1. (Cumulative) distribution functions

Let X be a discrete random variable with mass function f. The (cumulative) distribution function F of X is defined by

$$F(x) = P(X \leq x).$$

Here are some of the properties of distribution functions:

1. $F(x) \leq F(y)$ whenever $x \leq y$; therefore, F is non-decreasing.
2. $1 - F(x) = P(X > x)$.
3. $F(b) - F(a) = P(a < X \leq b)$ for $a < b$.
4. $F(x) = \sum_{y : y \leq x} f(y)$.
5. $F(\infty) = 1$ and $F(-\infty) = 0$. [Some care is needed]
6. F is right-continuous. That is, $F(x+) = F(x)$ for all x.
7. $f(x) = F(x) - F(x-)$ is the size of the jump [if any] at x.

Example 10.1. Suppose X has the mass function

$$f_X(x) = \begin{cases} \frac{1}{2} & \text{if } x = 0, \\ \frac{1}{2} & \text{if } x = 1, \\ 0 & \text{otherwise}. \end{cases}$$

Thus, X has equal chances of being zero and one. Define a new random variable $Y = 2X - 1$. Then, the mass function of Y is

$$f_Y(x) = f_X \left(\frac{x + 1}{2} \right) = \begin{cases} \frac{1}{2} & \text{if } x = -1, \\ \frac{1}{2} & \text{if } x = 1, \\ 0 & \text{otherwise}. \end{cases}$$
The procedure of this example actually produces a theorem.

Theorem 10.2. If $Y = g(X)$ for a function g, then

$$f_Y(x) = \sum_{z : g(z) = x} f_X(z).$$

2. **Expectation**

The *expectation* EX of a random variable X is defined formally as

$$EX = \sum_x xf(x).$$

If X has infinitely-many possible values, then the preceding sum must be defined. This happens, for example, if $\sum_x |xf(x)| < \infty$. Also, EX is always defined [but could be $\pm \infty$] if $P(X \geq 0) = 1$, or if $P(X \leq 0) = 1$. The *mean* of X is another term for EX.

Example 10.3. If X takes the values ± 1 with respective probabilities $1/2$ each, then $EX = 0$.

Example 10.4. If $X = \text{Bin}(n, p)$, then I claim that $EX = np$. Here is why:

$$EX = \sum_{k=0}^{n} k \binom{n}{k} p^k q^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^k q^{n-k}$$

$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^k q^{(n-1)-(k-1)}$$

$$= np \sum_{j=0}^{n-1} \binom{n-1}{j} p^j q^{(n-1)-j}$$

$$= np,$$

thanks to the binomial theorem.
Example 10.5. Suppose \(X = \text{Poiss}(\lambda) \). Then, I claim that \(\mathbb{E}X = \lambda \). Indeed,

\[
\mathbb{E}X = \sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^k}{k!} \\
= \lambda \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!} \\
= \lambda \sum_{j=0}^{\infty} e^{-\lambda} \frac{\lambda^j}{j!} \\
= \lambda,
\]

because \(e^\lambda = \sum_{j=0}^{\infty} \frac{\lambda^j}{j!} \), thanks to Taylor’s expansion.

Example 10.6. Suppose \(X \) is negative binomial with parameters \(r \) and \(p \). Then, \(\mathbb{E}X = \frac{r}{p} \) because

\[
\mathbb{E}X = \sum_{k=r}^{\infty} k \binom{k-1}{r-1} p^r q^{k-r} \\
= \sum_{k=r}^{\infty} \frac{k!}{(r-1)! (k-r)!} p^r q^{k-r} \\
= r \sum_{k=r}^{\infty} \binom{k}{r} p^r q^{k-r} \\
= \frac{r}{p} \sum_{k=r}^{\infty} \binom{k}{r} p^{r+1} q^{(k+1)-(r+1)} \\
= \frac{r}{p} \sum_{j=r+1}^{\infty} \binom{j-1}{(r+1)-1} p^{r+1} q^{-(r+1)} \\
= \frac{r}{p}.
\]

Thus, for example, \(\mathbb{E}[\text{Geom}(p)] = 1/p \).

Finally, two examples to test the boundary of the theory so far.

Example 10.7 (A random variable with infinite mean). Let \(X \) be a random variable with mass function,

\[
f(x) = \begin{cases}
\frac{1}{C x^2} & \text{if } x = 1, 2, \ldots, \\
0 & \text{otherwise},
\end{cases}
\]
where $C = \sum_{j=1}^{\infty} (1/j^2)$. Then,

$$EX = \sum_{j=1}^{\infty} j \cdot \frac{1}{C_j^2} = \infty.$$

But $P(X < \infty) = \sum_{j=1}^{\infty} 1/(C_j^2) = 1$.

Example 10.8 (A random variable with an undefined mean). Let X be a random with mass function,

$$f(x) = \begin{cases}
\frac{1}{Dx^2} & \text{if } x = \pm 1, \pm 2, \ldots, \\
0 & \text{otherwise,}
\end{cases}$$

where $D = \sum_{j \in \mathbb{Z}\setminus\{0\}} (1/j^2)$. Then, EX is undefined. If it were defined, then it would be

$$\lim_{n,m \to \infty} \left(\sum_{j=-m}^{-1} \frac{j}{Dj^2} + \sum_{j=1}^{n} \frac{j}{Dj^2} \right) = \frac{1}{D} \lim_{n,m \to \infty} \left(\sum_{j=-m}^{-1} \frac{1}{j} + \sum_{j=1}^{n} \frac{1}{j} \right).$$

But the limit does not exist. The rough reason is that if N is large, then $\sum_{j=1}^{N} (1/j)$ is very nearly $\ln N$ plus a constant (Euler’s constant). “Therefore,” if n, m are large, then

$$\left(\sum_{j=-m}^{-1} \frac{1}{j} + \sum_{j=1}^{n} \frac{1}{j} \right) \approx -\ln m + \ln n = \ln \left(\frac{n}{m} \right).$$

If $n = m \to \infty$, then this is zero; if $m \gg n \to \infty$, then this goes to $-\infty$; if $n \gg m \to \infty$, then it goes to $+\infty$.