1. Random Variables

We would like to say that a random variable X is a “numerical outcome of a complicated experiment.” This is not sufficient. For example, suppose you sample 1,500 people at random and find that their average age is 25. Is $X = 25$ a “random variable”? Surely there is nothing random about the number 25!

What is random? The procedure that led to 25. This procedure, for a second sample, is likely to lead to a different number. Procedures are functions, and hence

Definition 8.1. A random variable is a function X from Ω to some set D which is usually [for us] a subset of the real line \mathbb{R}, or d-dimensional space \mathbb{R}^d.

In order to understand this, let us construct a random variable that models the number of dots in a roll of a fair six-sided die.

Define the sample space,

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

We assume that all outcome are equally likely [fair die].

Define $X(\omega) = \omega$ for all $\omega \in \Omega$, and note that for all $k = 1, \ldots, 6$,

$$P(\{\omega \in \Omega : X(\omega) = k\}) = P(\{k\}) = \frac{1}{6}. \quad (5)$$

This probability is zero for other values of k. Usually, we write $\{X \in A\}$ in place of the set $\{\omega \in \Omega : X(\omega) \in A\}$. In this notation, we have

$$P(X = k) = \begin{cases} \frac{1}{6} & \text{if } k = 1, \ldots, 6, \\ 0 & \text{otherwise.} \end{cases} \quad (6)$$
This is a math model for the result of a coin toss.

2. General notation

Suppose X is a random variable, defined on some probability space Ω. By the distribution of X we mean the collection of probabilities $P(X \in \Lambda)$, as Λ ranges over all sets in \mathcal{F}.

If X takes values in a finite, or countably-infinite set, then we say that X is a discrete random variable. Its distribution is called a discrete distribution. The function

$$f(x) = P(X = x)$$

is then called the mass function of X. Note that $f(x) = 0$ for all but a countable number of values of x. The values x for which $f(x) > 0$ are called the possible values of X.

Some important properties of mass functions:

- $0 \leq f(x) \leq 1$ for all x. [Easy]
- $\sum_x f(x) = 1$. Proof: $\sum_x f(x) = \sum_x P(X = x)$, and this is equal to $P(\cup_{x}(X = x)) = P(\Omega)$, since the union is a countable disjoint union.

3. The binomial distribution

Suppose we perform n independent trials; each trial leads to a “success” or a “failure”; and the probability of success per trial is the same number $p \in (0, 1)$.

Let X denote the total number of successes in this experiment. This is a discrete random variable with possible values $0, \ldots, n$. We say then that X is a binomial random variable [“$X = \text{Bin}(n, p)$”].

Math modelling questions:

- Construct an Ω.
- Construct X on this Ω.

Let us find the mass function of X. We seek to find $f(x)$, where $x = 0, \ldots, n$. For all other values of x, $f(x) = 0$.

Now suppose x is an integer between zero and n. Note that $f(x) = P(X = x)$ is the probability of getting exactly x successes and $n - x$ failures. Let S_i denote the event that the ith trial leads to a success. Then,

$$f(x) = P(S_1 \cap \cdots \cap S_x \cap S_{x+1}^c \cap \cdots S_n^c) + \cdots$$

where we are summing over all possible ways of distributing x successes and $n - x$ failures in n spots. By independence, each of these probabilities
4. The geometric distribution

is \(p^x(1 - p)^{n-x} \). The number of probabilities summed is the number of ways we can distributed \(x \) successes and \(n - x \) failures into \(n \) slots. That is, \(\binom{n}{x} \). Therefore,

\[
f(x) = P(X = x) = \begin{cases} \binom{n}{x} p^x(1 - p)^{n-x} & \text{if } x = 0, \ldots, n, \\ 0 & \text{otherwise}. \end{cases}
\]

Note that \(\sum_x f(x) = 1 \) by the binomial theorem. So we have not missed anything.

3.1. An example. Consider the following sampling question: Ten percent of a certain population smoke. If we take a random sample [without replacement] of 5 people from this population, what are the chances that at least 2 people smoke in the sample?

Let \(X \) denote the number of smokers in the sample. Then \(X = \text{Bin}(n, p) \) ["success" = "smoker"]. Therefore,

\[
P(X \geq 2) = 1 - P(X \leq 1) = 1 - P(\{X = 0\} \cup \{X = 1\}) = 1 - [p(0) + p(1)]
\]

\[
= 1 - \left[\binom{n}{0} p^0(1 - p)^{n-0} + \binom{n}{1} p^1(1 - p)^{n-1} \right]
\]

\[
= 1 - (1 - p)^n - np(1 - p)^{n-1}.
\]

Alternatively, we can write

\[
P(X \geq 2) = P(\{X = 2\} \cup \cdots \{X = n\}) = \sum_{j=2}^{n} f(j),
\]

and then plug in \(f(j) = \binom{n}{j} p^j(1 - p)^{n-j} \).

4. The geometric distribution

A \(p \)-coin is a coin that tosses heads with probability \(p \) and tails with probability \(1 - p \). Suppose we toss a \(p \)-coin until the first time heads appears. Let \(X \) denote the number of tosses made. Then \(X \) is a so-called geometric random variable ["\(X = \text{Geom}(p) \)"].

Evidently, if \(n \) is an integer greater than or equal to one, then \(P(X = n) = (1 - p)^{n-1}p \). Therefore, the mass function of \(X \) is given by

\[
f(x) = \begin{cases} p(1 - p)^{x-1} & \text{if } x = 1, 2, \ldots , \\ 0 & \text{otherwise}. \end{cases}
\]