# Solutions to Assignment \#7 <br> Math 501-1, Spring 2006 <br> University of Utah 

## Problems:

1. Suppose $Y$ is uniformly distributed on $(0,5)$. What is the probability that the roots of the equation $4 x^{2}+4 x Y+Y+2=0$ are both real?

Solution: The two roots of the quadratic are:

$$
x=\frac{-4 \pm \sqrt{16 Y^{2}-16(Y+2)}}{8}=\frac{1}{2}\left[-1 \pm \sqrt{Y^{2}-Y-2}\right] .
$$

The roots are real if and only if $Y^{2}-Y-2 \geq 0$. Consider next the quadratic equation $y^{2}-y-2=0$. The solutions are

$$
y=\frac{1 \pm \sqrt{1+8}}{2}=\frac{1 \pm 3}{2}=-1 \text { or } 2
$$

This means that $y^{2}-y-2=(y+1)(y-2)$, which can be check directly too. Consequently, $Y^{2}-Y-2 \geq 0$ if and only if $(Y+1)(Y-2) \geq 0$. Because $0 \leq Y \leq 5$, this means that $Y^{2}-Y-2 \geq 0$ if and only if $Y-2 \geq 0$. Thus, the probability of real roots is $P\{Y \geq 2\}=3 / 5$.
2. Two fair dice are rolled. Find the joint mass function of $(X, Y)$ when:
(a) $X$ is the maximum (i.e., largest) of the values of the two dice, and $Y$ is the sum of the values of the two dice;
Solution: The possible values of $(X, Y)$ are $(1,2),(2,3),(2,4),(3,4), \ldots,(3,6),(4,5)$, $\ldots,(4,8),(5,6), \ldots,(5,10),(6,7), \ldots,(6,12)$. The probabilities are:
$p(1,2)=1 / 36$ (one and one);
$p(2,3)=2 / 36$ (a two and a one);
$p(3,4)=p(3,5)=2 / 36$, and $p(3,6)=1 / 36$;
$p(4,5)=p(4,6)=p(4,7)=2 / 36$ and $p(4,8)=1 / 36$;
$p(5,6)=p(5,7)=p(5,8)=p(5,9)=2 / 36$ and $p(5,5)=1 / 36$;
$p(6,7)=p(6,8)=p(6,9)=p(6,10)=p(6,11)=2 / 36$ and $p(6,12)=1 / 36$.
(b) $X$ is the value of the first die and $Y$ is the maximum of the values of the two dice;

Solution: This is done similarly to the previous one. The probabilities are:
$p(1,1)=1 / 36 ; p(2,2)=2 / 36 ; p(3,3)=3 / 36 ; \ldots ; p(6,6)=6 / 36 ;$
$p(1,2)=p(1,3)=p(1,4)=p(1,5)=p(1,6)=1 / 36$;
$p(2,3)=p(2,4)=p(2,5)=p(2,6)=1 / 36$;
$p(3,4)=p(3,5)=p(3,6)=1 / 36 ;$
$p(4,5)=p(4,6)=1 / 36$;
$p(5,6)=1 / 36 ;$
(c) $X$ is the minimum (i.e., smallest) of the values of the two dice, and $Y$ is the maximum of the two values.
Solution: This is done similarly to the previous one. The probabilities are:
$p(1,1)=1 / 36$ and $p(1,2)=p(1,3)=p(1,4)=p(1,5)=p(1,6)=2 / 36 ;$
$p(2,2)=1 / 36$ and $p(2,3)=p(2,4)=p(2,5)=p(2,6)=2 / 36$;
$p(3,3)=1 / 36$ and $p(3,4)=p(3,5)=p(3,6)=2 / 36$;
$p(4,4)=1 / 36$ and $p(4,5)=p(4,6)=2 / 36$;
$p(5,5)=1 / 36$ and $p(5,6)=2 / 36$;
$p(6,6)=1 / 36$.
3. Consider a sequence of independent Bernoulli trials, each of which is a success with probability $p$. Let $X_{1}$ denote the number of failures preceding the first success, and let $X_{2}$ be the number of failures between the first two successes. Find the joint mass function of $\left(X_{1}, X_{2}\right)$.
Solution: The possible values are all two-dimensional integers of the form $(i, j)$, were $i, j \geq 0$. Thus, we have

$$
p(i, j)=P\left(F_{1} \cap \cdots \cap F_{i} \cap S_{i+1} \cap F_{i+2} \cap \cdots \cap F_{j+2+j}\right)=p(1-p)^{i+j}, \quad i, j=0,1,2, \ldots,
$$

where $S_{i}:=\{$ success at the $i$ th $\}$ and $F_{i}:=S_{i}^{c}$.
4. The joint density function of $(X, Y)$ is given by

$$
f(x, y)= \begin{cases}c\left(y^{2}-x^{2}\right) e^{-y}, & \text { if }-y \leq x \leq y \text { and } 0<y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $c$.

Solution: Solve for $c$ as usual:

$$
\begin{aligned}
1 & =c \int_{0}^{\infty} \int_{-y}^{y}\left(y^{2}-x^{2}\right) e^{-y} d x d y \\
& =c \int_{0}^{\infty} e^{-y}\left(\int_{-y}^{y}\left(y^{2}-x^{2}\right) d x\right) d y \\
& =c \int_{0}^{\infty} e^{-y}\left(2 y^{3}-\left.\frac{1}{3} x^{3}\right|_{-y} ^{y}\right) d y \\
& =\frac{4 c}{3} \int_{0}^{\infty} y^{3} e^{-y} d y=\frac{4 c}{3} \Gamma(4)=\frac{4 c}{3} \times 3!=8 c .
\end{aligned}
$$

Therefore, $c=1 / 8$.
(b) Find the (marginal) density functions of $X$ and $Y$ respectively.

Solution: Integrate each variable separately: First, suppose $x>0$ and note that $f_{X}(x)=$ $(1 / 8) \int_{x}^{\infty}\left(y^{2}-x^{2}\right) e^{-y} d y$. Split the integrals and compute by parts to find that $\int_{x}^{\infty} y^{2} e^{-y} d y=x^{2} e^{-x}+2 \int_{x}^{\infty} y e^{-y} d y$. Also, $\int_{x}^{\infty} e^{-y} d y=e^{-x}$. Therefore,

$$
f_{X}(x)=\frac{1}{4} \int_{x}^{\infty} y e^{-y} d y=\frac{1}{4}(x+1) e^{-x}, \quad \text { for } x>0
$$

If $x<0$, then $f_{X}(x)=f_{X}(-x)$, by symmetry.
Next we compute $f_{Y}$ : For all $y>0$,

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{8} \int_{-y}^{y}\left(y^{2}-x^{2}\right) e^{-y} d x=\frac{1}{8}\left[2 y^{3} e^{-y}-e^{-y} \int_{-y}^{y} x^{2} d x\right] \\
& =\frac{1}{8}\left[2 y^{3} e^{-y}-\frac{2}{3} y^{3} e^{-y}\right]=\frac{1}{6} y^{3} e^{-y} .
\end{aligned}
$$

If $y<0$ then $f_{Y}(y)=0$.
(c) Find $E(X)$.

Solution: Because $f_{X}$ is symmetric, $E X=0$.
(d) Find $P\{X>Y\}$.

Solution: Zero because $P\{X>Y\}=\iint_{x>y} f(x, y) d x d y$, and $f(x, y)=$ if $x>y$.
5. The (joint) density function of $(X, Y)$ is given by

$$
f(x, y)= \begin{cases}e^{-(x+y)}, & \text { if } 0 \leq x<\infty, \text { and } 0 \leq y<\infty \\ 0, & \text { otherwise }\end{cases}
$$

Find: (a) $P\{X<Y\}$; and (b) $P\{X<a\}$ for all real numbers $a$.
Solution: First of all, note that

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

where

$$
f_{X}(x)=\left\{\begin{array}{ll}
e^{-x}, & \text { if } x>0, \\
0, & \text { otherwise },
\end{array}, \text { and } \quad f_{Y}(y)= \begin{cases}e^{-y}, & \text { if } y>0 \\
0, & \text { otherwise }\end{cases}\right.
$$

Therefore, $X$ and $Y$ are independent; both are exponentially distributed with mean one. In particular, $P\{X<Y\}=P\{X>Y\}$. Since $P\{X=Y\}=0$, it follows then that $P\{X>Y\}=1 / 2$. [Do this by integration as well!] On the other hand,

$$
P\{X<a\}=\int_{0}^{a} e^{-x} d x=1-e^{-a}
$$

if $a>0$, and $P\{X<a\}=0$ if $a<0$.

