simplest possible nontrivial setting where
such problems arises in various natural ways. Namely, in that theory we
posit that y is a linear function of (x1 , . . . , x4), possibly give or take some
“noise.” In other words, the theory of linear statistical models posits that
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there exist unknown parameters β0, . . . , βp−1 [here, p = 5] such that

y = β0 + β1x1 + β2x2 + · · ·+ βp−1xp−1 + ε, (1)

where ε is a random variable. The problem is still not fully well de-
fined [for instance, what should be the distribution of ε, etc.?]. But this
is roughly the starting point of the theory of linear statistical models.
And one begins asking natural questions such as, “how can we estimate
β0, . . . , β4?,” or “can we perform inference for these parameters?” [for
instance, can we test to see if y does not depend on x1 in this model; i.e.,
test for H0 : β1 = 0?]. And so on.

We will also see, at some point, how the model can be used to improve
itself. For instance, suppose we have only one predictive variable x, but
believe to have a nonlinear dependence between y and x. Then we could
begin by thinking about polynomial regression; i.e., a linear statistical
model of the form

y = β0 + β1x + β2x2 + · · ·+ βp−1xp−1 + ε.

Such a model fits in the general form (1) of linear statistical models, as
well: We simply define new predictive variables xj := xj for all 1 ≤ j < p.
One of the conclusions of this discussion is that we are studying models
that are linear functions of unknown parameters β0, . . . , βp−1 and not
x1, . . . , xp−1. This course studies statistical models with such properties.
And as it turns out, not only these models are found in a great number
of diverse applications, but also they have a rich mathematical structure.

2. The method of least squares

Suppose we have observed n data points in pairs: (x1 , y1), . . . (xn , yn).
The basic problem here is, what is the best straight line that fits this
data? There is of course no unique sensible answer, because “best” might
mean different things.

We will use the method of least squares, introduced by C.-F. Gauss.
Here is how the method works: If we used the line y = β0 + β1x to
describe how the xi ’s affect the yi ’s, then the error of approximation, at
x = xi, is yi − (β0 + β1xi); this is called the ith residual error. The sum
of the squared residual errors is SSE :=

∑n
i=1(yi − β0 − β1xi)2, and the

method of least squares is to find the line with the smallest SSE. That is,
we need to find the optimal β0 and β1—written β̂0 and β̂1—that solve the
following optimization problem:

min
β0,β1

n∑

i=1
(yi − β0 − β1xi)2 . (2)



2. The method of least squares 3

Theorem 1 (Gauss). The least-squares solution to (2) is given by

β̂1 :=
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

and β̂0 := ȳ − β̂1x̄.

Proof. Define

L(β0, β1) :=
n∑

i=1
(yi − β0 − β1xi)2 .

Our goal is to minimize the function L. An inspection of the graph of L
shows that L has a unique minimum; multivariable calculus then tells us
that it suffices to set ∂L/∂βj = 0 for j = 1, 2 and solve. Because

∂
∂β0

L(β0, β1) = −2
n∑

i=1
(yi − β0 − β1xi) ,

∂
∂β1

L(β0, β1) = −2
n∑

i=1
xi (yi − β0 − β1xi) ,

a few lines of simple arithmetic finish the derivation. �

The preceding implies that, given the points (x1 , y1), . . . , (xn , yn), the
best line of fit through these points—in the sense of least squares—is

y = β̂0 + β̂1x. (3)

For all real numbers x and y, define xSU and ySU to be their respective
“standardizations.” That is,

xSU := x − x̄√
1
n
∑n

i=1(xi − x̄)2
, ySU := y − ȳ√

1
n
∑n

i=1(yi − ȳ)2
.

Then, (3) can be re-written in the following equivalent form:

ySU = β̂0 − ȳ√
1
n
∑n

i=1(yi − ȳ)2
+ β̂1x√

1
n
∑n

i=1(yi − ȳ)2

= β̂1√
1
n
∑n

i=1(yi − ȳ)2
(x − x̄) ,

the last line following from the identity β̂0 = ȳ − β̂1x̄. We re-write the
preceding again:

ySU =
β̂1

√
1
n
∑n

i=1(xi − x̄)2
√

1
n
∑n

i=1(yi − ȳ)2
xSU.
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Because

β̂1 =
1
n
∑n

i=1(xi − x̄)(yi − ȳ)
1
n
∑n

i=1(yi − ȳ)2
,

we can re-write the best line of fit, yet another time, this time as the
following easy-to-remember formula:

ySU = rxSU,
where r [a kind of “correlation coefficient”] is defined as

r :=
1
n
∑n

i=1(yi − ȳ)(xi − x̄)
√

1
n
∑n

i=1(xi − x̄)2 ·
√

1
n
∑n

i=1(yi − ȳ)2
.

3. Simple linear regression

Suppose Y1, . . . , Yn are observations from a distribution, and they satisfy

Yi = β0 + β1xi + εi (1 ≤ i ≤ n), (4)

where ε1, . . . , εn are [unobserved] i.i.d. N(0 , σ2) for a fixed [possibly un-
known] σ > 0. We assume that x1, . . . , xn are known, and seek to find
the “best” β0 and β1.1

In other words, we believe that we are observing a certain linear
function of the variable x at the xi ’s, but our measurement [and/or mod-
eling] contains noise sources [εi ’s] which we cannot observe.

Theorem 2 (Gauss). Suppose ε1, . . . , εn are i.i.d. with common distri-
bution N(0 , σ2), where σ > 0 is fixed. Then the maximum likelihood
estimators of β1 and β0 are, respectively,

β̂1 =
∑n

j=1(xj − x̄)(Yj − Ȳ )
∑n

j=1(xj − x̄)2
and β̂0 = Ȳ − β̂1x̄.

Therefore, based on the data (x1 , Y1), . . . , (xn , Yn), we predict the y-
value at x = x∗ to be y∗ := β̂0 + β̂1x∗.

Proof. Note that Y1, . . . , Yn are independent [though not i.i.d.], and the
distribution of Yj is N(β0 + β1xj , σ2). Therefore, the joint probability
density function of (Y1 , . . . , Yn) is

f (y1 , . . . , yn) := 1
(2πσ2)n/2

exp



− 1
2σ2

n∑

j=1
(yj − β0 − β1xj )2



 .

1In actual applications, the xi ’s are often random. In such a case, we assume that the model holds
after conditioning on the xi ’s.
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According to the MLE principle we should maximize f (Y1 , . . . , Yn) over
all choices of β0 and β0. But this is equivalent to minimizing L(β0 , β1) :=∑n

i=1(Yi − β0 − β1xi)2. But this was exactly what we did in Theorem
1 [except for real variables y1, . . . , yn in place of the random variables
Y1, . . . , Yn]. �

In this way we have the following “regression equation,” which uses
the observed data (x1 , Y1), . . . , (xn , Yn) in order to predict a y-value cor-
responding to x = x∗:

Y (x) = β̂0 + β̂1x.
But as we shall see, this method is good not only for prediction, but also
for inference. Perhaps a first important question is, “do the y ’s depend
linearly on the x’s”? Mathematically speaking, we are asking to test the
hypothesis that β1 = 0. If we could compute the distribution of β̂1, then
standard methods can be used to accomplish this. We will see later on
how this can be accomplished. But before we develop the theory of
linear inference we need to know a few things about linear algebra and
some of its probabilistic consequences.





Lecture 2

Random vectors

It will be extremely helpful to us if we worked directly with random
vectors and not a group of individual random variables. Throughout,
all vectors are written columnwise; and so are random ones. Thus, for
instance, a random vector X ∈ Rn is written columnwise as

X =





X1
X2
...
Xn



 = (X1 , . . . , Xn)′.

And even more generally, we might sometimes be interested in random
matrices. For instance, a random m×n matrix is written coordinatewise
as

X =




X1,1 · · · X1,n

...
...

Xm,1 · · · Xm,n



 .

1. Expectation

If X is a random m × n matrix, then we define its expectation in the
most natural possible way as

EX :=




EX1,1 · · · EX1,n

...
...

EXm,1 · · · EXm,n



 .

7
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Many of the properties of expectations continue to hold in the setting
of random vectors and/or matrices. The following summarizes some of
those properties.

Proposition 1. Suppose A, B, C, and D are nonrandom matrices, and
X and Y are random matrices. Then,

E (AXB+CYD) = A (EX)B+C (EY )D,

provided that the matrix dimensions are sensible.

Proof. Because

(AXB+CYD)i,j = (AXB)i,j + (CYD)i,j ,

it suffices to prove that E(AXB) = AE(X)B. But then, we can work
coordinatewise as follows:

E
[
(AXB)i,j

]
= E

n∑

k=1

n∑

`=1
Ai,kXk,`B`,j =

n∑

k=1

n∑

`=1
Ai,kE(Xk,`)B`,j

=
n∑

k=1

n∑

`=1
Ai,k [EX]k,` B`,j = [AE(X)B]i,j .

That is, E(AXB) = AE(X)B coordinatewise. This proves the result. �

2. Covariance

Suppose X = (X1 , . . . , Xm)′ and Y = (Y1 , . . . , Yn)′ are two jointly dis-
tributed random vectors. We define their covariance as

Cov(X ,Y ) :=




Cov(X1 , Y1) · · · Cov(X1 , Yn)

...
...

Cov(Xm , Y1) · · · Cov(Xm , Yn)



 .

Proposition 2. We always have

Cov(X ,Y ) = E
[
(X − EX) (Y − EY )′

]
.

Proof. The (i , j)th entry of the matrix (X−EX)(Y−EY )′ is (Xi−EXi)(Yj−
EYj ), whose expectation is Cov(Xi , Xj ). Because this is true for all (i , j),
the result holds coordinatewise. �

Warning. Note where the transpose is: Except in the case that n and
m are the same integer, (X − EX)′(Y − EY ) does not even make sense,
whereas (X − EX)(Y − EY )′ is always a random m × n matrix. �
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An important special case occurs when we have X = Y . In that case
we write

Var(X) := Cov(X ,X).
We call Var(X) the variance-covariance matrix of X. The terminology
is motivated by the fact that

Var(X) =





Var(X1) Cov(X1 , X2) Cov(X1 , X3) · · · Cov(X1 , Xm)
Cov(X2 , X1) Var(X2) Cov(X2 , X3) · · · Cov(X2 , Xn)
Cov(X3 , X1) Cov(X3 , X2) Var(X3) · · · Cov(X3 , Xm)

...
...

... . . . ...
Cov(Xm , X1) Cov(Xm , X2) Cov(Xm , X3) · · · Var(Xm)




.

Note that Var(X) is always a square and symmetric matrix; its dimension
is m ×m when X is m-dimensional. On-diagonal entries of Var(X) are
always nonnegative; off-diagonal entries can be arbitrary real numbers.

3. Mathematical properties of variance and covariance
• Because (X−EX)(X−EX)′ = XX′−X(EX)′− (EX)X′+(EX)(EX)′,

it follows that
Var(X) = E

(
XX′

)
− 2(EX)(EX)′ + (EX)(EX)′

= E
(
XX′

)
− (EX)(EX)′,

after expansion. This is a multidimensional extension of the for-
mula Var(Z) = E(Z2)− (EZ)2, valid for every [univariate] random
variable Z.
• If a ∈ Rn is nonrandom, then (X − a) − E(X − a) = X − EX.

Therefore,
Var(X − a) = E

[
(X − EX)(X − EX)′

]
= Var(X).

This should be a familiar property in the one-dimensional case.
• If X, Y , and Z are three jointly-distributed random vectors [with

the same dimensions], then X((Y+Z)−E(Y+Z))′ = X(Y−EY )′+
X(Z − EZ)′. Therefore,

Cov(X ,Y + Z) = Cov(X ,Y ) + Cov(X ,Z).

• SupposeA ,B are nonrandom matrices. Then, (AX−E(AX))(BY−
E(BY ))′ = A(X − EX)(Y − EY )′B′. Therefore,

Cov(AX ,BY ) = ACov(X ,Y )B′.
The special case that X = Y is worth pointing out: In that case
we obtain the identity,

Var(AX) = AVar(X)A′.
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4. A relation to positive-semidefinite matrices

Let a ∈ Rn be a nonrandom vector and X be an n-dimensional random
vector. Then, the properties of variance-covariance matrices ensure that

Var
(
a′X

)
= a′Var(X)a.

Because a′X =
∑n

j=1 ajXj is univariate, Var(a′X) ≥ 0, and hence

a′Var(X)a ≥ 0 for all a ∈ Rn. (1)

A real and symmetric n× n matrix A is said to be positive semidef-
inite if x′Ax ≥ 0 for all x ∈ Rn. And A is positive definite if x′Ax > 0
for every nonzero x ∈ Rn.

Proposition 3. If X is an n-dimensional random vector, then Var(X) is
positive semidefinite. If P{a′X = b} = 0 for every a ∈ Rn and b ∈ R,
then Var(X) is positive definite.

Proof. We have seen already in (1) that Var(X) is positive semidefinite.
Now suppose that P{a′X = b} = 0, as indicated. Then, a′X is a genuine
random variable and hence a′Var(X)a = Var(a′X) > 0 for all a ∈ Rn. �

Remark 4. The very same argument can be used to prove the following
improvement: Suppose P{a′X = b} < 1 for all b ∈ R and a ∈ Rn. Then
Var(X) is positive definite. The proof is the same because P{a′X =
E(a′X)} < 1 implies that the variance of the random variable a′X cannot
be zero when a 6= 0. �



Lecture 3

Some linear algebra

Recall the convention that, for us, all vectors are column vectors.

1. Symmetric matrices

Let A be a real n × n matrix. Recall that a complex number λ is an
eigenvalue of A if there exists a real and nonzero vector x—called an
eigenvector for λ—such that Ax = λx. Whenever x is an eigenvector
for λ, so is ax for every real number a.

The characteristic polynomial χA of matrix A is the function

χA(λ) := det(λI −A),

defined for all complex numbers λ, where I denotes the n × n identity
matrix. It is not hard to see that a complex number λ is an eigenvalue
of A if and only if χA(λ) = 0. We see by direct computation that χA is an
nth-order polynomial. Therefore, A has precisely n eigenvalues, thanks
to the fundamental theorem of algebra. We can write them as λ1, . . . , λn,
or sometimes more precisely as λ1(A), . . . , λn(A).

1. The spectral theorem. The following important theorem is the start-
ing point of our discussion. It might help to recall that vectors x1, . . . ,xk ∈
Rn are orthonormal if x′ixj = 0 when i 6= j and x′ixi = ‖xi‖2 = 1.

Theorem 1. If A is a real and symmetric n×n matrix, then λ1, . . . , λn
are real numbers. Moreover, there exist n orthonormal eigenvectors
v1, . . . ,vn that correspond respectively to λ1, . . . , λn.

11



12 3. Some linear algebra

I will not prove this result, as it requires developing a good deal of
elementary linear algebra that we will not need. Instead, let me state
and prove a result that is central for us.

Theorem 2 (The spectral theorem). Let A denote a symmetric n × n
matrix with real eigenvalues λ1, . . . , λn and corresponding orthonor-
mal eigenvectors v1, . . . ,vn. Define D := diag(λ1 , . . . , λn) to be the di-
agonal matrix of the λi ’s and P to be the matrix whose columns are
v1 though vn respectively; that is,

D :=





λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
... . . . ...

0 0 0 · · · λn




, P := (v1 , . . . ,vn) .

Then P is orthogonal [P′ = P−1] and A = PDP−1 = PDP′.

Proof. P is orthogonal because the orthonormality of the vi ’s implies
that

P′P =




v1
...
vn





′

(v1 , . . . ,vn) = I.

Furthermore, because Avj = λjvj , it follows that AP = PD, which is
another way to say that A = PDP−1. �

Recall that the trace of an n×n matrix A is the sum A1,1 + · · ·+An,n
of its diagonal entries.

Corollary 3. If A is a real and symmetric n × n matrix with real
eigenvalues λ1, . . . , λn, then

tr(A) = λ1 + · · ·+ λn and det(A) = λ1 × · · · × λn.

Proof. Write A, in spectral form, as PDP−1. Since the determinant of
P−1 is the reciprocal of that of A, it follows that det(A) = det(D), which
is clearly λ1 × · · · × λn. In order to compute the trace of A we compute
directly also:

tr(A) =
n∑

i=1

n∑

j=1
Pi,j

(
DP−1

)

i,j
=

n∑

i=1

n∑

j=1

n∑

k=1
Pi,jDi,kP−1

j,k

=
n∑

i=1

n∑

k=1

(
PP−1

)

i,k
Di,k =

n∑

i=1
Di,i = tr(D),
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which is λ1 + · · ·+ λn. �

2. The square-root matrix. Let A continue to denote a real and sym-
metric n × n matrix.

Proposition 4. There exists a complex and symmetric n × n matrix
B—called the square root of A and written as A1/2 or even sometimes
as
√
A—such that A = B2 := BB.

The proof of Proposition 4 is more important than its statement. So
let us prove this result.

Proof. Apply the spectral theorem and write A = PDP−1. Since D is
a diagonal matrix, its square root can be defined unambiguously as the
following complex-valued n × n diagonal matrix:

D1/2 :=





λ1/2
1 0 0 · · · 0
0 λ1/2

2 0 · · · 0
0 0 λ1/2

3 · · · 0
...

...
... . . . ...

0 0 0 · · · λ1/2
n




.

Define B := PD1/2P−1, and note that
B2 = PD1/2P−1PD1/2P−1 = PDP−1 = A,

since P−1P = I and (D1/2)2 = D. �

2. Positive-semidefinite matrices

Recall that an n × n matrix A is positive semidefinite if it is symmetric
and

x′Ax ≥ 0 for all x ∈ Rn.
Recall that A is positive definite if it is symmetric and

x′Ax > 0 for all nonzero x ∈ Rn.

Theorem 5. A symmetric matrix A is positive semidefinite if and only
if all of its eigenvalues are ≥ 0. A is positive definite if and only if all
of its eigenvalues are > 0. In the latter case, A is also nonsingular.

The following is a ready consequence.

Corollary 6. All of the eigenvalues of a variance-covariance matrix
are always ≥ 0.

Now let us establish the theorem.
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Proof of Theorem 5. Suppose A is positive semidefinite, and let λ de-
note one of its eignenvalues, together with corresponding eigenvector
x. Since 0 ≤ x′Ax = λ‖x‖2 and ‖x‖ > 0, it follows that λ ≥ 0. This
proves that all of the eigenvalues of A are nonnegative. If A is positive
definite, then the same argument shows that all of its eigenvalues are
> 0. Because det(A) is the product of all n eigenvalues of A (Corollary
3), it follows that det(A) > 0, whence A is nonsingular.

This proves slightly more than half of the proposition. Now let us
suppose that all eigenvalues of A are ≥ 0. We write A in spectral form
A = PDP′, and observe that D is a diagonal matrix of nonnegative
numbers. By virute of its construction. A1/2 = PD1/2P′, and hence for all
x ∈ Rn,

x′Ax =
(
D1/2Px

)′ (
D1/2Px

)
=
∥∥∥D1/2Px

∥∥∥
2
, (1)

which is ≥ 0. Therefore, A is positive semidefinite.
If all of the eigenvalues of A are > 0, then (1) tells us that

x′Ax =
∥∥∥D1/2Px

∥∥∥
2

=
n∑

j=1

([
D1/2Px

]

j

)2
=

n∑

j=1
λj
(
[Px]j

)2 , (2)

where λj > 0 for all j . Therefore,

x′Ax ≥ min
1≤j≤n

λj ·
n∑

j=1

(
[Px]j

)2 = min
1≤j≤n

λj · x′P′Px = min
1≤j≤n

λj · ‖x‖2.

Since min1≤j≤n λj > 0, it follows that x′Ax > 0 for all nonzero x. This
completes the proof. �

Let us pause and point out a consequence of the proof of this last
result.

Corollary 7. IfA is positive semidefinite, then its extremal eigenvalues
satisfy

min
1≤j≤n

λj = min
‖x‖>0

x′Ax
‖x‖2 , max

1≤j≤n
λj = max

‖x‖>0

x′Ax
‖x‖2 .

Proof. We saw, during the course of the previous proof, that

min
1≤j≤n

λj · ‖x‖2 ≤ x′Ax for all x ∈ Rn. (3)

Optimize over all x to see that

min
1≤j≤n

λj ≤ min
‖x‖>0

x′Ax
‖x‖2 . (4)
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But min1≤j≤n λj is an eigenvalue for A; let z denote a corresponding
eigenvector in order to see that

min
1≤j≤n

λj ≤ min
‖x‖>0

x′Ax
‖x‖2 ≤

z′Az
‖z‖2 = min

1≤j≤n
λj .

So both inequalities are in fact equalities, and hence follows the formula
for the minimum eigenvalue. The one for the maximum eigenvalue is
proved similarly. �

Finally, a word about the square root of positive semidefinite matri-
ces:

Proposition 8. If A is positive semidefinite, then so is A1/2. If A is
positive definite, then so is A1/2.

Proof. We write, in spectral form, A = PDP′ and observe [by squaring
it] that A1/2 = PD1/2P′. Note that D1/2 is a real diagonal matrix since the
eigenvalues of A are ≥ 0. Therefore, we may apply (1) to A1/2 [in place
of A] to see that x′A1/2x = ‖D1/4Px‖2 ≥ 0 where D1/4 denotes the [real]
square root of D1/2. This proves that if A is positive semidefinite, then
so is A1/2. Now suppose there exists a positive definite A whose square
root is not positive definite. It would follow that there necessarily exists
a nonzero x ∈ Rn such that x′A1/2x = ‖D1/4Px‖2 = 0. Since D1/4Px = 0,

D1/2Px = D1/4D1/4Px = 0 Ñ x′Ax =
∥∥∥D1/2Px

∥∥∥
2

= 0.

And this contradicts the assumption that A is positive definite. �

3. The rank of a matrix

Recall that vectors v1, . . . ,vk are linearly independent if
c1v1 + · · ·+ ckvk = 0 Ñ c1 = · · · = ck = 0.

For instance, v1 := (1 , 0)′ and v2 := (0 , 1)′ are linearly independent 2-
vectors.

The column rank of a matrix A is the maximum number of linearly
independent column vectors of A. The row rank of a matrix A is the
maximum number of linearly independent row vectors of A. We can
interpret these definitions geometrically as follows: First, suppose A is
m×n and define C(A) denote the linear space of all vectors of the form
c1v1 + · · · + cnvn, where v1, . . . ,vn are the column vectors of A and
c1, . . . , cn are real numbers. We call C(A) the column space of A.

We can define the row space R(A), of A similarly, or simply define
R(A) := C(A′).
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Lemma 9. For every m × n matrix A,

C(A) = {Ax : x ∈ Rn} , R(A) :=
{
x′A : x ∈ Rm} .

We can think of an m× n matrix A as a mapping from Rn into Rm;
namely, we can think of matrix A also as the function fA(x) := x 7Ï Ax.
In this way we see that C(A) is also the “range” of the function fA.

Proof. Let us write the columns of A as a1,a2, . . . ,an. Note that y ∈ C(A)
if and only if there exist c1, . . . , cn such that y = c1a1 + · · · + cnan =
Ac, where c := (c1 , . . . , cn)′. This shows that C(A) is the collection of
all vectors of the form Ax, for x ∈ Rn. The second assertion [about
R(A)] follows from the definition of R(A equalling C(A′) and the already-
proven first assertion. �

It then follows, from the definition of dimension, that

column rank of A = dimC(A), row rank of A = dimR(A).

Proposition 10. Given any matrix A, its row rank and column rank
are the same. We write their common value as rank(A).

Proof. Suppose A is m × n and its column rank is r. Let b1, . . . ,br
denote a basis for C(A) and consider the matrix m × r matrix B :=
(b1 , . . . ,br). Write A, columnwise , as A := (a1 , . . . ,an). For every
1 ≤ j ≤ n, there exists c1,j , . . . , cr,j such that aj = c1,jb1 + · · ·+ cr,jbr . Let
C := (ci,j ) be the resulting r × n matrix, and note that A = BC. Because
Ai,j =

∑r
k=1 Bi,kCk,j ;, every row of A is a linear combination of the rows

of C. In other words, R(A) ⊆ R(C) and hence the row rank of A is
≤ dimR(C) = r = the column rank of A. Apply this fact to A′ to see that
also the row rank of A′ is ≤ the column rank of A′; equivalently that the
column rank of A is ≤ the row rank of A. �

Proposition 11. If A is n ×m and B is m × k, then

rank(AB) ≤ min (rank(A) , rank(B)) .

Proof. The proof uses an idea that we exploited already in the proof
of Proposition 10: Since (AB)j,l =

∑n
ν=1Aj,νBν,l , the rows of AB are

linear combinations of the rows of B; that is R(AB) ⊆ R(B), whence
rank(AB) ≤ rank(B). Also, C(AB) ⊆ C(A), whence rank(AB) ≤ rank(A).
These observations complete the proof. �
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Proposition 12. If A and C are nonsingular, then
rank(ABC) = rank(B),

provided that the dimensions match up so that ABC makes sense.

Proof. Let D := ABC; our goal is to show that rank(D) = rank(B).
Two applications of the previous proposition together yield rank(D) ≤

rank(AB) ≤ rank(B). And since B = A−1DC−1, we have also rank(B) ≤
rank(A−1D) ≤ rank(D). �

Corollary 13. IfA is an n×n real and symmetric matrix, then rank(A) =
the total number of nonzero eigenvalues of A. In particular, A has full
rank if and only if A is nonsingular. Finally, C(A) is the linear space
spanned by the eigenvectors of A that correspond to nonzero eigen-
values.

Proof. We write A, in spectral form, as A = PDP−1, and apply the
preceding proposition to see that rank(A) = rank(D), which is clearly
the total number of nonzero eigenvalue of A. Since A is nonsingular if
and only if all of its eigenvalues are nonzero, A has full rank if and only
if A is nonsingular.

Finally, suppose A has rank k ≤ n; this is the number of its nonzero
eigenvalues λ1, . . . , λk. Let v1, . . . ,vn denote orthonormal eigenvectors
such that v1, . . . ,vk are eigenvectors that correspond to λ1, . . . , λk and
vk+1, . . . ,vn are eigenvectors that correspond to eigenvalues 0 [Gram–
Schmidt]. And define E to be the span of v1, . . . ,vk; i.e.,

E := {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ R} .
Our final goal is to prove that E = C(A), which we know is equal to the
linear space of all vectors of the form Ax.

Clearly, c1v1 + · · ·+ ckvk = Ax, where x =
∑k

j=1(cj/λj )vj . Therefore,
E ⊆ C(A). If k = n, then this suffices because in that case v1, . . . ,vk is a
basis for Rn, hence E = C(A) = Rn. If k < n, then we can write every
x ∈ Rn as a1v1+· · ·+anvn, so that Ax =

∑k
j=1 ajλjvj ∈ E. Thus, C(A) ⊆ E

and we are done. �

Let A be m × n and define the null space [or “kernel”] of A as
N(A) := {x ∈ Rn : Ax = 0} .

Note that N(A) is the linear span of the eigenvectors of A that corre-
spond to eigenvalue 0. The other eigenvectors can be chosen to be
orthogonal to these, and hence the preceding proof contains the facts
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that: (i) Nonzero elements of N(A) are orthogonal to nonzero elements
of C(A); and (ii)

dimN(A) + rank(A) = n ( = the number of columns of A). (5)

Proposition 14. rank(A) = rank(A′A) = rank(AA′) for every m × n
matrix A.

Proof. If Ax = 0 then A′Ax = 0, and if A′Ax = 0, then ‖Ax‖2 =
x′A′Ax = 0. In other words, N(A) =N(A′A). Because A′A and A both
have n columnes, it follows from (5) that rank(A′A) = rank(A). Apply
this observation to A′ to see that rank(A′) = rank(AA′) as well. The
result follows from this and the fact that A and A′ have the same rank
(Proposition 10). �

4. Projection matrices

A matrix A is said to be a projection matrix if: (i) A is symmetric; and
(ii) A is “idempotent”; that is, A2 = A.

Note that projection matrices are always positive semidefinite. In-
deed, x′Ax = x′A2x = x′A′Ax = ‖Ax‖2 ≥ 0

Proposition 15. If A is an n × n projection matrix, then so is I − A.
Moreover, all eigenvalues of A are zeros and ones, and rank(A) = the
number of eigenvalues that are equal to one.

Proof. (I − A)2 = I − 2A + A2 = I − A. Since I − A is symmetric also,
it is a projection. If λ is an eigenvalue of A and x is a corresponding
eigenvector, then λx = Ax = A2x = λAx = λ2x. Multiply both sides by
x′ to see that λ‖x‖2 = λ2‖x‖2. Since ‖x‖ > 0, it follows that λ ∈ {0 , 1}.
The total number of nonzero eigenvalues is then the total number of
eigenvalues that are ones. Therefore, the rank of A is the total number
of eigenvalues that are one. �

Corollary 16. If A is a projection matrix, then rank(A) = tr(A).

Proof. Simply recall that tr(A) is the sum of the eigenvalues, which for
a projection matrix, is the total number of eigenavalues that are one. �

Why are they called “projection” matrices? Or, perhaps even more
importantly, what is a “projection”?
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Lemma 17. Let Ω denote a linear subspace of Rn, and x ∈ Rn be
fixed. Then there exists a unique element y ∈ Ω that is closest to x;
that is,

‖y − x‖ = min
z∈Ω
‖z− x‖.

The point y is called the projection of x onto Ω.

Proof. Let k := dimΩ, so that there exists an orthonormal basis b1, . . . ,bk
for Ω. Extend this to a basis b1, . . . ,bn for all of Rn by the Gram–Schmidt
method.

Given a fixed vector x ∈ Rn, we can write it as x := c1b1 + · · ·+cnbn
for some c1, . . . , cn ∈ R. Define y := c1b1+· · ·+ckbk. Clearly, y ∈ Ω and
‖y − x‖2 =

∑n
i=k+1 c2

i . Any other z ∈ Ω can be written as z =
∑k

i=1 dibi,
and hence ‖z−x‖2 =

∑k
i=1(di−ci)2 +

∑n
i=k+1 c2

i , which is strictly greater
than ‖y − x‖2 =

∑n
i=k+1 c2

i unless di = ci for all i = 1, . . . , k; i.e., unless
z = y. �

Usually, we have a k-dimensional linear subspace Ω of Rn that is the
range of some n×k matrix A. That is, Ω = {Ay : y ∈ Rk}. Equivalently,
Ω = C(A). In that case,
min
z∈Ω
‖z− x‖2 = min

y∈Rk
‖Ay − x‖2 = min

y∈Rk

[
y′A′Ay − y′A′x − x′Ay + x′x

]
.

Because y′A′x is a scalar, the preceding is simplified to
min
z∈Ω
‖z− x‖2 = min

y∈Rk

[
y′A′Ay − 2y′A′x + x′x

]
.

Suppose that the k × k positive semidefinite matrix A′A is nonsingular
[so that A′A and hence also (AA′)−1 are both positive definite]. Then, we
can relabel variables [α := A′Ay] to see that

min
z∈Ω
‖z− x‖2 = min

α∈Rk

[
α′(A′A)−1α − 2α′(A′A)−1A′x + x′x

]
.

A little arithmetic shows that
(α −A′x)′(A′A)−1(α −A′x)

= α′(A′A)−1α − 2α′(A′A)−1A′x + x′A(A′A)−1A′x.
Consequently,

min
z∈Ω
‖z− x‖2

= min
α∈Rk

[
(α −A′x)′(A′A)−1(α −A′x)− x′A(A′A)−1A′x + x′x

]
.

The first term in the parentheses is ≥ 0; in fact it is > 0 unless we
select α = A′x. This proves that the projection of x onto Ω is ob-
tained by setting α := A′x, in which case the projection itself is Ay =
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A(A′A)−1A′x and the distance between y and x is the square root of
‖x‖2 − x′A(A′A)−1A′x.

Let PΩ := A(A′A)−1A′. It is easy to see that PΩ is a projection matrix.
The preceding shows that PΩx is the projection of x onto Ω for every
x ∈ Rn. That is, we can think of PΩ as the matrix that projects onto
Ω. Moreover, the distance between x and the linear subspace Ω [i.e.,
minz∈Rk ‖z−x‖] is exactly the square root of x′x−x′PΩx = x′(I−PΩ)x =
‖(I − PΩ)x‖2, because I − PΩ is a projection matrix. What space does it
project into?

Let Ω⊥ denote the collection of all n-vectors that are perpendicular
to every element of Ω. If z ∈ Ω⊥, then we can write, for all x ∈ Rn,
‖z− x‖2 = ‖z− (I − PΩ)x + PΩx‖2

= ‖z− (I − PΩ)x‖2 + ‖PΩx‖2 − 2 {z− (I − PΩ)x}′PΩx

= ‖z− (I − PΩ)x‖2 + ‖PΩx‖2 ,

since z is orthogonal to every element of Ω including PΩx, and PΩ = P2
Ω.

Take the minimum over all z ∈ Ω⊥ to find that I − PΩ is the projection
onto Ω⊥. Let us summarize our findings.

Proposition 18. If A′A is nonsingular [equivalently, has full rank], then
PC(A) := A(A′A)−1A′ is the projection onto C(A), I −PC(A) = PC(A)⊥ is the
projection onto Ω⊥, and we have

x = PC(A)x + PC(A)⊥x, and ‖x‖2 =
∥∥PC(A)x

∥∥2 +
∥∥PC(A)⊥x

∥∥2 .
The last result is called the “Pythagorean property.”



Lecture 4

Quadratic forms

Let A be a real and symmetric n × n matrix. Then the quadratic form
associated to A is the function QA defined by

QA(x) := x′Ax (x ∈ Rn).

We have seen quadratic forms already, particularly in the context of
positive-semidefinite matrices.

1. Random quadratic forms

Let X := (X1, . . . , Xn)′ be an n-dimensional random vector. We are in-
terested in the random quadratic form QA(X) := X′AX.

Proposition 1. If EX := µ and Var(X) := Σ, then

E
(
X′AX

)
= tr(AΣ) + µ′Aµ.

In symbols, E(QA(X)) = tr(AΣ) +QA(µ).

Proof. We can write

X′AX = (X − µ)′AX + µ′AX
= (X − µ)′A(X − µ) + µ′AX + (X − µ)′Aµ.

If we take expectations, then the last term vanishes and we obtain

E
(
X′AX

)
= E

[
(X − µ)′A(X − µ)

]
+ µ′Aµ.

It suffices to verify that the expectation on the right-hand side is the trace
of AΣ. But this is a direct calculation: Let Yj := Xi−µj , so that Y = X−µ

21
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and hence

E
[
(X − µ)′A(X − µ)

]
= E

(
Y ′AY

)

=
n∑

i=1

n∑

j=1
E
(
YiAi,jYj

)
=

n∑

i=1

n∑

j=1
Ai,j [Var(Y )]i,j

=
n∑

i=1

n∑

j=1
Ai,j [Var(X − µ)]i,j =

n∑

i=1

n∑

j=1
Ai,j [Var(X)]i,j

=
n∑

i=1

n∑

j=1
Ai,jΣi,j =

n∑

i=1

n∑

i=1
Ai,jΣj,i

=
n∑

i=1
[AΣ]i,i = tr(AΣ),

as desired. �

We easily get the following by a relabeling (X⇔ X − b):

Corollary 2. For every nonrandom b ∈ Rn,
E
[
(X − b)′A(X − b)

]
= tr(AΣ) + (µ − b)′A(µ − b).

In particular, E[(X − µ)′A(X − µ)] = tr(AΣ).

2. Examples of quadratic forms

What do quadratic forms look like? It is best to proceed by example.

Example 3. If A := In×n, then QA(x) =
∑n

i=1 x2
i . Because tr(AΣ) =

tr(Σ) =
∑n

i=1 Var(Xi), it follows that

E
( n∑

i=1
X2
i

)
=

n∑

i=1
Var(Xi) +

( n∑

i=1
µ2
i

)
.

This ought to be a familiar formula. �

Example 4. If

A := 1m×m :=




1 · · · 1
...

...
1 · · · 1





m×m

,

then QA(x) = (
∑n

i=1 xi)2. Note that

tr(AΣ) =
n∑

i=1

n∑

j=1
Ai,jΣi,j =

n∑

i=1

n∑

j=1
Cov(Xi , Xj ).
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Therefore,

E




( n∑

i=1
Xi

)2


 =
n∑

i=1

n∑

j=1
Cov(Xi , Xj ) +

( n∑

i=1
µi

)2

;

this is another familiar formula. �

Example 5. One can combine matrices in a natural way to obtain new
quadratic forms from old ones. Namely, if a, b ∈ R and A and B are
real and symmetric n×n matrices, then QaA+bB(x) = aQA(x)+bQB(x).
For instance, suppose A := In×n and B := 1n×n. Then,

aA+ bB =





a + b b b · · · b
b a + b b · · · b
b b a + b · · · b
...

...
... . . . ...

b b b · · · a + b




,

and, thanks to the preceding two examples,

QaA+bB(x) = a
n∑

i=1
x2
i + b

( n∑

i=1
xi

)2

.

An important special case is when a := 1 and b := −1/n. In that case,

A− 1
nB =





1− 1/n −1/n −1/n · · · −1/n
−1/n 1− 1/n −1/n · · · −1/n
−1/n −1/n 1− 1/n · · · −1/n

...
...

... . . . ...
−1/n −1/n −1/n · · · 1− 1/n




,

and

QA−(1/n)B(x) =
n∑

i=1
x2
i −

1
n

( n∑

i=1
xi

)2

=
n∑

i=1
(xi − x̄)2.

Note that

tr(AΣ) =
n∑

i=1
Var(Xi) + 1

n

n∑

i=1

n∑

j=1
Cov(Xi , Xj ).

Consider the special case that the Xi ’s are uncorrelated. In that case,
tr(AΣ) = (1− 1/n)

∑n
i=1 Var(Xi), and hence

E
[ n∑

i=1
(Xi − X̄)2

]
= (1− 1/n)

n∑

i=1
Var(Xi) +

n∑

i=1
(µi − µ̄)2.
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When the Xi ’s are i.i.d. this yields E
∑n

i=1(Xi−X̄)2 = (n−1)Var(X1), which
is a formula that you have seen in the context of the unbiasedness of the
sample variance estimator S2 := (n − 1)−1∑n

i=1(Xi − X̄)2. �

Example 6. Consider a symmetric matrix of the form

A :=





0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 0





.

That is, the super- and sub-diagonal entires are all ones and all other
entries are zeros. Then,

QA(x) = 2
n−2∑

i=1
xixi+2.

Other examples can be constructed in this way as well, and by also
combining such examples. �

3. The variance of a random quadratic form

In the previous section we computed the expectation of X′AX where X
is a random vector. Here let us say a few things about the variance of
the same random vector, under some conditions on X.

Proposition 7. Suppose X := (X1 , . . . , Xn)′ where the Xj ’s are i.i.d. with
mean zero and four finite moments. Then,

Var
(
X′AX

)
=
(
µ4 − 3µ2

2

) n∑

i=1
A2
i,i +

(
µ2

2 − 1
)

(tr(A))2 + 2µ2
2tr
(
A2
)
,

where µ2 := E(X2
1) and µ4 := E(X4

1).

One can generalize this a little more as well, with more or less the
same set of techniques, in order to compute the variance of X′AX in the
case that the Xi ’s are independent, with common first four moments,
and not necessarily mean zero.

Proof. Suppose X := (X1 , . . . , Xn)′, where X1, . . . , Xn are independent
and mean zero. Suppose µ2 := E(X2

i ) and µ4 := E(X4
i ) do not depend on

i [e.g., because the Xj ’s are independent]. Then we can write
(
X′AX

)2 =
∑∑∑∑

1≤i,j,k,`≤n
Ai,jAk,`XiXjXkX` .
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Note that

E
(
XiXjXkX`

)
=






µ4 of i = j = k = `,
µ2

2 if i = j 6= k = ` or
if i = k 6= j = ` or
if i = ` 6= k = j,

0 otherwise.
Therefore,

E
[(
X′AX

)2] =
n∑

i=1
A2
i,i µ4 +

∑∑

1≤i 6=k≤n
Ai,iAk,k µ2

2 +
∑∑

1≤i 6=j≤n
Ai,jAj,i µ2

2 +
∑∑

1≤i 6=k≤n
Ai,kAk,i µ2

2

= µ4

n∑

i=1
A2
i,i + µ2

2




∑∑

1≤i 6=k≤n
Ai,iAk,k + 2

∑∑

1≤i 6=j≤n
A2
i,j



 .

Next, we identify the double sums in turn:
∑∑

1≤i 6=k≤n
Ai,iAk,k =

n∑

i=1
Ai,i

n∑

k=1
Ak,k −

n∑

i=1
A2
i,i = (tr(A))2 −

n∑

i=1
A2
i,i,

∑∑

1≤i 6=j≤n
A2
i,j =

n∑

i=1

n∑

j=1
A2
i,j −

n∑

i=1
A2
i,i =

n∑

i=1

n∑

j=1
Ai,jAj,i −

n∑

i=1
A2
i,i

=
n∑

i=1
(A2)i,i −

n∑

i=1
A2
i,i = tr

(
A2
)
−

n∑

i=1
A2
i,i.

Consequently,

E
[(
X′AX

)2] = µ4

n∑

i=1
A2
i,i + µ2

2

[
(tr(A))2 −

n∑

i=1
A2
i,i + 2tr

(
A2
)
− 2

n∑

i=1
A2
i,i

]

=
(
µ4 − 3µ2

2

) n∑

i=1
A2
i,i + µ2

2

[
(tr(A))2 + 2tr

(
A2
)]
.

Therefore, in this case,

Var
(
X′AX

)
=
(
µ4 − 3µ2

2

) n∑

i=1
A2
i,i+µ2

2

[
(tr(A))2 + 2tr

(
A2
)]
−
[
E
(
X′AX

)]2 .

This proves the result because E(X′AX) = tr(A). �





Lecture 5

Moment-generating
functions and
independence

Let X := (X1 , . . . , Xn)′ be a random vector. Its moment generating func-
tion [written MGF for short] MX is defined as

MX(t) := Eet′X (t ∈ Rn).

It is the case that MX(t) is a well-defined quantity, but it might be infinite
for some, and even all, values of t ∈ Rn. The following is a hard fact
from classical analysis:

Theorem 1 (Uniqueness theorem of MGFs). Suppose there exists t > 0
such that MX(t) <∞ for all t ∈ Rn with ‖t‖ ≤ r. Then, the distribution
of X is determined uniquely by the function MX. That is, if Y is any
random vector whose MGF is the same as MX, then Y has the same
distribution as X.

We are interested in examples, and primarily those that involve nor-
mal distributions in one form or another.

27
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Example 2. If X ∼ N(µ , σ2), then

MX(t) = EetX =
∫ ∞

−∞
etx e−(x−µ)2/(2σ2)

√
2πσ2

dx

=
∫ ∞

−∞
et(σy+µ) e−y2/2

√
2π

dy (y := (x − µ)/σ )

= etµ
∫ ∞

−∞

etσy−y2/2
√

2π
= etµ

∫ ∞

−∞

e− 1
2 [y2−2ytσ]
√

2π
dy.

We complete the square [y2 − 2ytσ = (y − tσ )2 − (tσ )2] in order to see
that

MX(t) = exp
(
tµ + t2σ2

2

)
.

Therefore, the uniqueness theorem (Theorem 1) tells us that any random
variable Y whose MGF is MY (t) = exp(tµ+ 1

2 t2σ2) is distributed according
to N(µ , σ2). �

Example 3 (MGF of a simple multivariable normal). Suppose Xi ∼
N(µi , σ2

i ) (1 ≤ i ≤ n) are independent. Then, the MGF ofX := (X1 , . . . , Xn)′
is

MX(t) = Eet′X =
n∏

j=1
EetjXj =

n∏

j=1
etjµj+

1
2 t

2
j σ2

j = exp




n∑

j=1
tjµj +

1
2

n∑

j=1
t2j σ2

j





for all t ∈ Rn. �

Example 4 (MGF of χ2
1). If X is standard normal, then Y := X2 ∼ χ2

1 .
Now

MY (t) = EetX2 =
∫ ∞

−∞

etx2−x2/2
√

2π
dx

= 1√
2π

∫ ∞

−∞
exp

(
−1

2(1− 2t)x2
)

dx.

If t ≥ 1/2, then the preceding is infinite. Otherwise, a change of variables
[y =

√
1− 2t x] tells us that it is equal to

∫ ∞

−∞

e−y2/2
√

2π
dy√

1− 2t
= 1√

1− 2t
.

In other words, MX2(t) =∞ if t ≥ 1/2 and MX2(t) = (1−2t)−1/2 if t < 1/2. �
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Example 5 (MGF of χ2
n). Let X1, . . . , Xn ∼ N(0 , 1) be independent, and

consider the χ2
n random variable Y :=

∑n
i=1X2

i . Its MGF is

MY (t) =
n∏

j=1
MX2

j
(t) =

{
(1− 2t)−n/2 if t < 1/2,
∞ if t ≥ 1/2.

According to Theorem 1, this is a formula for the MGF of the χ2
n distri-

bution, and identifies that distribution uniquely. �

Theorem 6 (Independence theorem of MGFs). Let X be a random n-
vector with a MGF that is finite in an open neighborhood of the origin
0 ∈ Rn. Suppose there exists r = 1, . . . , n such that

MX(t) = MX(t1 , . . . , tr , 0 , . . . , 0) ·MX(0 , . . . , 0 , tr+1 , . . . , tn)
for all t ∈ Rn. Then, (X1 , . . . , Xr) and (Xr+1 , . . . , Xn) are independent.

Proof. Let X̃ denote an independent copy of X. Define a new random
vector Y as follows:

Y :=





X1
...
Xr
X̃r+1

...
X̃n





.

Then,
MY (t) = MX(t1 , . . . , tr , 0 , . . . , 0) ·MX(0 , . . . , 0 , tr+1 , . . . , tn).

According to the condition of this theorem, X and Y have the same
MGF’s, and therefore they have the same distribution (Theorem 1). That
is, for all sets A1, . . . , An,

P {X1 ∈ A1 , . . . , Xn ∈ An} = P {Y1 ∈ A1 , . . . , Yn ∈ An} ,
which is, by construction equal to

P {X1 ∈ A1 , . . . , Xr ∈ Ar} · P
{
X̃r+1 ∈ Ar+1 , . . . , X̃n ∈ An

}
.

Since X̃ has the same distribution as X, this proves that
P {X1 ∈ A1 , . . . , Xn ∈ An} = P {X1 ∈ A1 , . . . , Xr}·P {Xr+1 ∈ Ar+1 , . . . , Xn ∈ An} ,
which has the desired result. �





Lecture 6

Gaussian Random
Vectors

1. The multivariate normal distribution

Let X := (X1 , . . . , Xn)′ be a random vector. We say that X is a Gaussian
random vector if we can write

X = µ +AZ,

where µ ∈ Rn, A is an n × k matrix and Z := (Z1 , . . . , Zk)′ is a k-vector
of i.i.d. standard normal random variables.

Proposition 1. Let X be a Gaussian random vector, as above. Then,

EX = µ, Var(X) := Σ = AA′, and MX(t) = et′µ+ 1
2 ‖A′t‖2 = et′µ+ 1

2 t′Σt ,

for all t ∈ Rn.

Thanks to the uniqueness theorem of MGF’s it follows that the dis-
tribution of X is determined by µ, Σ, and the fact that it is multivariate
normal. From now on, we sometimes write X ∼ Nn(µ ,Σ), when we
mean that MX(t) = exp(t′µ + 1

2t′Σt). Interesetingly enough, the choice
of A and Z are typically not unique; only (µ ,Σ) influences the distribu-
tion of X.

Proof. The expectation of X is µ, since E(AZ) = AE(Z) = 0. Also,

E(XX′) = E
(
[µ +AZ] [µ +AZ]′

)
= µµ′ +AE(ZZ′)A′.

Since E(ZZ′) = I , the variance-covariance of X is E(XX′)− (EX)(EX)′ =
E(XX′) − µµ′ = AA′, as desired. Finally, note that MX(t) = exp(t′µ) ·
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MZ(A′t). This establishes the result on the MGF of X, since MZ(s) =∏n
j=1 exp(s2

j /2) = exp(1
2‖s‖2) for all s ∈ Rn. �

We say that X has the multivariate normal distribution with param-
eters µ and Σ := AA′, and write this as X ∼ Nn(µ ,AA′).

Theorem 2. X := (X1 , . . . , Xn)′ has a multivariate normal distribution
if and only if t′X =

∑n
i=1 tiXi has a normal distribution on the line for

every t ∈ Rn. That is, X1, . . . , Xn are jointly normally distributed if and
only if all of their linear combinations are normally distributed.

Note that the distribution of X depends on A only through the pos-
itive semidefinite n × n matrix Σ := AA′. Sometimes we say also that
X1, . . . , Xn are jointly normal [or Gaussian] when X := (X1 , . . . , Xn)′ has
a multivariate normal distribution.

Proof. If X ∈ Nn(µ ,AA′) then we can write it as X = µ + AZ, we as
before. In that case, t′X = t′µ+t′AZ is a linear combination of Z1, . . . , Zk,
whence has a normal distribution with mean t1µ1+· · ·+tnµn and variance
t′AA′t = ‖A′t‖2.

For the converse, suppose that t′X has a normal distribution for
every t ∈ Rn. Let µ := EX and Σ := Var(X), and observe that t′X
has mean vector t′µ and variance-covariance matrix t′Σt. Therefore,
the MGF of the univariate normal t′X is Mt′X(s) = exp(st′µ + 1

2s2t′Σt)
for all s ∈ R. Note that Mt′X(s) = E exp(st′X). Therefore, apply this
with s := 1 to see that Mt′X(1) = MX(t) is the MGF of a multivariate
normal. The uniqueness theorem for MGF’s (Theorem 1, p. 27) implies
the result. �

2. The nondegenerate case

Suppose X ∼ Nn(µ ,Σ), and recall that Σ is always positive semidefinite.
We say that X is nondegenerate when Σ is positive definite (equivalently,
invertible).

Take, in particular, X ∼ N1(µ ,Σ); µ can be any real number and Σ is
a positive semidefinite 1 × 1 matrix; i.e., Σ ≥ 0. The distribution of X is
defined via its MGF as

MX(t) = etµ+ 1
2 t2Σ.

When X is nondegenerate (Σ > 0), X ∼ N(µ ,Σ). If Σ = 0, then MX(t) =
exp(tµ); therefore by the uniqueness theorem of MGFs, P{X = µ} = 1.
Therefore, N1(µ , σ2) is the generalization of N(µ , σ2) in order to include
the case that σ = 0. We will not write N1(µ , σ2); instead we always write
N(µ , σ2) as no confusion should arise.
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Theorem 3. X ∼ Nn(µ ,Σ) has a probability density function if and
only if it is nondegenerate. In that case, the pdf of X is

fX(a) = 1
(2π)n/2 (det Σ)1/2 exp

(
−1

2(a − µ)′Σ−1(a − µ)
)

for all a ∈ Rn.

Proof. First of all let us consider the case that X is degenerate. In that
case Σ has some number k < n of strictly-positive eigenvalues. The
proof of Theorem 2 tells us that we can write X = AZ+µ, where Z is a
k-dimensional vector of i.i.d. standard normals and A is an n×k matrix.
Consider the k-dimensional space

E :=
{
x ∈ Rn : x = Az+ µ for some z ∈ Rk

}
.

Because P{Z ∈ Rk} = 1, it follows that P{X ∈ E} = 1. If X had a pdf fX,
then

1 = P{X ∈ E} =
∫

E
fX(x) dx.

But the n-dimensional volume of E is zero since the dimension of E is
k < n. This creates a contradiction [unless X did not have a pdf, that is].

If X is nondegenerate, then we can write X = AZ + µ, where Z is
an n-vector of i.i.d. standard normals and Σ = AA′ is invertible; see the
proof of Theorem 2. Recall that the choice of A is not unique; in this
case, we can always choose A := Σ1/2 because Σ1/2Z + µ ∼ Nn(µ ,Σ). In
other words,

Xi =
n∑

j=1
Ai,jZj + µi =

n∑

j=1
Σ1/2
i,jZj + µi := gi(Z1 , . . . , Zn) (1 ≤ i ≤ n).

If a = Σ1/2z+µ, then z = Σ−1/2(a−µ). Therefore, the change of variables
formula of elementary probability implies that

fX(a) =
fZ
(
Σ−1/2(a − µ)

)

|det J| ,

as long as det J 6= 0, where

J :=





∂g1
∂z1

· · · ∂g1
∂zn...
...

∂gn
∂z1

· · · ∂gn
∂zn



 =




A1,1 · · · A1,n

...
...

An,1 · · · An,n



 = A.

Because det(Σ) = det(AA′) = (detA)2, it follows that detA = (det Σ)1/2,
and hence

fX(a) = 1
(det Σ)1/2 fZ

(
Σ−1/2(a − µ)

)
.
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Because of the independence of the Zj ’s,

fZ(z) =
n∏

j=1

e−z
2
j /2

√
2π

= 1
(2π)n/2

e−z′z/2

for all z ∈ Rn. Therefore,

fZ
(
Σ−1/2(a − µ)

)
= 1

(2π)n/2
exp

(
−1

2(a − µ)′Σ−1(a − µ)
)
,

and the result follows. �

3. The bivariate normal distribution

A bivariate normal distribution has the form N2(µ ,Σ), where µ1 = EX1,
µ2 = EX2, Σ1,1 = Var(X1) := σ2

1 > 0, Σ2,2 = Var(X2) := σ2
2 > 0, and

Σ1,2 = Σ2,1 = Cov(X1 , X2). Let

ρ := Corr(X1 , X2) := Cov(X1 , X2)√
Var(X1) · Var(X2)

denote the correlation between X1 and X2, and recall that −1 ≤ ρ ≤ 1.
Then, Σ1,2 = Σ2,1 = ρσ1σ2, whence

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Since det Σ = σ2
1σ2

2 (1− ρ2), it follows immediately that our bivariate nor-
mal distribution is non-degenerate if and only if −1 < ρ < 1, in which
case

Σ−1 =





1
σ2

1 (1− ρ2)
− ρ

1− ρ2 ·
1

σ1σ2

− ρ
1− ρ2 ·

1
σ1σ2

1
σ2

2 (1− ρ2)




.

Because

z′Σ−1z =
(
z1
σ1

)2
− 2ρ

(
z1
σ1

)(
z2
σ2

)
+
(
z2
σ2

)2

for all z ∈ Rn, the pdf of X = (X1 , X2)′—in the non-degenerate case
where there is a pdf—is

fX(x1 , x2)

= 1
2πσ1σ2

√
1− ρ2

exp
(
− 1

2(1− ρ2)

[(
x1 − µ1
σ1

)2
− 2ρ

(
x1 − µ1
σ1

)(
x2 − µ2
σ2

)
+
(
x2 − µ2
σ2

)2
])

.
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But of course non-degenerate cases are also possible. For instance,
suppose Z ∼ N(0 , 1) and define X := (Z ,−Z). Then X = AZ where
A := (1 ,−1)′, whence

Σ = AA′ =
(

1 −1
−1 1

)

is singular. In general, if X ∼ Nn(µ ,Σ) and the rank of Σ is k < n, then
X depends only on k [and not n] i.i.d. N(0 , 1)’s. This can be gleaned from
the proof of Theorem 2.

4. A few important properties of multivariate normal
distributions

Proposition 4. Let X ∼ Nn(µ ,Σ). If C is an m × n matrix and d is
an m-vector, then CX + d ∼ Nm(Cµ + d ,CΣC′). In general, CΣC′
is positive semidefinite; it is positive definite if and only if it has full
rank m.

In particular, if a is a nonrandom n-vector, then a′X ∼ N(a′µ ,a′Σa).

Proof. We compute the MGF of CX + d as follows:

MCX+d(t) = E exp
(
t′ [CX + d]

)
= et′dMX(s),

where s := C′t. Therefore,

MCX+d(t) = exp
(
t′d + s′µ + 1

2s
′Σs

)
= exp

(
t′ν + 1

2t
′Qt

)
,

where ν := Cµ + d and Q := CΣC′. Finally, a general fact about sym-
metric matrices (Corollary 13, p. 17) implies that the symmetric m ×m
matrix CΣC′ is nonsingular if and only if it has full rank m. �

Proposition 5. If X ∈ Nn(µ ,Σ), for a nonsingular variance-covariance
matrix Σ, and Cm×n and dn×1 are nonrandom, then CX + d is non-
singular if and only if rank(C) = m.

Proof. Recall that the nonsingularity of Σ is equivalent to it being pos-
itive definite. Now CX + d is multivariate normal by the preceding re-
sult. It is nondegenerate if and only if CΣC′ is positive definite. But
x′CΣC′x = (C′x)′Σ(C′x) > 0 if and only if (C′x) 6= 0, since Σ is positive
definite. Therefore, CX + d is nondegenerate if and only if C′x 6= 0
whenever x 6= 0. This is equivalent to x′C 6= 0 for all nonzero vectors
x; that is, C has row rank—hence rank—m. �
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The following is an easy corollary of the previous proposition, and
identifies the “standard multivariate normal” distribution as the distribu-
tion of i.i.d. standard univariate normal distributions. It also states that
we do not change the distribution of a standard multivariate normal if
we apply to it an orthogonal matrix.
Corollary 6. Z ∼ Nn(0 , I) if and only if Z1, . . . , Zn are i.i.d. N(0 , 1)’s.
Moreover, if Z ∼ Nn(0 , I) and An×n is orthogonal then AZ ∼ Nn(0 , I)
also.

Next we state another elementary fact, derived by looking only at
the MGF’s. It states that a subset of a multivariate normal vector itself is
multivariate normal.
Proposition 7. Suppose X ∼ Nn(µ ,Σ) and 1 ≤ i1 < i2 < · · · < ik ≤ n is
a subsequence of 1 , . . . , n. Then, (Xi1 , . . . , Xik )′ ∼ Nk(ν ,Q), where

ν := E




Xi1

...
Xik



 =




µi1
...
µik



 , Q := Var




Xi1

...
Xik



 =




Σi1,i1 · · · Σi1,ik

...
...

Σik,i1 · · · Σik,ik



 .

Proposition 8. Suppose X ∼ Nn(µ ,Σ), and assume that we can divide
the Xi ’s into two groups: (Xi)i∈G and (Xj )j 6∈G , where G is a subset of the
index set {1 , . . . , n}. Suppose in addition that Cov(Xi , Xj ) = 0 for all
i ∈ G and j 6∈ G. Then, (Xi)i∈G is independent from (Xj )j 6∈G .

Thus, for example, if (X1 , X2 , X3)′ has a trivariate normal distribu-
tion and X1 is uncorrelated from X2 and X3, then X1 is independent
of (X2 , X3). For a second example suppose that (X1 , X2 , X3 , X4) has a
multivariate normal distribution and: E(X1X2) = E(X1)E(X2), E(X1X3) =
E(X1)E(X3), E(X4X2) = E(X4)E(X2), and E(X4X3) = E(X4)E(X3), then (X1 , X4)
and (X2 , X3) are two independent bivariate normal random vectors.

Proof. I will prove the following special case of the proposition; the gen-
eral case follows from a similar reasoning, but the notation is messier.

Suppose (X1 , X2) has a bivariate normal distribution and E(X1X2) =
E(X1)E(X2). Then, X1 and X2 are independent. In order to prove this we
write the MGF of X := (X1 , X2)′:

MX(t) = et′µ+ 1
2 t′Σt

= et1µ1+t2µ2 · exp
(

1
2(t1 , t2)

(
Var(X1) 0

0 Var(X2)

)(
t1
t2

))

= et1µ1+ 1
2 t

2
1Var(X1) · et2µ2+ 1

2 t
2
2Var(X2)

= MX1(t1) ·MX2(t2).
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The result follows from the independence theorem for MGF’s (Theorem
6, p. 29). �

Remark 9. The previous proposition has generalizations. For instance,
suppose we could decompose {1 , . . . , n} into k disjoint groups G1, . . . , Gk
[so Gi ∩ Gj = ∅ if i 6= j , and G1 ∪ · · · ∪ Gk = {1 , . . . , n}] such that
Xi1 , . . . , Xik are [pairwise] uncorrelated for all i1 ∈ G1, . . . , ik ∈ Gk. Then,
(Xi)i∈G1 , . . . , (Xi)i∈Gk are independent multivariate normal random vec-
tors. The proof is the same as in the case k = 2. �

Remark 10. It is important that X has a multivariate normal distribution.
For instance, we can construct two standard-normal random variables X
and Y , on the same probability space, such that X and Y are uncorrelated
but dependent. Here is one way to do this: Let Y ∼ N(0 , 1) and S = ±1
with probability 1/2 each. Assume that S and Y are independent, and
define X := S|Y |. Note that

P{X ≤ a} = P{X ≤ a , S = 1}+ P{X ≤ a , S = −1}

= 1
2P{|Y | ≤ a}+ 1

2P{−|Y | ≤ a}.

If a ≥ 0, then P{X ≤ a} = 1
2P{|Y | ≤ a} + 1

2 = P{Y ≤ a}. Similarly,
P{X ≤ a} = P{Y ≤ a} if a ≤ 0. Therefore, X,Y ∼ N(0 , 1). Further-
more, X and Y are uncorrelated because S has mean zero; here is why:
E(XY ) = E(SY |Y |) = E(S)E(Y |Y |) = 0 = E(X)E(Y ). But X and Y are
not independent because |X| = |Y |: For instance, P{|X| < 1} > 0, but
P{|X| < 1 | |Y | ≥ 2} = 0. The problem is [and can only be] that (X ,Y )′ is
not bivariate normal. �

5. Quadratic forms

Given a multivariate-normal random variable X ∼ Nn(0 , I) and an n×n
positive semidefinite matrix A := (Ai,j ), we can consider the random
quadratic form

QA(X) := X′AX.
We can write A, in spectral form, as A = PDP′, so that

QA(X) = X′PDP′X.
Since P is orthogonal and X ∼ Nn(0 , I), Z := P′X ∼ Nn(0 , I) as well.
Therefore,

QA(X) = Z′DZ =
n∑

i=1
Di,iZ2

i .
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If A is a projection matrix, then all of the Di,i ’s are ones and zeros. In
that case, QA(X) ∼ χ2

r , where r := the number of eigenvalues of A that
are ones; i.e, r = rank(A). Finally, recall that the rank of a projection
matrix is equal to its trace (Corollary 16, p. 16). Let us summarize our
findings.

Proposition 11. If X ∼ Nn(0 , I) and A is a projection matrix, then
X′AX ∼ χ2

rank(A) = χ2
tr(A) = χ2

r , where r := the total number of nonzero
[i.e., one] eigenvalues of A.

Example 12. Let

A :=





1− 1/n 1/n −1/n · · · 1/n
−1/n 1− 1/n −1/n · · · − 1/n

...
...

... . . . ...
−1/n −1/n −1/n · · · 1− 1/n



 .

Then we have seen (Example 5, p. 23) that

x′Ax =
n∑

i=1
(xi − x̄)2 for all x ∈ Rn.

Now let us observe that A has the form

A = I −B,
where B := (1/n)1n×n. Note that B is symmetric and B2 = B. Therefore,
B is a projection, and hence so is A = I − B. Clearly, tr(A) = n − 1.
Therefore, Proposition 11 implies the familiar fact that if X1, . . . , Xn are
i.i.d. standard normals, then

∑n
i=1(Xi − X̄)2 ∼ χ2

n−1. �

Example 13. If A is an n×n projection matrix of rank [or trace] r, then
I − A is an n × n projection matrix of rank [or trace] n − r. Therefore,
X′(I −A)X ∼ χ2

n−r , whenever X ∼ Nn(0 , I). �

Example 14. What is the distribution of X is a nonstandard multivariate
normal? Suppose X ∼ Nn(µ ,Σ) and A is a projection matrix. If X is
nondegenerate, then Σ−1/2(X − µ) ∼ Nn(0 , I). Therefore,

(X − µ)′Σ−1/2AΣ−1/2(X − µ) ∼ χ2
rank(A) = χ2

tr(A),

for every n × n projection matrix A. In particular,

(X − µ)′Σ−1(X − µ) ∼ χ2
n,

which can be seen by specializing the preceding to the projection matrix
A := I . Specializing further still, we see that if X1, . . . , Xn are independent
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normal random variables, then we obtain the familiar fact that
n∑

i=1

(
Xi − µi
σi

)2
∼ χ2

n,

where µi := EXi and σ2
i := Var(Xi). �





Lecture 7

Linear Models

1. The basic model

We now study a linear statistical model. That is, we study the models
where the observations Y := (Y1 , . . . , Yn)′ has the following assumed
property:

Y = Xβ + ε,

where β := (β0 , β1 , . . . , βp−1) is a vector of p unknown parameters, and

X :=




x1,0 · · · x1,p−1

...
...

xn,0 · · · xn,p−1





is the socalled “regression matrix,” or “design matrix.” The elements of
the n×p matrix X are assumed to be known; these are the “descriptive”
or “explanatory” variables, and the randomness of the observed values is
inherited from the “noise vector,” ε := (ε1 , . . . , εn)′, which we may think
of as being “typically small.” Note that we are changing our notation
slightly; X is no longer assumed to be a random vector [this is done in
order to conform with the historical development of the subject].

Throughout, we assume always that the εi ’s are independent with
mean zero and common variance σ2, where σ > 0 is possibly [in fact,
typically] unknown.

In particular, it follows from this assumption that

Eε = 0 and Var(ε) = σ2I. (1)

41
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Let us emphasize that our linear model, once written out coordinate-
wise, is

Yi = β0xi,0 + · · ·+ βp−1xi,p−1 + εi (1 ≤ i ≤ n).
It is intuitively clear that unless n ≥ p, we cannot hope to effectively
use our n observed values in order to estimate the p + 1 unknowns
σ2, β0, . . . , βp−1. Therefore, we assume always that

n ≥ p + 1. (2)
This condition guarantees that our linear model is not overspecified.

The best-studied linear models are the normal models. Those are
linear models for which we assume the more stringent condition that

ε ∼ Nn
(
0 , σ2I

)
. (3)

Example 1 (A measurement-error model). Here we study a socalled
measurement-error model: Suppose the observations Y1, . . . , Yn satisfy

Yi = µ + εi (1 ≤ i ≤ n)
for an unknown parameter µ. This is a simplest example of a linear
model, where β = µ is 1× 1, and X := 1n×1 is a vector of n ones. �

Example 2 (Simple linear regression). In simple linear regression we
assume that the observed values have the form

Yi = β0 + β1xi + εi (1 ≤ i ≤ n),
where xi is the predictive variable the corresponds to observation i, and
β0, β1 are unknown. Simple linear regression fits into our theory of
linear models, once we set the design matrix as

X :=




1 x1
...

...
1 xn



 .

Example 3 (Polynomial regression). Consider a nonlinear regression
model

Yi = β0 + β1xi + β2x2
i + · · ·+ βp−1xp−1

i + εi (1 ≤ i ≤ n),
where p is a known integer ≥ 1 [p − 1 denotes the degree of the poly-
nomial approximation to the observed y ’s]. Then polynomial regression
models are linear models with design matrices of the form

X :=




1 x1 x2

1 · · · xp−1
1

...
...

...
...

1 xn x2
n · · · xp−1

n



 .
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Example 4 (One-way layout with equal observations). In the simplest
case of one-way layout, in analysis of variance, our observations are
indexed by vectors themselves as follows:

Yi,j = µi + εi,j (1 ≤ i ≤ I , 1 ≤ j ≤ J).

For instance, suppose we are interested in the effect of I different fer-
tilizers. We apply these fertilizers to J different blocks, independently,
and “measure the effect.” Then, Yi,j is the effect of fertilizer i in block j .
The preceding model is assuming that, up to sampling error, the effect
of fertilizer i is µi. This is a linear model. Indeed, we can create a new
random vector Y of IJ observations by simply “vectorizing” the Yi,j ’s:

Y :=
(
Y1,1 , . . . , Y1,J , Y2,1 , . . . , Y2,J , . . . , YI,1 , . . . , YI,J

)′ .

The vector β of unknowns is β := (µ1 , . . . , µI )′, and the design matrix is
the following IJ × I matrix:

X :=





1J×1 0 0 · · · 0
0 1J×1 0 · · · 0
...

...
...

...
0 0 0 · · · 1J×1



 ,

where 1J×1 := (1 , . . . , 1)′ is a J-vector of all ones. It is possible to show
that one-way layout with unequal number of observations is also a
linear model. That is the case where Yi,j = µi + εi,j , where 1 ≤ i ≤ I and
1 ≤ j ≤ Ji [the number of observed values might differ from block to
block].

2. The least-squares estimator of θ := Xβ

Let us return to our general linear model

Y = Xβ + ε.
Ultimately, our goal is to first find and then analyze the least-squares
estimator β̂ of β. But first, let us find the least-squares estimate for
θ := Xβ. In other words, we wish to perform the following optimization
problem:

min
β∈Rp

‖Y −Xβ‖ = min
θ∈C(X)

‖Y − θ‖.

Abstractly speaking, the minimizer solves

θ̂ = PC(X)Y .
But is there an optimal β? As we shall see next, there certainly is a
unique β̂ when X has full rank.
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3. The least-squares estimator of β

Our least-squares estimator β̂ of the vector parameter β is defined via

min
β∈Rp

‖Y −Xβ‖ =
∥∥∥Y −Xβ̂

∥∥∥ .

We aim to solve this minimization problem under natural conditions on
the design matrix X. But first, let us introduce some notation. The vector

Ŷ := θ̂ := Xβ̂

is called the vector of fitted values, and the coordinates of

e := Y − Ŷ

are the socalled residuals.
Now we write our minimization problem in the following form: First

find the minimizing β̂ ∈ Rp that solves

min
z∈C(X)

‖Y − z‖ =
∥∥∥Y −Xβ̂

∥∥∥ .

Now we know from Proposition 18 (p. 20) that the vector z that achieves
this minimum does so uniquely, and is given by PC(X)Y , where we recall
PC(X) := X(X′X)−1X′ is projection onto the column space of X; this of
course is valid provided that (X′X)−1 exists. Now the matrix PC(X) plays
such an important role that it has its own name: It is called the hat
matrix, and is denoted as

H := PC(X) = X(X′X)−1X′.

H is called the hat matrix because it maps the observations Y to the
fitted values Ŷ [informally, it puts a “hat” over Y ]. More precisely, the
defining feature of H is that

Ŷ = HY ,

once again provided that X′X is nonsingular. The following gives us a
natural method for checking this nonsingularity condition in terms of X
directly.

Lemma 5. X′X is nonsingular if and only if rank(X) = p.

Proof. Basic linear algebra tells us that the positive semidefinite X′X is
nonsingular if and only if it is positive definite; i.e., if and only if it has
full rank. Since the rank of X′X is the same as the rank of X, and since
n > p, X′X has full rank if and only if its rank, which is the same as
rank(X), is p. �
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From now on we always assume [unless we state explicitly otherwise]
that rank(X) = p. We have shown that, under this condition, if there is a
β̂, then certainly Ŷ = Xβ̂ = HY = X(X′X)−1X′Y . In order to find β̂ from
this, multiply both sides by (X′X)−1X′ to see that β̂ = (X′X)−1X′Y .

The quantity RSS := e′e = ‖e‖2 := ‖Y − Ŷ‖2 is called the sum of
squared residuals, also known as the residual sum of squared errors,
and is given by ‖(I − H)Y‖2 = ‖PC(X)⊥Y‖2. In particular, we have the
following:

Proposition 6. If rank(X) = p, then the least-squares estimator of β is

β̂ := (X′X)−1X′Y , (4)

and RSS = ‖(I −H)Y‖2.

Let us make some elementary computations with the least squares
estimator of β.

Lemma 7. β̂ is an unbiased estimator of β, and Var(β̂) = σ2(X′X)−1.

Proof. Because Eβ̂ = (X′X)−1X′EY = β, it follows that β̂ is unbiased.
Also, Var(β̂) = (X′X)−1X′Var(Y )X(X′X)−1 = σ2(X′X)−1, because of (1). �

4. Optimality

Theorem 8. Let θ := Xβ be estimated, via least squares, by θ̂ :=
HY . Then, for all linear unbiased estimates of c′θ, the estimator c′θ̂
uniquely minimizes the variance.

By a “linear unbiased estimator of c′θ” we mean an estimator of the
form

∑n
j=1 ajYj whose expectation is c′θ. In this sense, c′θ̂ is the best

linear unbiased estimator [or “BLUE”] of c′θ. The preceding can be
improved upon as follows, though we will not prove it:

Theorem 9 (Rao). Under the normal model (3), c′θ̂ is the unique UMVUE
of c′θ, for every nonrandom vector c ∈ Rn.

Let us consider Theorem 8 next.

Proof of Theorem 8. We saw on page 43 that θ̂ := HY irrespective of
whether or not (X′X)−1 exists. Therefore,

E
(
c′θ̂
)

= c′Eθ̂ = c′θ, Var
(
c′θ̂
)

= c′Var(HY )c = c′H ′Var(Y )Hc

= σ2‖Hc‖2.
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Any other linear estimator has the form a′Y , and satisfies

E
(
a′Y

)
= a′EY = a′θ, Var

(
a′Y

)
= a′Var(Y )a = σ2‖a‖2.

If, in addition, a′Y is unbiased, then it follows that a′θ = c′θ; i.e., a− c is
orthogonal to θ. This should hold no matter what value β [and hence θ]
takes. Since C(X) is the collection of all possible values of θ, it follows
that a − c is orthogonal to C(X). Because H is projection onto C(X), it
follows that H(a− c) = a; equivalently, Hc = Ha. Therefore, Var(c′θ̂) =
σ2‖Ha‖2 and

Var
(
a′Y

)
− Var

(
c′θ̂
)

= σ2
{
‖a‖2 − ‖Ha‖2

}
= σ2‖(I −H)a‖2 ≥ 0,

thanks to the Pythagorean property. �

5. Regression and prediction

Now that we have the least-squares estimate for β, let us use it in order
to make prediction.

Recall that our model is Y = Xβ + ε. In applications, Yi is the ith
observation for the y variable, and the linear model is really saying that
given an explanatory variable x = (x0 , . . . , xp−1)′,

y = β0x0 + · · ·+ βp−1xp−1 + “noise.”

Therefore, our prediction, for a given x, is

[predicted value] y = β̂0x0 + · · ·+ β̂p−1xp−1, (5)

where β̂ = (β̂0 , . . . , β̂p−1)′ is the least-squares estimate of β. We may view
the right-hand side of (5) as a function of x, and call (5) the equation for
the “regression line.”

6. Estimation of σ2

We wish to also estimate σ2. The estimator of interest to us turns out to
be the following:

S2 := 1
n − pRSS, (6)

as the next lemma suggests.

Lemma 10. S2 is an unbiased estimator of σ2.
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Proof. Recall that RSS = e′e = ‖Y − HY‖2. We can write the RSS as
‖(I −H)Y‖2 = Y ′(I −H)′(I −H)Y = Y ′(I −H)Y . In other words, the RSS
is a random quadratic form for the matrix A := I −H , and hence

E(RSS) = tr((I −H)Var(Y )) + (EY )′(I −H)(EY )
= σ2tr(I −H) + (Xβ)′(I −H)Xβ.

Because Xβ ∈ C(X), I − H projects onto the orthogonal subspace of
where it is, therefore (I − H)Xβ = 0. And the trace of the projection
matrix (I − H) is its rank, which is n − tr(H) = n − p, since X has full
rank p. It follows that E(RSS) = σ2(n− p), and therefore E(S2) = σ2. �

7. The normal model

In the important special case of the normal model,

Y ∼ Nn
(
Xβ , σ2I

)
.

Therefore, β̂ ∼ Np(β , σ2(X′X)−1). And the vector (I −H)Y = Y −Xβ̂ of
residual errors is also a multivariate normal:

(I−H)Y ∼ Nn−p
(
(I −H)Xβ , σ2(I −H)(I −H)′

)
= Nn−p

(
0 , σ2(I −H)

)
.

Therefore, in the normal model,

S2 = 1
n − p ‖(I −H)Y‖2 ∼ σ2 χ

2
n−p

n − p .

Finally, we note that t′β̂+s′(I−H)Y is a matrix times Y for all t ∈ Rp

and s ∈ Rn−p. Therefore, (β̂ , (I−H)Y ) is also a multivariate normal. But

Cov
(
β̂ , (I −H)Y

)
= (X′X)−1X′Var(Y )(I−H)′ = σ2(X′X)−1X′(I−H) = 0,

since the columns of X are obviously orthogonal to every element in
C(X)⊥ and I −H = PC(X)⊥ . This shows that β̂ and (I −H)Y are indepen-
dent, and hence β̂ and S2 are also independent. Thus, we summarize
our findings.

Theorem 11. The least-squares estimator β̂ of β is given by (4); it is
always unbiased. Moreover, S2 is an unbiased estimator of σ2. Under
the normal model, S and β̂ are independent, and

β̂ ∼ Np
(
β , σ2(X′X)−1

)
, S2 ∼ σ2 χ

2
n−p

n − p .



48 7. Linear Models

Recall that Y has the nondegenerate multivariate normal distribution
Nn(Xβ , σ2I). Therefore, its pdf is

fY (y) = 1
(2πσ2)n/2

exp
(
− 1

2σ2 ‖y −Xβ‖
2
)
.

This shows readily the following.

Lemma 12. In the normal model, β̂ is the MLE of β and
(n−p

n
)
S2 is

the MLE for σ2.

Proof. Clearly, maximizing the likelihood function, over all β, is the
same as minimizing ‖Y −Xβ‖2. Therefore, MLE = least squares for β.
As for σ2, we write the log likelihood function:

L(σ ) = −n2 ln(2π)− n ln σ − 1
2σ2 ‖Y −Xβ‖

2.

Then,

L′(σ ) = −nσ + 1
σ3 ‖Y −Xβ‖

2.

Set L′(σ ) = 0 and solve to see that the MLE of σ2 is 1
n‖Y − Xβ̂‖2 =(n−p

n
)
S2, thanks to the MLE principle and the already-proven fact that

the MLE of β is β̂. �

8. Some examples

1. A measurement-error model. Recall the measurement-error model

Yi = µ + εi (1 ≤ i ≤ n).

We have seen that this is a linear model with p = 1, β = µ, and X := 1n×1.
Since X′X = n and X′Y =

∑n
i=1 Yi, we have

β̂ = µ̂ := Ȳ ,

and

1
n − 1S

2 = 1
n − 1

∥∥∥Y − Ȳ1n×1

∥∥∥
2

= 1
n − 1

n∑

i=1
(Yi − Ȳ )2 := S2.

These are unbiased estimators for µ and σ2, respectively. Under the
normal model, Ȳ and S2 are independent, Ȳ ∼ N(µ , σ2) and (n − 1)S2 ∼
σ2χ2

n−1. These are some of the highlights of Math. 5080.
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2. Simple linear regression. Recall that simple linear regression is our
linear model in the special case that p = 2, β = (β0 , β1)′, and

X :=




1 x1
...

...
1 xn



 .

We have

X′X =
(

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x2

i

)
, X′Y =

( ∑n
i=1 Yi∑n
i=1 xiYi

)
,

and

(X′X)−1 = 1
n
∑n

i=1 x2
i −

(∑n
i=1 xi

)2

( ∑n
i=1 x2

i −
∑n

i=1 xi
−
∑n

i=1 xi n

)

= 1∑n
i=1(xi − x̄)2

( 1
n
∑n

i=1 x2
i −x̄

−x̄ 1

)
.

Therefore, (
β̂0
β̂1

)
= (X′X)−1X′Y ,

which leads to

β̂1 =
∑n

i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

=
∑n

i=1(xi − x̄)(Yi − Ȳ )∑n
i=1(xi − x̄)2

and β̂0 = Ȳ − β̂1x̄.

We have derived these formulas by direct computation already. In this
way we find that the fitted values are

Ŷ = Xβ̂ =





β̂0 + β̂1x1
...

β̂0 + β̂1xn



 .

Also,

S2 = 1
n − 2

∥∥∥Y − Ŷ
∥∥∥

2
= 1
n − 2

n∑

i=1

(
Yi − β̂0 − β̂1xi

)2
,

and this is independent of (β̂0 , β̂1) under the normal model.
Recall that our linear model is, at the moment, the simple regression

model,
Yi = β0 + β1xi + εi.

Perhaps the most important first question that we can ask in this context
is β1 = 0; that is, we wish to know whether the x variables are [linearly]
independent of the Y ’s. Let us try to find a confidence interval for β1 in
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order to answer this question. From now on, we work under the normal
model. Recall that under the normal model,

β̂ ∼ N2
(
β , σ2(X′X)−1

)
Ñ β̂1 ∼ N

(
β1 , σ2

[
(X′X)−1

]

2,2

)
= N

(
β1 ,

σ2
∑n

i=1(xi − x̄)2

)
.

Equivalently,

Z :=

√∑n
i=1(xi − x̄)2

σ

(
β̂1 − β1

)
∼ N(0 , 1).

Now, S2/σ2 is independent of Z and is distributed as χ2
n−2/(n−2). There-

fore, √√√√
n∑

i=1
(xi − x̄)2

(
β̂1 − β1
S

)
= Z√

S2/σ2
∼ tn−2.

Therefore, a (1− α)× 100% confidence interval for β1 is

β̂1 ±
S√∑n

i=1(xi − x̄)2
tα/2n−2,

where trν is the point whose right area, under the tν pdf, is r. If zero is
not in this confidence interval, then our statistical prediction is that β1 is
not zero [at the confidence level α].

3. A remark on polynomial regression. Recall that, in polynomial re-
gression, we have Y = Xβ + ε, where X is the following design matrix:

X :=




1 x1 x2

1 · · · xp−1
1

...
...

...
...

1 xn x2
n · · · xp−1

n



 .

If p = 2, then this is simple linear regression. Next consider the “qua-
dratic regression” model where p = 3. That is,

X :=




1 x1 x2

1
...

...
...

1 xn x2
n



 Ñ X′X =




n

∑n
i=1 xi

∑n
i=1 x2

i∑n
i=1 xi

∑n
i=1 x2

i
∑n

i=1 x3
i∑n

i=1 x2
i
∑n

i=1 x3
i
∑n

i=1 x4
i



 .

Because n ≥ 4, X is nonsingular if and only if x is not a vector of
constants [a natural condition]. But you see that already it is painful to
invert X′X. This example shows the importance of using a computer in
linear models: Even fairly simple models are hard to work with, using
only direct calculations.



Lecture 8

Assessing Normality

1. Visual data exploration

A big part of our theory of linear models has been under the nor-
mal model; that is the most successful part of the theory applies when
Y = Xβ + ε where we assumed that ε ∼ Nn(0 , σ2I); equivalently, that
ε1, . . . , εn are independent N(0 , σ2)’s.

A natural question, for a given data set, is to ask, “is the noise coming
as i.i.d. N(0 , σ2)’s”?

Since the noise is not observable in our model, it seems natural that
we “estimate” it using the residuals e := Y−Xβ̂. It stands to reason that if
ε is a vector of n i.i.d. N(0 , σ2)’s, then the histogram of e1 , . . . , en should
look like a normal density. One should not underestimate the utility of
this simple idea; for instance, we should see, roughly, that:

− approximately 68.3% of the ei ’s should fall in [−S2 , S2],
− approximately 95.4% of the ei ’s should fall in [−2S2 , 2S2], etc.

This is very useful as a first attempt to assess the normality of the noise in
our problem. But it is not conclusive since we cannot assign confidence
levels [the method is a little heuristic]. It turns out that this method can
be improved upon in several directions, and with only a little more effort.

2. General remarks

We can use the Pearson’s χ2-test in order to test whether a certain data
comes from the N(µ0 , σ2

0 ) distribution, where µ0 and σ0 are known. Now
we wish to address the same problem, but in the more interesting case

51
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that µ0 and σ0 are unknown. [For instance, you may wish to know
whether or not you are allowed to use the usual homoskedasticity as-
sumption in the usual measurement-error model of linear models.]

Here we discuss briefly some solutions to this important problem.
Although we write our approach specifically in the context of linear mod-
els, these ideas can be developed more generally to test for normality
of data in other settings.

3. Histograms

Consider the linear model Y = Xβ + ε. The pressing question is, “is it
true that ε ∼ Nn(0, σ2In)”?

To answer this, consider the “residuals,”
e = Y −Xβ̂.

If ε ∼ Nn(0, σ2In) then one would like to think that the histogram of the
ei ’s should look like a normal pdf with mean 0 and variance σ2 (why?).
How close is close? It helps to think more generally.

Consider a sample U1, . . . , Un (e.g., Ui = ei). We wish to know where
the Ui ’s are coming from a normal distribution. The first thing to do is
to plot the histogram. In R you type,

hist(u,nclass=n)

where u denotes the vector of the samples U1, . . . , Un and n denotes the
number of bins in the histogram.

For instance, consider the following exam data:
16.8 9.2 0.0 17.6 15.2 0.0 0.0 10.4 10.4 14.0 11.2 13.6 12.4
14.8 13.2 17.6 9.2 7.6 9.2 14.4 14.8 15.6 14.4 4.4 14.0 14.4
0.0 0.0 10.8 16.8 0.0 15.2 12.8 14.4 14.0 17.2 0.0 14.4 17.2
0.0 0.0 0.0 14.0 5.6 0.0 0.0 13.2 17.6 16.0 16.0 0.0 12.0 0.0
13.6 16.0 8.4 11.6 0.0 10.4 0.0 14.4 0.0 18.4 17.2 14.8 16.0
16.0 0.0 10.0 13.6 12.0 15.2

The command hist(f1.dat,nclass=15) produces Figure 8.1(a).1

Try this for different values of nclass to see what types of histograms
you can obtain. You should always ask, “which one represents the truth
the best”? Is there a unique answer?

Now the data U1, . . . , Un is probably not coming from a normal distri-
bution if the histogram does not have the “right” shape. Ideally, it would
be symmetric, and the tails of the distribution taper off rapidly.
1You can obtain this data freely from the website below:
http://www.math.utah.edu/˜davar/math6010/2011/Notes/f1.dat.
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In Figure 8.1(a), there were many students who did not take the
exam in question. They received a ‘0’ but this grade should probably
not contribute to our knowledge of the distribution of all such grades.
Figure 8.1(b) shows the histogram of the same data set when the zeros
are removed. [This histogram appears to be closer to a normal density.]

4. QQ-Plots

QQ-plots are a better way to assess how closely a sample follows a cer-
tain distribution.

To understand the basic idea note that if U1, . . . , Un is a sample from
a normal distribution with mean µ and variance σ2, then about 68.3%
of the sample points should fall in [µ − σ, µ + σ ], 95.4% should fall in
[µ − 2σ, µ + 2σ ], etc.

Now let us be more careful still. Let U1:n ≤ · · · ≤ Un:n denote the
order statistics of U1, . . . , Un. Then no matter how you make things
precise, the fraction of data “below” Uj :n is (j ± 1)/n. So we make a
continuity correction and define the fraction of the data below Uj :n to be
(j − 1

2 )/n.
Consider the normal “quantiles,” q1, q2, . . . , qn:

Φ(qj ) :=
∫ qj

−∞

e−x2/2
√

2π
dx =

j − 1
2

n ; i.e., qj := Φ−1

(
j − 1

2
n

)
.

Now suppose once again that U1, . . . , Un ∼ N(µ , σ2) is a random [i.i.d.]
sample. Let Zj := (Uj − µ)/σ , so that Z1, . . . , Zn ∼ N(0 , 1). The Z ’s are
standardized data, and we expect the fraction of the standardized data
that fall below qj to be about (j− 1

2 )/n. In other words, we can put together
our observations to deduce that Zj :n ≈ qj . Because Uj :n = σZj :n + µ, it
follows that Uj :n ≈ σqj + µ. In other words, we expect the sample order
statistics U1:n, . . . , Un:n to be very close to some linear function of the
normal quantiles q1, . . . , qn. In other words, if U1, . . . , Un is a random
sample from some normal distribution, then we expect the scatterplot
of the pairs (q1 , U1:n), . . . , (qn ;Un:n) to follow closely a line. [The slope
and intercept are σ and µ, respectively.]

QQ-plots are simply the plots of the N(0 , 1)-quantiles q1, . . . , qn versus
the order statistics U1:n, . . . , Un:n. To draw the qqplot of a vector u in R,
you simply type

qqnorm(u).
Figure 8.2(a) contains the qq-plot of the exam data we have been studying
here.
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5. The Correlation Coefficient of the QQ-Plot

In its complete form, the R-command qqnorm has the following syntax:

qqnorm(u,datax = FALSE,plot = TRUE).

The parameter u denotes the data; datax is “FALSE” if the data values are
drawn on the y-axis (default). It is “TRUE” if you wish to plot (Uj :n, qj )
instead of the more traditional (qj , Uj :n). The option plot=TRUE (default)
tells R to plot the qq-plot, whereas plot=FALSE produces a vector. So for
instance, try

V = qqnorm(u,plot = FALSE).

This creates two vectors: V$x and V$y. The first contains the values of
all qj ’s, and the second all of the Uj :n ’s. So now you can compute the
correlation coefficient of the qq-plot by typing:

V = qqnorm(u,plot = FALSE)
cor(V$x,V$y).

If you do this for the qq-plot of the grade data, then you will find a
correlation of ≈ 0.910. After censoring out the no-show exams, we
obtain a correlation of ≈ 0.971. This produces a noticeable difference,
and shows that the grades are indeed normal.

In fact, one can analyse this procedure statistically [“is the sample cor-
relation coefficient corresponding to the line sufficiently close to ±1”?].

6. Some benchmarks

Figures 8.3 and 8.4 contain four distinct examples. I have used qq-plot in
the prorgam environment “R.” The image on the left-hand side of Fig-
ure 8.3 shows a simulation of 10000 standard normal random variables
(in R, you type x=rnorm(10000,0,1)), and its qq-plot is drawn on typing
qqnorm(x). In a very strong sense, this figure is the benchmark.

The image on the right-hand side of Figure 8.3 shows a simulation of
10000 standard Cauchy random variables. That is, the density function
is f (x) = (1/π)(1 + x2)−1. This is done by typing y=rcauchy(10000,0,1),
and the resulting qq-plot is produced upon typing qqnorm(y). We know
that the Cauchy has much fatter tails than normals. For instance,

P{Cauchy > a} = 1
π

∫ ∞

a

dx
1 + x2 ∼

1
πa (as a→∞),
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whereas P{N(0 , 1) > a} decays faster than exponentially.2 Therefore,
for a large,

P{N(0 , 1) > a} � P{Cauchy > a}.
This heavy-tailedness can be read off in Figure 8.3(b): The Cauchy qq-
plot grows faster than linearly on the right-hand side. And this means
that the standard Cauchy distribution has fatter right-tails. Similar
remarks apply to the left tails.

Figure 8.4(a) shows the result of the qq-plot of a simulation of 10000
iid uniform-(0 , 1) random variables. [To generate these uniform random
variables you type, runif(10000,0,1).]

Now uniform-(0 , 1) random variables have much smaller tails than
normals because uniforms are in fact bounded. This fact manifests itself
in Figure 8.4(a). For instance, we can see that the right-tail of the qq-plot
for uniform-(0 , 1) grows less rapidly than linearly. And this shows that
the right-tail of a uniform is much smaller than that of a normal. Similar
remarks apply to the left tails.

A comparison of the figures mentioned so far should give you a
feeling for how sensitive qq-plots are to the effects of tails. [All are
from distributions that are symmetric about their median.] Finally, let
us consider Figure 8.4(a), which shows an example of 10000 Gamma
random variables with α = β = 1. You generate them in R by typing
x=rgamma(10000,1,1). Gamma distributions are inherently asymmetric.
You can see this immediately in the qq-plot for Gammas; see Figure
8.4(b). Because Gamma random variables are nonnegative, the left tail
is much smaller than that of a normal. Hence, the left tail of the qq-
plot grows more slowly than linearly. The right tail however is fatter.
[This is always the case. However, for the sake of simplicity consider the
special case where Gamma=Exponential.] This translates to the faster-
than-linear growth of the right-tail of the corresponding qq-plot (Figure
8.4(b)).

I have shown you Figures 8.3 and 8.4 in order to high-light the basic
features of qq-plots in ideal settings. By “ideal” I mean “simulated data,”
of course.

Real data does not generally lead to such sleek plots. Nevertheless
one learns a lot from simulated data, mainly because simulated data helps
identify key issues without forcing us to have to deal with imperfections
and other flaws.

2In fact it can be shown that Φ̄(a) :=
∫∞
a φ(x) dx ≈ a−1φ(a) as a→∞, where φ denotes the N(0 , 1)

pdf. Here is why: Let G(a) := a−1φ(a). We know from the fundamental theorem of calculus that
Φ̄′(a) = −φ(a) = −aG(a). Also, G′(a) = −a−1G(a) − aG(a) ≈ −aG(a) as a → ∞. In summary:
Φ̄(a), G(a) ≈ and Φ̄′(a) ≈ G′(a). Therefore, Φ̄(a) ≈ G(a), thanks to the L’Hôpital’s rule of calculus.
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But it is important to keep in mind that it is real data that we are
ultimately after. And so the histogram and qq-plot of a certain real data
set are depicted in Figure 8.5. Have a careful look and ask yourself a
number of questions: Is the data normally distributed? Can you see how
the shape of the histogram manifests itself in the shape and gaps of the
qq-plot? Do the tails look like those of a normal distribution? To what
extent is the ”gap” in the histogram “real”? By this I mean to ask what
do you think might happen if we change the bin-size of the histogram
in Figure 8.5?
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Figure 8.1. Histogram of grades and censored grades
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(a) QQ-plot of grades
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(b) QQ-plot of censored grades

Figure 8.2. QQ-plots of grades and censored grades
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Figure 8.3. (a) is N(0 , 1) data; (b) is Cauchy data
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Figure 8.4. (a) is the qq-plot of unif-(0 , 1); (b) is the qq-plot of a Gamma(1 , 1).
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Figure 8.5. Histogram and qq-plot of the data





Lecture 9

Hypothesis Testing

Throughout, we assume the normal-error linear model that is based on
the model

y = β1x1 + · · ·+ βpxp + noise.
[Note the slight change in the notation.]

1. A test for one parameter

Suppose we want to test to see whether or not the (` + 1)st x-variable
has a [linear] effect on the y variable. Of course, 1 ≤ ` ≤ p, so we are
really testing the statistical hypothesis

H0 : β` = 0.

Since β̂ ∼ Np
(
β , σ2(X′X)−1), it follows that

β̂` ∼ N
(
β` , σ2

[
(X′X)−1

]

`,`

)
.

Because S is independent of β̂ and hence β̂` , and since S2/σ2 ∼ χ2
n−p/(n−

p),
β̂` − β`

S
√[

(X′X)−1
]
`,`

= σ
S ·

β̂` − β`
σ
√[

(X′X)−1
]
`,`

∼ tn−p.

Therefore, it is now a routine matter to set up a t-test for H0 : β` = 0.
As usual, testing has implications that are unattractive; it is much better
to present a confidence interval [which you can then use for a test if you
want, any way]: A (1− α)× 100% confidence interval for β` is

β̂` ± Stα/2n−p

√[
(X′X)−1

]
`,` .

63
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If you really insist on performing a level-α test for β` , it suffices to check
to see if this confidence interval contains 0. If 0 is not in the confidence
interval then you reject. Otherwise, you do nothing.

2. Least-squares estimates for contrasts

We wish to study a more general problem. Recall that our model has
the form

y = β1x1 + β1x1 + · · ·+ βpxp + noise.
If we sample then the preceding becomes Y = Xβ+ε, as before. As part
of model verification, we might ask to see if (xi)i∈J should be excised
from the model, where J := {` , ` + 1 , . . . , r} is a subset of the index
{1 , . . . , n}. In other words, we ask

H0 : β` = · · · = βr = 0.
Note that we can translate the preceding, using the language of matrix
analysis, as H0 : Aβ = 0, where

A :=




0 0 0
0 I 0
0 0 0



 ,

where the identity matrix in the middle is (r− `+1)× (r− `+1); it starts
on position (` , `) and runs r − ` units in rows and in columns.

Now we ask a slightly more general question [it pays to do this, as it
turns out]: Suppose A is a q × p matrix of full rank q ≤ p, and we are
interested in testing the hypothesis,

H0 : Aβ = 0. (1)

The first question to ask is, “how can we estimate β”? The answer is
given to us by the principle of least squares: We write [as before]

Y = θ + ε, where θ := Xβ,
and ε = (ε1 , . . . , εn)′ are mean-zero random variables, and first find the
least-squares estimate θ̂H0 of θ, under the assumption that H0 is valid.
That is, we seek to minimize ‖Y − Xb‖2 over all p-vectors b such that
Ab = 0. The optimal value yields θ̂H0 = Xβ̂H0 .Then we obtain β̂H0 by
noticing that if X has full rank, then β̂H0 = (X′X)−1X′θ̂H0 .

Now it follows by differentiation [or just geometrically] that θ̂H0 is
the projection of Y onto the subspace G of all vectors of the form θ =
Xb that satisfy Ab = 0, where b is a p-vector. We can simplify this
description a little when X has full rank. Note that whenever θ = Xb,
we can solve to get b = (X′X)−1X′θ . Therefore, it follows that—when X
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has full rank— θ̂H0 is the projection of the observations vector Y onto
the subspace G of all vectors of the form θ that satisfy

A1θ = 0, where A1 := A(X′X)−1X′.
In other words, G is the subspace of C(X), whose every element θ is
orthogonal to every row of A1. In symbols,

G = C(X) ∩
[
C(A′1)

]⊥ .

Because A′1b = Xc for c := (X′X)−1Ab, it follows that C(A′1) is a subspace
of C(X). Therefore, we can apply the Pytheagorean property to see that

θ̂H0 = PGY = PC(X)∩[C(A′1)]⊥Y
= PC(X)Y − PC(A′1)Y

= θ̂ −A′1(A1A′1)−1A1Y .
Now

A1A′1 = A(X′X)−1X′X(X′X)−1A′ = A(X′X)−1A′.
Therefore,

θ̂H0 = θ̂ −X(X′X)−1A′
[
A(X′X)−1A′

]−1
A(X′X)−1X′Y .

Aside: How do we know that A(X′X)−1A′ is nonsingular? Note that
A(X′X)−1A′ is positive semidefinite. Now X′X is positive definite; there-
fore, so is its inverse. Therefore, we can write (X′X)−1 = B2 = BB′,
where B := (X′X)−1/2 is the square root of (X′X)−1. In this way we find
that the rank of A(X′X)−1A′ is the same as the rank of AA′. Since A
has full rank, AA′ is invertible. Equivalently, full rank. Equivalently,
A(X′X)−1A′ is a full-rank positive definite matrix; hence nonsingular.
The vector θ̂H0 := ŶH0 = Xβ̂H0 is the vector of fitted values, assuming
that H0 is correct. Therefore, the least-squares estimate for β—under
H0—is

β̂H0 := (X′X)−1X′θ̂H0 = β̂ − (X′X)−1A′
[
A(X′X)−1A′

]−1
A(X′X)−1X′Y

= β̂ − (X′X)−1A′
[
A(X′X)−1A′

]−1
Aβ̂

=
(
I − (X′X)−1A′

[
A(X′X)−1A′

]−1
A
)
β̂.

This can be generalized further as follows: Suppose we wish to test

H0 : Aβ = c,
where c is a known q-vector [we just studied this in the case that c = 0].
Then we reduce the problem to the previous one as follows: First find a
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known p-vector β0 such that Aβ0 = c. Then, create a new parametriza-
tion of our problem by setting

γ := β − β0,

and
Ỹ := Xγ + ε, equivalently Ỹ := Y −Xβ0.

Since Aγ = 0, we know the least-squares estimate γ̂H0 is given by

γ̂H0 =
(
I − (X′X)−1A′

[
A(X′X)−1A′

]−1
A
)
γ̂,

where
γ̂ := (X′X)−1X′Ỹ = (X′X)−1X′Y − β0 = β̂ − β0.

In other words,

β̂H0 − β0 =
(
I − (X′X)−1A′

[
A(X′X)−1A′

]−1
A
)(

β̂ − β0
)

=
(
I − (X′X)−1A′

[
A(X′X)−1A′

]−1
A
)
β̂ − β0 + (X′X)−1A′

[
A(X′X)−1A′

]−1
Aβ0

=
(
I − (X′X)−1A′

[
A(X′X)−1A′

]−1
A
)
β̂ − β0 + (X′X)−1A

[
A(X′X)−1A′

]−1
c.

In this way, we have discovered the following:

Theorem 1. Consider once again the general linear model Y = Xβ+ε.
If Aq×p and cq×1 are known, and A has full rank q ≤ p, then the least-
squares estimate for β—under the null hypothesis H0 : Aβ = c—is

β̂H0 = Θβ̂ + µ,

where

Θ :=
(
I − (X′X)−1A′

[
A(X′X)−1A′

]−1
A
)
, (2)

and

µ = µ(c) := (X′X)−1A′
[
A(X′X)−1A′

]−1
c, (3)

provided that X has full rank.

3. The normal model

Now consider the same problem under the normal model. That is, we
consider H0 : Aβ = c under the assumption that ε ∼ Np(0 , σ2I).
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Theorem 2. Consider the normal-error linear model Y = Xβ + ε.
If Aq×p and cq×1 are known, and A has full rank q ≤ p, then the
least-squares estimate for β—under the null hypothesis H0 : Aβ = c—
satisfies

β̂H0 ∼ Np
(
β , σ2Θ(X′X)−1Θ′

)
,

provided that X has full rank.

Indeed, since

β̂ ∼ Np
(
β , σ2(X′X)−1

)
and β̂H0 = Θβ̂ + µ,

it follows that

β̂H0 ∼ Np
(
Θβ + µ , σ2Θ(X′X)−1Θ′

)
.

Therefore, it remains to check that Θβ + µ = β when Aβ = c. But this
is easy to see directly.

Next we look into inference for σ2. Recall that our estimation of σ2

was based on RSS := ‖Y −Xβ̂‖2. Under H0, we do the natural thing and
estimate σ2 instead by

RSSH0 :=
∥∥∥Y −Xβ̂H0

∥∥∥
2

=

∥∥∥∥∥∥∥∥
Y −Xβ̂︸ ︷︷ ︸
T1

−X(X′X)−1A′
[
A(X′X)−1A′

]−1 [
c −Aβ̂

]

︸ ︷︷ ︸
T2

∥∥∥∥∥∥∥∥

2

.

I claim that T2 is orthogonal to T1; indeed,

T′2T1 =
[
c −Aβ̂

]′ [
A(X′X)−1A′

]−1
A

β̂︷ ︸︸ ︷
(X′X)−1X′Y

−
[
c −Aβ̂

]′ [
A(X′X)−1A′

]−1
A (X′X)−1X′X︸ ︷︷ ︸

I

β̂

= 0.

Therefore, the Pythagorean property tells us that

RSSH0 =
∥∥∥Y −Xβ̂

∥∥∥
2
+ ‖T2‖2

= RSS + ‖T2‖2.
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Next we compute
‖T2‖2 =T′2T2

=
[
c −Aβ̂

]′ [
A(X′X)−1A′

]−1
A(X′X)−1X′X(X′X)−1

︸ ︷︷ ︸
I

A′

︸ ︷︷ ︸
A(X′X)−1A′

[
A(X′X)−1A′

]−1

︸ ︷︷ ︸
I

[
c −Aβ̂

]

=
[
c −Aβ̂

]′ [
A(X′X)−1A′

]−1 [
c −Aβ̂

]
.

In other words,

RSSH0 = RSS +
[
c −Aβ̂

]′ [
A(X′X)−1A′

]−1 [
c −Aβ̂

]
. (4)

Moreover, the two terms on the right-hand side are independent because
β̂ and Y − Xβ̂—hence β̂ and RSS = ‖Y − Xβ̂‖2—are independent. Now
we know the distribution of RSS := (n−p)S2 ∼ σ2(n−p)χ2

n−p. Therefore,
it remains to find the distribution of the second term on the right-hand
side of (4). But

Aβ̂ ∼ Nq
(
Aβ , σ2A(X′X)−1A′

) H0= Nq



c , σ2A(X′X)−1A′︸ ︷︷ ︸
:=Σ



 .

Therefore, Z := σ−1Σ−1/2(Aβ̂ − c) ∼ Nq(0 , Iq×q). Also, we can write the
second term on the right-hand side of (4) as

[
Aβ̂ − c

]′ [
A(X′X)−1A′

]−1 [
Aβ̂ − c

]
= σ2Z′Z = σ2‖Z‖2 ∼ σ2χ2

q .

Let us summarize our efforts.
Theorem 3. Consider normal–error linear model Y = Xβ+ε. Suppose
Aq×p and cq×1 are known, and A has full rank q ≤ p. Then under the
null hypothesis H0 : Aβ = c, we can write

RSSH0 = RSS +W,
provided that X has full rank, where RSS and W are independent, we
recall that RSS ∼ σ2(n − p)χ2

n−p , and W ∼ σ2χ2
q . In particular,

(RSSH0 − RSS)/q
RSS/(n − p)

H0∼
χ2
q/q

χ2
n−p/(n − p)

[the two χ2’s are independent]

= Fq,n−p.

See your textbook for the distribution of this test statistic under the
alternative [this is useful for power computations]. The end result is a
“noncentral F distribution.”
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4. Examples

1. A measurement-error model. For our first example, consider a ran-
dom sample Y1, . . . , Yn ∼ N(µ , σ2); equivalently,

Yi = µ + εi (1 ≤ i ≤ n),
where ε ∼ Nn(0 , σ2I). This is a linear model with p = 1, X := 1n×1, and
β := µ. Recall that (X′X)−1 = 1/n and hence β̂ = (X′X)−1X′Y = Ȳ .

If we test H0 : µ = µ0 for a µ0 the is known, then A = 1 is a 1 × 1
matrix (q = 1) and Aβ = c with c = µ0.

Given that H0 is true, the least-squares estimator of µ [β̂H0 ] is

β̂H0 := µ̂H0 = β̂ + (X′X)−1A′
[
A(X′X)−1A′

]−1 (
c −Aβ̂

)

= Ȳ + 1
n · n · (µ0 − Ȳ ) = µ0.

[Is this sensible?] And

RSS = ‖Y −Xβ̂‖2 =
n∑

i=1
(Yi − Ȳ )2 = ns2

y .

Therefore,

RSSH0 − RSS = (Aβ̂ − c)′
[
A(X′X)−1A′

]−1 (
Aβ̂ − c

)

= n(Ȳ − µ0)2.
And

(RSSH0 − RSS)/q
RSS/(n − p) = (Ȳ − µ0)2

s2
y/(n − 1)

H0∼ F1,n−1.

But
Ȳ − µ0

sy/
√
n − 1

H0∼ tn−1.

Therefore, in particular, t2k = F1,k.

2. Simple linear regression. Here,
Yi = α+ βxi + εi (1 ≤ i ≤ n).

Therefore, p = 2,

β =
(
α
β

)
, and X =




1 x1
...

...
1 xn



 .

Recall that the least-squares estimates of α and β are

α̂ = Ȳ − β̂x̄, β̂ = rsy
sx

.
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Now consider testing the hypothesis,
H0 : β = 0, α = µ0,

where µ0 is known.
Let c = (µ0 , 0)′ and A = I2, so that q = 2. Then, H0 is the same as

H0 : Aβ = c. We have

β̂H0 = β̂ + (c −Aβ̂) = c =
(
µ0
0

)
.

[Is this sensible?]
Now,

RSSH0 − RSS = (Aβ̂ − c)′
[
A(X′X)−1A′

]−1
(Aβ̂ − c) = (β̂ − c)′(X′X)(β̂ − c).

Now,

X′X = n
(

1 x̄
x̄ x̄2

)
Ñ β̂ − c =

(
Ȳ − β̂x̄ − µ0

β̂

)
.

Therefore,
(β̂ − c)′(X′X) = n(Ȳ − µ0)(1 , x̄),

whence
RSSH0 − RSS = n(Ȳ − µ0)2.

Next we compute

RSS = ‖Y −Xβ̂‖2 =
n∑

i=1

[
Yi − (Xβ̂)i

]2
.

Since

Xβ̂ =




1 x1
...

...
1 xn




(
Ȳ − β̂x̄
β̂

)
=
(
Ȳ + β̂(xi − x̄)

)n
i=1

=
(
Ȳ + rsy

sx
(xi − x̄)

)n

i=1
,

it follows that

RSS =
n∑

i=1

[
(Yi − Ȳ )2 +

r2s2
y

s2
x

(xi − x̄)2 − 2rsysx
(Yi − Ȳ )(xi − x̄)

]

= ns2
y + nr2s2

y −
2nrsy
sx

n∑

i=1
(Yi − Ȳ )(xi − x̄)

= ns2
y + nr2s2

y − 2nr2s2
y

= ns2
y(1− r2).

Therefore,
(Ȳ − µ0)2
s2
y(1− r2)

H0∼ F2,n−2.
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3. Two-sample mean. Consider two populations: N(µ1 , σ2) and N(µ2 , σ2)
with equal variances. We wish to know if µ1 = µ2. Take two independent
random samples,

y1,1, . . . , y1,n1 ∼ N(µ1 , σ2),
y2,1, . . . , y2,n2 ∼ N(µ2 , σ2).

We have a linear model: p = 2, n = n1 + n2,

Y =





y1,1
...

y1,n1

y2,1
...

y2,n2





, X =





1 0
...

...
1 0
0 1
...

...
0 1





=
(

1n1×1 0n1×1
0n2×1 1n2×1

)
.

In particular,

X′X =
(
n1 0
0 n2

)
Ñ (X′X)−1 =

(
n−1

1 0
0 n−1

2

)
.

So now consider

H0 : µ1 = µ2 ⇐Ñ H0 : µ1 = µ2 ⇐Ñ H0 : (1 ,−1)︸ ︷︷ ︸
A

(
µ1
µ2

)
= 0.

That is, q = 1, A := (1 ,−1), and c = 0. In this way we find that

β̂ = (X′X)−1X′Y =
(
ȳ1,•
ȳ2,•

)
.

[Does this make intuitive sense?]
In order to find β̂H0 , we first compute

Aβ̂ = (1 ,−1)
(
ȳ1,•
ȳ2,•

)
= ȳ1,• − ȳ2,•.

Also,

(X′X)−1A′ =
(
n−1

1 0
0 n−1

2

)(
1
−1

)
=
(
n−1

1
−n−1

2

)
,

so that

A(X′X)−1A′ = 1
n2

+ 1
n2

= n
n1n2

.
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Now we put things together:

β̂H0 = β̂ +
(
n−1

1
−n−1

2

)
n1n2
n

(
ȳ1,• − ȳ2,•

)

= β̂ +





n2
2
(
ȳ1,• − ȳ2,•

)

−n1
n
(
ȳ1,• − ȳ2,•

)





=





n1
n ȳ1,• + n2

n ȳ2,•

n1
n ȳ1,• + n2

n ȳ2,•



 .

Since n2ȳ2,• =
∑n2

j=1 yj2,j and n1ȳ1,• =
∑n1

i=1 y1,j , it follows that

β̂H0 =
(
ȳ•,•
ȳ•,•

)
.

[Does this make sense?] Since

Xβ̂ =





1 0
...

...
1 0
0 1
...

...
0 1





(
ȳ1,•
ȳ2,•

)
=





ȳ1,•
...

ȳ1,•
ȳ2 •

...
ȳ2,•





=
(
ȳ1 •1n1×1
ȳ2,•1n2×1

)
,

we have

RSS =
n1∑

j=1

(
y1,j − ȳ1 •

)2 +
n2∑

j=1

(
y2,j − ȳ2 •

)2

= n1s2
1 + n2s2

2.
I particular,

RSS
n − p = n1

n − 2s
2
1 + n2

n − 2s
2
2 := s2

p

is the socalled “pooled variance.”
Similarly,

RSSH0 − RSS = n1n2
n

(
ȳ1,• − ȳ2,•

)2 .
Therefore,

n1n2
n

(
ȳ1,• − ȳ2,•

)2

s2
p

H0∼ F1,n−2 Ñ ȳ1,• − ȳ2,•

sp
√ n
n1n2

H0∼ tn−2.



4. Examples 73

4. ANOVA: One-way layout. Consider p populations that are respec-
tively distributed as N(µ1 , σ2), . . . ,N(µp , σ2). We wish to test

H0 : µ1 = · · · = µp.

We have seen that we are in the setting of linear models, so we can
compute β̂H0 etc. that way. I will leave this up to you and compute
directly instead: Sample yj,1 , . . . yj,nk i.i.d. N(µj , σ2) [independent also as
j varies]. Then we vectorize:

Y :=





y1,1
...

y1,n1
...

yp,1
...

yp,np





; etc.

Instead we now find β̂ directly by solving

min
µ

p∑

i=1

ni∑

j=1

(
yi,j − µi

)2 .

That is, compute

∂
∂µi

p∑

i=1

ni∑

j=1

(
yi,j − µi

)2 = −
ni∑

j=1
2
(
yi,j − µi

)
≡ 0 ÍÑ µ̂i = 1

ni

ni∑

j=1
yi,j = ȳi,•.

This yields

β̂ =




ȳ1,•

...
ȳn,•



 .

What about β̂H0? Under H0, µ1 = · · · = µp ≡ µ and so q = p − 1. So we
have

min
µ

p∑

i=1

ni∑

j=1

(
yi,j − µ

)2 ÍÑ β̂H0 =




ȳ•,•

...
ȳ•,•



 .

Also,

RSS =
p∑

i=1

ni∑

j=1

(
yi,j − ȳi,•

)2 ,
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and

RSSH0 =
p∑

i=1

ni∑

j=1

(
yi,j − ȳ•,•

)2 =
p∑

i=1

ni∑

j=1

(
yi,j − ȳi,• + ȳi,• − ȳ•,•

)2

=
p∑

i=1

ni∑

j=1

(
yi,j − ȳi,•

)2 + 2
p∑

i=1

ni∑

j=1

(
yi,j − ȳi,•

) (
ȳi,• − ȳ•,•

)

+
p∑

i=1

ni∑

j=1

(
ȳi,• − ȳ•,•

)2

=
p∑

i=1

ni∑

j=1

(
yi,j − ȳi,•

)2 +
p∑

i=1

ni∑

j=1

(
ȳi,• − ȳ•,•

)2

= RSS +
p∑

i=1
ni
(
ȳi,• − ȳ•,•

)2 .

It follows from the general theory that
∑p

i=1 ni
(
ȳi,• − ȳ•,•

)2 /(p − 1)
∑p

i=1
∑ni

j=1
(
yi,j − ȳi,•

)2 /(n − p)
H0∼ Fp−1,n−p.

“Statistical interpretation”:
∑p

i=1 ni
(
ȳi,• − ȳ•,•

)2

p − 1 = The variation between the samples;

whereas
∑p

i=1
∑ni

j=1
(
yi,j − ȳi,•

)2

n − p = The variation within the samples.

Therefore,
RSSH0 = Variation between + Variation within = Total variation.



Lecture 10

Confidence Intervals
and Sets

Throughout we adopt the normal-error model, and wish to say some
things about the construction of confidence intervals [and sets] for the
parameters β0, . . . , βp−1.

1. Confidence intervals for one parameter

Suppose we want a confidence intervals for the ith parameter βi, where
1 ≤ i ≤ p is fixed. Recall that

β̂i − βi√
σ2
[
(X′X)−1

]
i,i

∼ N(0 , 1),

and

S2 := RSS
n − p = 1

n − p

n∑

i=1

(
Yi −

(
Xβ̂
)

i

)2
∼
σ2χ2

n−p
n − p ,

and is independent of β̂. Therefore,

β̂i − βi√
S2
[
(X′X)−1

]
i,i

∼ N(0 , 1)√
χ2
n−p/(n − p)

= tn−p,

where the normal and χ2 random variables are independent. Therefore,

β̂i ± t(α/2)
n−p S

√[
(X′X)−1

]
i,i

75
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is a (1−α)×100% confidence interval for βi. This yields a complete anal-
ysis of confidence intervals for a univariate parameter; these confidence
intervals can also be used for testing, of course.

2. Confidence ellipsoids

The situation is more interesting if we wish to say something about more
than one parameter at the same time. For example, suppose we want
to know about (β0 , β1) in the overly-simplified case that σ = 1. The
general philosophy of confidence intervals [for univariate parameters]
suggests that we look for a random set Ω such that

P
{(

β̂1
β̂2

)
−
(
β1
β2

)
∈ Ω

}
= 1− α.

And we know that (
β̂1
β̂2

)
∼ N

((
β1
β2

)
,Σ
)
,

where Σ is a 2× 2 matrix with

Σi,j =
[
(X′X)−1

]

i,j
.

Here is a possible method: Let

γ̂ :=
(
β̂1 − β1
β̂2 − β2

)
, so that γ̂ ∼ N2 (0 ,Σ) .

Also, recall that
γ̂′Σ−1γ̂ ∼ χ2

2 .
Therefore, one natural choice for Ω is

Ω :=
{
x ∈ R2 : x′Σ−1x ≤ χ2

2(α/2)
}
.

What does Ω look like? In order to answer this, let us apply the spectral
theorem:

Σ = PDP′ ÍÑ Σ−1 = PD−1P′.
Then we can represent Ω as follows:

Ω =
{
x ∈ R2 : x′PD−1P′x ≤ χ2

2(α/2)
}

=
{
x ∈ R2 : (P′x)D−1(P′x) ≤ χ2

2(α/2)
}

=
{
Py ∈ R2 : y′D−1y ≤ χ2

2(α/2)
}

=
{
Py ∈ R2 : y2

1
λ1

+ y2
2
λ2
≤ χ2

2(α/2)
}
.



3. Bonferonni bounds 77

Consider

E :=
{
y ∈ R2 : y2

1
λ1

+ y2
2
λ2
≤ χ2

2(α/2)
}
. (1)

This is the interior of an ellipsoid, and Ω = PE is the image of the
ellipsoid under the “linear orthogonal map” P. Such sets are called
“generalized ellipsoids,” and we have found a (1− α)× 100% confidence
[generalized] ellipsoid for (β1 , β2)′.

The preceding can be generalized to any number of the parameters
βi1 , . . . , βik , but is hard to work with, as the geometry of Ω can be com-
plicated [particularly if k� 2]. Therefore, instead we might wish to look
for approximate confidence sets that are easier to work with. Before we
move on though, let me mention that if you want to know whether or
not H0 : β1 = β1,0, β2 = β2,0, then we can use these confidence bounds
fairly easily, since it is not hard to check whether or not (β1,0 , β2,0)′ is in
Ω: You simply compute the scalar quantity

(
β1,0 , β2,0

)
Σ−1

(
β1,0
β2,0

)
,

and check to see if it is ≤ χ2
2(α/2)! But if you really need to imagine

or see the confidence set[s], then this exact method can be unwieldy
[particularly in higher dimensions than 2].

3. Bonferonni bounds

Our approximate confidence intervals are based on a fact from general
probability theory.

Proposition 1 (Bonferonni’s inequality). Let E1, . . . , Ek be k events. Then,

P (E1 ∩ · · · ∩ Ek) ≥ 1−
k∑

j=1
P(Ecj ) = 1−

k∑

j=1

(
1− P(Ej )

)
.

Proof. The event Ec1 ∪· · ·∪Eck is the complement of E1∩· · ·∩Ek. There-
fore,

P (E1 ∩ · · · ∩ Ek) = 1− P (Ec1 ∪ · · · ∪ Eck) ,
and this is ≥ 1−

∑k
j=1 P(Ecj ) because the probability of a union is at most

the sum of the individual probabilities. �

Here is how we can use Bonferonni’s inequality. Define

Cj := β̂j ± t(α/4)
n−p S

√[
(X′X)−1

]
j,j (j = 1, 2).
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We have seen already that

P{βj ∈ Cj} = 1− α
2 .

[This is why we used α/4 in the definition of Cj .] Therefore, Bonferonni’s
inequality implies that

P{β1 ∈ C1 , β2 ∈ C2} ≥ 1−
[α
2 + α

2

]
= 1− α.

In other words, (C1 , C2) forms a “conservative” (1−α)×100% simultane-
ous confidence interval for (β1 , β2). This method becomes very inaccu-
rate quickly as the number of parameters of interest grows. For instance,
if you want Bonferonni confidence sets for (β1 , β2 , β3), then you need to
use individual confidence intervals with confidence level 1− (α/3) each.
And for k parameters you need individual confidence level 1 − (α/k),
which can yield bad performance when k is large.

This method is easy to implement, but usually very conservative.1

4. Scheffé’s simultaneous conservative confidence bounds

There is a lovely method, due to Scheffé, that works in a similar fashion
to the Bonferonni method; but has also the advantage of being often
[far] less conservative! [We are now talking strictly about our linear
model.] The starting point of this discussion is a general fact from matrix
analysis.

Proposition 2 (The Rayleigh—Ritz inequality). If Lp×p is positive defi-
nite, then for every p-vector b,

b′L−1b = max
h 6=0

[
(h′b)2
h′Lh

]
.

The preceding is called an inequality because it says that

b′L−1b ≤ (h′b)2
h′Lh for all hp×1,

and it also tells us that the inequality is achieved for some h ∈ Rp.

1On the other hand, the Bonferonni method can be applied to a wide range of statistical problems
that involve simultaneous confidence intervals [and is not limited to the theory of linear models.
So it is well worth your while to understand this important method.
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Proof of Rayleigh–Ritz inequality. Recall the Cauchy–Schwarz inequal-
ity from your linear algebra course: (u′v)2 ≤ ‖u‖2 · ‖v‖2 with equality if
and only if v = au for some a ∈ R. It follows then that

max
v 6=0

[
(u′v)2
v′v

]
= ‖u‖2.

Now write L := PDP′, in spectral form, and change variables:

v :=
(
L1/2
)′
h,

in order to see that

u′v = u′
(
L1/2
)′
h, v′v = h′Lh,

and so

‖u‖2 = max
h 6=0





(
u′
(
L1/2)′ h

)2

h′Lh



 .

Change variables again: b := L1/2u to see that

‖u‖2 =
∥∥∥L−1/2b

∥∥∥
2

= b′L−1b.

This does the job. �

Now let us return to Scheffé’s method. Recall that
β̂ − β ∼ Np

(
0 , σ2(X′X)−1

)
,

so that
1
σ2

(
β̂ − β

)′
(X′X)

(
β̂ − β

)
∼ χ2

p,
and hence

(
β̂ − β

)′
(X′X)

(
β̂ − β

)

pS2 =

(
β̂ − β

)′
(X′X)

(
β̂ − β

)
/p

S2 ∼ Fp,n−p.

We apply the Rayleigh–Ritz inequality with b := β̂ − β and L := (X′X)−1

in order to find that

(
β̂ − β

)′
(X′X)

(
β̂ − β

)
= max

h 6=0





{
h′
(
β̂ − β

)}2

h′(X′X)−1h



 .

Therefore,

P





1
pS2 max

h 6=0





{
h′
(
β̂ − β

)}2

h′(X′X)−1h



 ≤ Fp,n−p(α)





= 1− α.
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Equivalently,

P






∣∣∣h′β̂ − h′β
∣∣∣

√
h′(X′X)−1h

≤
√
pS2 Fp,n−p(α) for all h ∈ Rp




 = 1− α.

If we restrict attention to a subcollection of h’s then the probability is
even more. In particular, consider only h’s that are the standard basis
vectors of Rp , in order to deduce from the preceding that

P






∣∣∣β̂j − βj
∣∣∣

√
[(X′X)]j,j

≤
√
pS2 Fp,n−p(α) for all 1 ≤ j ≤ p




 ≥ 1− α.

In other words, we have demonstrated the following.

Theorem 3 (Scheffé). The following are conservative (1 − α) × 100%
simultaneous confidence bounds for (β1 , . . . , βp)′:

β̂j ±
√
pS2

[
(X′X)−1

]
j,j Fp,n−p(α) (1 ≤ j ≤ p).

When the sample size n is very large, the preceding yields an as-
ymptotic simplification. Recall that χ2

n−p/(n − p) → 1 as n → ∞. There-
fore, Fp,n−p(α) ≈ χ2

p(α)/p for n � 1. Therefore, the following are
asymptotically-conservative simultaneous confidence bounds:

β̂j ± S
√[

(X′X)−1
]
j,j χ2

p(α) (1 ≤ j ≤ p) for n� 1.

5. Confidence bounds for the regression surface

Given a vector x ∈ Rp of predictor variables, our linear model yields
Ey = x′β. In other words, we can view our efforts as one about trying
to understand the unknown function

f (x) := x′β.
And among other things, we have found the following estimator for f :

f̂ (x) := x′β̂.
Note that if x ∈ Rp is held fixed, then

f̂ (x) ∼ N
(
f (x) , σ2x′(X′X)−1x

)
.

Therefore, a (1 − α) × 100% confidence interval for f (x) [for a fixed
predictor variable x] is

f̂ (x)± S
√
x′(X′X)−1x t(α/2)

n−p .



5. Confidence bounds for the regression surface 81

That is, if we are interested in a confidence interval for f (x) for a fixed
x, then we have

P
{
f (x) = f̂ (x)± S

√
x′(X′X)−1x t(α/2)

n−p

}
= 1− α.

On the other hand, we can also apply Scheffé’s method and obtain the
following simultaneous (1− α)× 100% confidence set:

P
{
f (x) = f̂ (x)± S

√
px′(X′X)−1x Fp,n−p(α) for all x ∈ Rp

}
≥ 1− α.

Example 4 (Simple linear regression). Consider the basic regression
model

Yi = α+ βxi + εi (1 ≤ i ≤ n).

If w = (1 , w)′, then a quick computation yields

w′(X′X)−1w =

[
x2 − 2wx̄ +w2

]

ns2
x

,

where we recall s2
x :=

∑p
i=1(xi − x̄)2. Therefore, a simultaneous confi-

dence interval for all of α+ βw ’s, as w ranges over R, is

α̂+ β̂w ± S
√

2
ns2

x

[
x2 − 2wx̄ +w2

]
F2,n−2(α).

This expression can be simplified further because:

x2 − 2wx̄ +w2 = x2 − (x̄)2 + (x̄)2 − 2wx̄ +w2

= s2
x + (x̄ −w)2.

Therefore, with probability 1− α, we have

α+ βw = α̂+ β̂w ± S

√

2
(

1
n + (x̄ −w)2

ns2
x

)
F2,n−2(α) for all w.

On the other hand, if we want a confidence interval for α + βw for a
fixed w, then we can do better using our t-test:

α+ βw = α̂+ β̂w ± S

√(
1
n + (x̄ −w)2

ns2
x

)
t(α/2)
n−2 .

You should check the details of this computation. �
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6. Prediction intervals

The difference between confidence and prediction intervals is this: For
a confidence interval we try to find an interval around the parameter
x′β. For a prediction interval we do so for the random variable y0 :=
x′0β + ε0, where x0 is known and fixed and ε0 is the “noise,” which is
hitherto unobserved (i.e., independent of the vector Y of observations).

It is not hard to construct a good prediction interval of this type: Note
that

ŷ0 := x′0β̂
satisfies

ŷ0 − y0 = x′0
(
β̂ − β

)
− ε0 ∼ N

(
0 , σ2

[
x′0(X′X)−1x0 + 1

])
.

Therefore, a prediction interval is

ŷ0 ± S t(α/2)
n−p

√
x′0(X′X)−1x0 + 1.

This means that

P
{
y0 ∈ ŷ0 ± S t(α/2)

n−p

√
x′0(X′X)−1x0 + 1

}
= 1− α,

but note that both y0 and the prediction interval are now random.



Lecture 11

Polynomial Regression

1. Introduction

Here is a careful statement of the Weierstrass approximation theorem,
which states in loose terms that every continuous function on a bounded
set can be approximated arbitrarily well by a polynomial.

Theorem 1 (Weierstrass Approximation Theorem). If f : [a , b] → R is
continuous, then for all ε > 0 there exists a polynomial P such that

max
a≤x≤b

|f (x)− P(x)| < ε.

Therefore, if we can trying to estimate a variable y using only a
variable x, then it makes good sense to try to fit polynomials to our
regression fit. The general linear model becomes, in this case,

Yi = β0 + β1xi + β2x2
i + · · ·+ βkxki + εi (1 ≤ i ≤ n).

This is indeed a linear model, as we have seen, with design matrix

X =




1 x1 x2

1 · · · xk1
...

...
...

...
1 xn x2

n · · · xkn





A practical problem that arises here is this: If k is large then X′X is “ill-
conditioned” and therefore very hard to invert accurately. For instance,
suppose x1, . . . , xn are spaced uniformly in (0 , 1), so that x1 = 1/n, x2 = 2/n,
. . . , xn = n/n = 1. In that case,

(X′X)i,j =
n∑

k=1
Xk,iXk,j =

n∑

k=1
xikx

j
k =

n∑

k=1

(
k
n

)i (k
n

)j
= n × 1

n

n∑

k=1

(
k
n

)i+j
.

83
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Riemann’s theory of integral tells us that

1
n

n∑

k=1

(
k
n

)i+j
'
∫ 1

0
xi+j dx = 1

i + j + 1 ,

when n is large. Therefore, the k × k matrix X′X satisfies

X′X ' n





1
3

1
4 · · · 1

k+2
1
4

1
5 · · · 1

k+3
...

...
...

1
k+2

1
k+3 · · · 1

2k+1



 := nM,

for large values of n. For example,

M =





1/3 1/4 1/5 1/6 1/7 1/8 1/9
1/4 1/5 1/6 1/7 1/8 1/9 1/10
1/5 1/6 1/7 1/8 1/9 1/10 1/11
1/6 1/7 1/8 1/9 1/10 1/11 1/12
1/7 1/8 1/9 1/10 1/11 1/12 1/13
1/8 1/9 1/10 1/11 1/12 1/13 1/14
1/9 1/10 1/11 1/12 1/13 1/14 1/15





.

in the k = 7 case. Already k is only modestly sized, but you see that
almost half of the entries in M are below 0.01. Therefore, a small error
in the computation M−1 leads to a massive error in the computation
of (X′X)−1 ' (1/n)M−1 for modest-to-large values of n. Your textbook
recommends that you keep polynomial regression to below polynomials
of degree 6.

2. Orthogonal polynomials

A more robust approach is to use orthogonal polynomials. That is,
reparametrize our polynomial regression model such as

Yi = γ0φ0(xi) + γ1φ1(xi) + · · ·+ γkφk(xi) + εi,

where the γi ’s are unknown parameters, φj is a jth-order polynomial,
and

n∑

i=1
φm(xi)φl(xi) =

{
1 whenever m = l,
0 whenever m 6= l

= Im,l.

[In other words, φ0, . . . , φk are orthonormal over {xi}ni=1.]
Note that this is a linear model with p := k + 1. Indeed,

Y = Xγ + ε,
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where

X =




φ0(x1) · · · φk(x1)

...
...

φ0(xn) · · · φk(xn)



 .

Before we discuss how we can find these φi ’s, let us see what we have
gained by using them. Notice that Xi,j = φj (xi) (1 ≤ i ≤ n, 0 ≤ j ≤ k)
[note that the matrix is now indexed in a slightly funny way, but this is
of course ok]. Therefore,

(X′X)i,j =
∑

k
Xk,iXk,j =

∑

k
φi(xk)φj (xk) = Ii,j ÍÑ X′X = I.

In particular, it is now a trivial task to invert X′X = I! Our parameter
estimates are also simplified: γ̂ = (X′X)−1X′Y = X′Y . Therefore,

γ̂i =
∑

j
Xj,iYj =

n∑

j=1
φi(xj )Yj ,

and
γ̂ ∼ Nk+1

(
γ , σ2I

)
under the normal-error model.

In other words, under the normal model, the γ̂i ’s are independent!
Let us compute the fitted values next: Ŷ = Xγ̂ = XX′Y ; therefore,

RSS =
∥∥∥Y − Ŷ

∥∥∥
2

= ‖Y‖2 − 2Y ′Ŷ + ‖Ŷ‖2

= ‖Y‖2 − 2(X′Y )2 + (X′Y )2 = ‖Y‖2 − (X′Y )2

= ‖Y‖2 − ‖γ̂‖2.

Now suppose we are testing for contrasts:
H0 : Aγ = c,

where Aq×(k+1) is full rank with q ≤ k, and cq×1 is a known vector. Then,

γ̂H0 = γ̂ + (X′X)−1A′
[
A(X′X)−1A′

]−1
(c −Aγ̂)

= γ̂ +A′(AA′)−1 (c −Aγ̂) ,
and

RSSH0 − RSS = (Aγ̂ − c)′
[
A(X′X)−1A′

]−1
(Aγ̂ − c)

= (Aγ̂ − c)′ (AA′)−1 (Aγ̂ − c) .
In particular,

(Aγ̂ − c)′ (AA′)−1 (Aγ̂ − c) /q(
‖Y‖2 − ‖γ̂‖2

)
/(n − k − 1)

H0∼ Fq,n−p.
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One can work out, using similar means, Scheffé-type conservative
confidence intervals, etc.

3. The Forsythe–Hayes 2-step method

It remains to introduce a way of finding our orthonormal polynomi-
als φ0, . . . , φk. Remember that our goal is to find these so that, given
x1, . . . , xn,

n∑

i=1
φm(xi)φ`(xi) = Im,` .

Forsythe (1957) and Hayes (1969) adapted a classical method from anal-
ysis (Christoffel, 1858; Darboux, 1878) to the present setting in order to
find an algorithm for finding such polynomials. We follow their method
next.

Suppose we could find polynomials ψ0, . . . , ψk such that

n∑

i=1
ψm(xi)ψ`(xi) = 0 whenever m 6= `.

That is, ψ’s are merely orthogonal polynomials. Then,

φm(x) := ψm(x)√∑n
i=1[ψm(xi)]2

(0 ≤m ≤ k, x ∈ R)

defines our orthonormal polynomials. It remains to compute the ψj ’s.
We start with

ψ0(x) := 1,

and ψ1 has the form ψ1(x) = x − a1. [The slightly more general form
ψ1(x) = c(a−x) does not gain us any further insight; why?] The constant
a1 has to be chosen so that

∑n
i=1 ψ1(xi)ψ0(xi) = 0 ÍÑ

∑n
i=1 xi − na1 =

0 ÍÑ a1 = x̄. That is,

ψ1(x) = x − x̄.

From here on we can describe things algorithmically. Suppose we have
defined ψ0, . . . , ψr so that they are orthogonal to each other [the induc-
tion hypothesis]. Then for all r ≥ 1,

ψr+1(x) := (x − ar+1)ψr(x)− brψr−1(x),
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where ar+1 and br are chosen so that ψr+1 is orthogonal to ψ0, . . . , ψr .
In particular, we must have

0 =
n∑

i=1
ψr+1(xi)ψr(xi)

=
n∑

i=1
(xi − ar+1)[ψr(xi)]2 − br

=0 by induction︷ ︸︸ ︷
n∑

i=1
ψr−1(xi)ψr(xi)

=
n∑

i=1
xi[ψr(xi)]2 − ar+1

n∑

i=1
[ψr(xi)]2 (by induction).

Therefore,if we choose

ar+1 =
∑n

i=1 xi[ψr(xi)]2∑n
i=1[ψr(xi)]2

,

then ψr+1 is orthogonal to ψr .
In order to find br we note that we must set things up—at the very

least—so that ψr+1 is orthogonal to ψr−1. That is,

0 =
n∑

i=1
ψr+1(xi)ψr−1(xi)

=
n∑

i=1
(xi − ar+1)ψr(xi)ψr−1(xi)− br

n∑

i=1
[ψr−1(xi)]2

=
n∑

i=1
xiψr(xi)ψr−1(xi)− ar+1

n∑

i=1
ψr(xi)ψr−1(xi)− br

n∑

i=1
[ψr−1(xi)]2

=
n∑

i=1
xiψr(xi)ψr−1(xi)− br

n∑

i=1
[ψr−1(xi)]2;

thanks to induction. We can simplify this a little more still, mainly be-
cause ψr(x) = (x − ar)ψr−1(x)− brψr−2(x). In this way we find that
n∑

i=1
xiψr(xi)ψr−1(xi) =

n∑

i=1
(xi − ar)ψr(xi)ψr−1(xi) (induction)

=
n∑

i=1
[ψr(xi)]2 + br

n∑

i=1
ψr−2(xi)ψr(xi) =

n∑

i=1
[ψr(xi)]2.

Therefore, our candidate for br is

br =
∑n

i=1[ψr(xi)]2∑n
i=1[ψr−1(xi)]2

.

With the present choice of ar+1 and br , ψr+1 is orthogonal to both ψr
and ψr−1. Now it remains to prove that this choice of ar+1 and br actually
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works. That is, we proceed to show that, for our construction, ψr+1 is
orthogonal to ψ` for every ` ≤ r − 2. Note that

n∑

i=1
ψr+1(xi)ψ`(xi) =

n∑

i=1
(xi − ar+1)ψr(xi)ψ`(xi)− br

n∑

i=1
ψr−1(xi)ψ`(xi)

=
n∑

i=1
xiψr(xi)ψ`(xi)

=
n∑

i=1
(xi − a`+1)ψr(xi)ψ`(xi)− b`

=0 by induction︷ ︸︸ ︷
n∑

i=1
ψr(xi)ψ`+1(xi) .

The defining property of the ψ’s tells us that for ` ≤ r − 2,
n∑

i=1
ψr+1(xi)ψ`(xi) =

n∑

i=1
ψr(xi)ψ`+1(xi) = 0,

thanks to induction.



Lecture 12

Splines

1. Introduction

One way to think of linear regression is this: We have data of pairs of
points (x1 , y1), . . . , (xn , yn), and try to fit a line through this. We have
added to this procedure by studying what happens if the error in this
approximation [y = β0 +β1x+noise] has a normal distribution etc. Here
we study a different angle on these problems: Are there better curves
than lines that can be fitted through the points (x1 , y1), . . . , (xn , yn)? One
answer is polynomial regression. Another is splines, which I will say a
few things about.

Suppose we have a fixed interval [a , b] in which we are seeing num-
bers, and also have a subdivision of this interval,

a := ξ0 ≤ ξ1 < · · · < ξk ≤ ξk+1 := b.

We say that a function S : [a , b]→ R is a spline with knots ξ1 < · · · < ξk
if there exists an integer M ≥ 1—called the order of S—such that: (i) S is
a polynomial of degree M−1 in [ξi , ξi+1] for every 1 ≤ i ≤ k−1; and (ii)
S and its first M − 2 derivatives all exist and are continuous everywhere
in [a , b]. When a = −∞ and b = ∞, we think of ξ0 and ξk+1 also as
knots of S.

In other words, S is a spline if it is smooth function that is piecewise
polynomial.

89
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2. Linear splines

Suppose our data is (ξ1 , y1), . . . , (ξk , yk) and we wish to do a piecewise
linear fit. The following is an order M = 2 spline that does the job:

S(x) = yi + (yi+1 − yi)
(

x − ξi
ξi+1 − ξi

)
for every ξi ≤ x ≤ ξi+1.

This does ths job. (Draw a picture!) But we need to understand how it
was derived.

First you reparametrize the interval [ξi , ξi+1] by [0 , 1]. That is,

t := x − ξi
ξi+1 − ξi

for ξi ≤ x ≤ ξi+1.

As x increases from ξi to ξi+1, t increases from 0 to 1. In parameter t ,
the ith piece of the spline should look like a line:

Yi(t) = ai + bit (0 ≤ t ≤ 1),
subject to Yi(0) = yi and Yi(1) = yi+1. In other words, ai = yi and
ai + bi = yi+1. This leads us to

Yi(t) = yi + (yi+1 − yi)t (0 ≤ t ≤ 1).
If ξi ≤ x ≤ ξi+1, then S(x) = Yi(t) does the job.

3. Quadratic splines

Here, M = 3. After the same reparametrization as before,
Yi(t) = ai + bit + cit2 (0 ≤ t ≤ 1),

subject to Yi(0) = yi, Yi(1) = yi+1. This yields,

ai = yi, ai + bi + ci = yi+1 ÍÑ
{

yi = ai,
yi+1 − yi = bi + ci.

This identifies the ai ’s but not the bi ’s and the ci ’s. But we also have a
continuity condition on the derivative of order M − 2 = 1. To see how
that manifests itself note that

Y ′i (t) = bi + 2cit (0 ≤ t ≤ 1).
In particular, Y ′i (0) = bi and Y ′i (1) = bi+2ci. Continuity of the derivative is
equivalent to the condition that Y ′i (1) = Y ′i+1(0) for all i; i.e., bi+2ci = bi+1.
That is,

ci = bi+1 − bi
2 .

Since

yi+1 − yi = bi + ci = bi+1 + bi
2 ÍÑ bi+1 + bi = 2(yi+1 − yi).
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In other words, if we knew b0, then we could reconstruct all the other
bi ’s from the y ’s. Since ai = yi and ci = (bi+1 − bi)/2, this would yield
formulas for all a’s, b’s, and c’s. In order to find b0 we need one more
condition. Usually, people assume a zero derivative condition at the left-
most knot:

Y ′0(0) = 0 ÍÑ b0 = 0.
If we adopt this choice of splines, then we find that

b1 = b1 + b0 = 2(y1 − y0),
b2 = (b2 + b1)− b1 = 2(y2 − y1) + 2(y1 − y0) = 2(y2 − y0),

...
bj = 2(yj − y0),

... .

That is, if Y ′0(0) = b0 = 0, then for all j ≥ 0,

aj = yj , bj = 2(yj − y0), cj = yj+1 − yj .

In practice, it isn’t enough to use quadratic splines, since splines start to
look smooth at the cubic level. This requires a great deal more compu-
tation, but is still a managable problem.

4. Cubic splines

Now we consider the most interesting case that M = 4 [cubic splines].
Recall that we want a piece-wise cubic fit S of our data such that S, S′, and
S′′ are continuous [not piecewise continuous] functions. We will adopt
the boundary conditions

S′′(a) = S′′(b) = 0,

as it is customary. As before we work on each piece [ξi , ξi+1] separately
by first changing variables for the ith piece:

t := x − ξi
ξi+1 − xßi

(ξi ≤ x ≤ ξi+1).

Then in t coordinates, our spline model is

Yi(t) = ai + bit + cit2 + dit3 (0 ≤ t ≤ 1).

in the ith piece. First of all, our spline function has to go through the
data points. That is, Yi(0) = yi for all 0 ≤ i ≤ k. In other words,

ai = yi (0 ≤ i ≤ k). (1)
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We need to compute the b’s, c’s, and d’s. The statement that S is contin-
uous is equivalent to Yi+1(0) = Yi(1) for all i. That is,

yi+1 = yi + bi + ci + di (0 ≤ i ≤ k − 1). (2)

We want also that S′ to be continuous. That is, Y ′i+1(0) = Yi(1). Since
Y ′i (t) = bt + 2cit + 3dit2, this means that

bi+1 = bi + 2ci + 3di (0 ≤ i ≤ k − 1). (3)

Since S′′ is also continuous, Y ′′i+1(0) = Y ′′i (1). That is,

2ci+1 = 2ci + 6di ÍÑ di = ci+1 − ci
3 (0 ≤ i ≤ k − 1). (4)

Plug (4) into (3) to find that

bi+1 − bi = 2ci + (ci+1 − ci) = ci+1 + ci (0 ≤ i ≤ k − 1). (5)

Plug (4) into (2) next:

yi+1 − yi = bi + ci +
ci+1 − ci

3 = bi +
ci+1 + 2ci

3 (0 ≤ i ≤ k − 1). (6)

According to (5),

yi+2 − yi+1 = bi+1 + ci+2 + 2ci+1
3 (0 ≤ i ≤ k − 2).

Therefore, subtract (5) from this to find that

εi+1 := (yi+2 − yi+1)− (yi+1 − yi)

satisfies

εi+1 = bi+1 − bi +
ci+2 + ci+1 − 2ci

3

= ci+1 + ci +
ci+2 + ci+1 − 2ci

3 (see (5))

= ci+2 + 4ci+1 + ci
3 (0 ≤ i ≤ k − 2).

Finally, let us recall that we want S′′(a) = S′′(b) = 0. In other words, we
want Y ′′0 (0) = 0 and Y ′′k (1) = 0. Since Y ′′i (t) = 2ci + 6dit , this means that

c0 = 0, ck + 3dk = 0.

By (1), yk+1 − yk = bk + ck + dk = bk + ck − ck/3; equivalently,

yk+1 − yk = bk + 2ck
3 ,
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and hence (6) implies that
εk := (yk+1 − yk)− (yk − yk−1)

= bk + 2ck
3 −

(
bk−1 + ck + 2ck−1

3

)

= bk − bk−1 + ck − 2ck−1
3

= ck − ck−1 −
ck − 2ck−1

3 (by (5))

= 2ck − ck−1
3 .

In other words, we have the matrix equation,




1 0 0 0 · · · 0 0 0 0
1/3 4/3 1/3 0 · · · 0 0 0 0
0 1/3 3/4 1/3 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 1/3 4/3 1/3
0 0 0 0 · · · 0 0 −1/3 2/3









c0
c1
...

ck−1
ck




=





0
ε1
ε2
...

εk−1
εk





.

It is not hard to check that the matrix is invertible. Therefore, there
exists a unique solution c := (c0 , . . . , ck)′. Once we have the c′, we find
the b’s—one by one—from (5), and the d’s—also one by one—from (4).
This yields the unique spline!


