Solutions to Assignment \#3
 Math 501-1, Spring 2006
 University of Utah

Problems:

1. What is the probability that at least one of a pair of fair dice lands on 6, given that the sum of the dice is i, for $i=2,3, \ldots, 12$?
Solution: Let A denote the event that at least one of a pair of fair dice lands on 6 , and S_{i} the event that the sum of the dice is i, for $i=2,3, \ldots, 12$. It suffices to do this for $i=7,8,9,10,11,12$, because the others are zero. First, we compute $P\left(S_{i}\right)$ for the latter values of i. But $P\left(S_{i}\right)$ is $\#\left(S_{i}\right) / 36$, where $\#\left(S_{i}\right)$ denotes the number of ordered ways of getting the sum to be i. Thus,

$$
\begin{aligned}
P\left(S_{7}\right) & =6 / 36 \\
P\left(S_{8}\right) & =5 / 36 \\
P\left(S_{9}\right) & =4 / 36 \\
P\left(S_{10}\right) & =3 / 36 \\
P\left(S_{11}\right) & =2 / 36 \\
P\left(S_{12}\right) & =1 / 36
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
P\left(A \mid S_{7}\right)=\frac{P\left(A \cap S_{7}\right)}{P\left(S_{7}\right)}=\frac{2 / 36}{6 / 36}=1 / 3 \\
P\left(A \mid S_{8}\right)=\frac{P\left(A \cap S_{8}\right)}{P\left(S_{8}\right)}=\frac{2 / 36}{5 / 36}=2 / 5 \\
P\left(A \mid S_{9}\right)=\frac{P\left(A \cap S_{9}\right)}{P\left(S_{9}\right)}=\frac{2 / 36}{4 / 36}=1 / 2 \\
P\left(A \mid S_{10}\right)=\frac{P\left(A \cap S_{10}\right)}{P\left(S_{10}\right)}=\frac{2 / 36}{3 / 36}=2 / 3 \\
P\left(A \mid S_{11}\right)=\frac{P\left(A \cap S_{11}\right)}{P\left(S_{11}\right)}=\frac{2 / 36}{2 / 36}=1 \\
P\left(A \mid S_{12}\right)=\frac{P\left(A \cap S_{12}\right)}{P\left(S_{12}\right)}=\frac{1 / 36}{1 / 36}=1
\end{gathered}
$$

2. The king comes from a family of 2 children. What is the probability his sibling is a girl?
Solution: Let B_{i} denote the event that the i th child is a boy and $G_{i}=B_{i}^{c}$ the event that the i th child is a girl. Note that $G_{1} \cup G_{2}$ is the event that there is at least one girl. Thus, we are asked to compute $P\left(G_{1} \cup G_{2} \mid B_{1} \cup B_{2}\right)$. First of all,

$$
P\left(B_{1} \cup B_{2}\right)=1-P\left(G_{1}\right) P\left(G_{2}\right)=3 / 4
$$

Also, note that $\left(G_{1} \cup G_{2}\right) \cap\left(B_{1} \cup B_{2}\right)$ is the event that we have a boy and a girl. Its probability is equal to $P\left(G_{1} \cap B_{2}\right)+P\left(B_{1} \cap G_{2}\right)=(1 / 4)+(1 / 4)=(1 / 2)$. Therefore, the answer is $\frac{1}{2} / \frac{3}{4}=(2 / 3)$.
3. Suppose that 5% of all men and 0.25% of all women are colorblind. A colorblind person is chosen at random. What is the probability that this person is male? Assume that there are an equal number of men and women. What if the population consisted of twice as many mean as women?
Solution: Let $M=\{\operatorname{man}\}$ and $C=\{$ color blind $\}$. We know: (a) $P(C \mid M)=0.05$; (b) $P\left(C \mid M^{c}\right)=0.0025$; (c) $P(M)=1 / 2$. We seek to find $P(M \mid C)$. First, we reverse the order of conditioning:

$$
P(M \mid C)=P(C \mid M) \frac{P(M)}{P(C)}=0.05 \times \frac{0.5}{P(C)}
$$

Next, we use Bayes's formula to compute $P(C)$, viz.,

$$
\begin{aligned}
P(C) & =P(C \mid M) P(M)+P\left(C \mid M^{c}\right) P\left(M^{c}\right) \\
& =(0.05 \times 0.5)+(0.0025 \times 0.5) \approx 0.02625
\end{aligned}
$$

Therefore, $P(M \mid C) \approx 0.9523$.
4. Suppose we have 10 coins such that if the ith coin if flipped then heads will appear with probability $i / 10(i=1, \ldots, 10)$. One of the coins is selected at random, and then flipped. We are told that it shows heads. What is the probability that it was the fifth coin?
Solution: Let C_{i} denote the event that the i th coin is selected. Then, we know that $P\left(H \mid C_{i}\right)=i / 10$, and $P\left(C_{i}\right)=1 / 10$. Therefore,

$$
\begin{aligned}
P\left(C_{5} \mid H\right) & =\frac{P\left(C_{5} \cap H\right)}{P(H)} \\
& =\frac{P\left(H \mid C_{5}\right) P\left(C_{5}\right)}{\sum_{i=1}^{10} P\left(H \mid C_{i}\right) P\left(C_{i}\right)} \\
& =\frac{(5 / 10) \times(1 / 10)}{\sum_{i=1}^{10}(i / 10) \times(1 / 10)} \\
& =\frac{5}{1+\cdots+10}=\frac{1}{11} .
\end{aligned}
$$

The last line follows from the fact that $(1+\cdots+10)=\binom{11}{2}=55$. Can you think of a combinatorial proof for this?) More generally, for all $\ell=1, \ldots, 10$ we have

$$
P\left(C_{\ell} \mid H\right)=\frac{\ell}{1+\cdots+10}=\frac{\ell}{55} .
$$

5. Let $S=\{1, \ldots, n\}$ and suppose that A and B are two independent, random subsets of S, all subsets being equally likely.
(a) Prove that $P\{A \subset B\}=(3 / 4)^{n}$.

Solution: Let N_{B} denote the number of elements of B. Then, by Bayes' rule,

$$
\begin{aligned}
P\{A \subset B\} & =\sum_{k=0}^{n} P\left(A \subset B \mid N_{B}=k\right) \times P\left\{N_{B}=k\right\} \\
& =\sum_{k=0}^{n} \frac{2^{k}}{2^{n}} \times \frac{\binom{n}{k}}{2^{n}}=\frac{1}{4^{n}} \sum_{k=0}^{n}\binom{n}{k} 2^{k} \\
& =\frac{3^{n}}{4^{n}},
\end{aligned}
$$

by the binomial theorem.
(b) Prove that $P\{A \cap B=\varnothing\}=(3 / 4)^{n}$.

Solution: The event $\{A \cap B=\varnothing\}$ is the same as $\left\{A \subset B^{c}\right\}$. Because A and B^{c} are independent random subsets of S,

$$
\begin{aligned}
P\left\{A \subset B^{c}\right\} & =\sum_{k=0}^{n} P\left(A \subset B^{c} \mid N_{B^{c}}=k\right) \times P\left\{N_{B^{c}}=k\right\} \\
& =\sum_{k=0}^{n} \frac{2^{k}}{2^{n}} \times P\left\{N_{B}=n-k\right\}=\sum_{k=0}^{n} \frac{2^{k}}{2^{n}} \times \frac{\binom{n}{n-k}}{2^{n}} \\
& =\frac{1}{4^{n}} \sum_{k=0}^{n}\binom{n}{k} 2^{k}=\frac{3^{n}}{4^{n}} .
\end{aligned}
$$

Theoretical Problems:

1. In Laplace's rule of succession (page 109, seventh edition), suppose that the first n fips resulted in r heads and $(n-r)$ tails. Show that the probability that the $(n+1)$ st flip turns up heads is $(r+1) /(n+2)$.
Solution: Let E_{n} denote the event that, in the first n flips, there are r heads and ($n-r$) tails. Let C_{i} denote the event that the i th coin was selected. We know that $P\left(C_{i}\right)=1 /(k+1)$, and

$$
P\left(E_{n} \mid C_{i}\right)=\binom{n}{r}\left(\frac{i}{k}\right)^{r}\left(1-\frac{i}{k}\right)^{n-r} .
$$

[Binomial probabilities.] Let H_{i} denote the event that, in the i th flip, we got
heads. Then

$$
\begin{aligned}
P\left(H_{n+1} \mid E_{n}\right) & =\sum_{i=0}^{k} P\left(H_{n+1} \cap C_{i} \mid E_{n}\right) \\
& =\sum_{i=0}^{k} P\left(H_{n+1} \mid C_{i} \cap E_{n}\right) P\left(C_{i} \mid E_{n}\right) \\
& =\sum_{i=0}^{k}\left(\frac{i}{k}\right) P\left(C_{i} \mid E_{n}\right),
\end{aligned}
$$

since the $(n+1)$ st toss is independent of the first n tosses. Now,

$$
\begin{aligned}
P\left(C_{i} \mid E_{n}\right) & =P\left(E_{n} \mid C_{i}\right) \frac{P\left(C_{i}\right)}{P\left(E_{n}\right)} \\
& =\binom{n}{r}\left(\frac{i}{k}\right)^{r}\left(1-\frac{i}{k}\right)^{n-r} \frac{1 /(k+1)}{P\left(E_{n}\right)} .
\end{aligned}
$$

By the Bayes's formula,

$$
\begin{aligned}
P\left(E_{n}\right) & =\sum_{j=0}^{k} P\left(E_{n} \mid C_{j}\right) P\left(C_{j}\right) \\
& =\frac{1}{k+1} \sum_{j=0}^{k}\binom{n}{r}\left(\frac{j}{k}\right)^{r}\left(1-\frac{j}{k}\right)^{n-r} .
\end{aligned}
$$

Therefore, combine terms to find that

$$
\begin{aligned}
P\left(H_{n+1} \mid E_{n}\right) & =\frac{\sum_{i=0}^{k}\left(\frac{i}{k}\right)^{r+1}\left(1-\frac{i}{k}\right)^{n-r}}{\sum_{j=0}^{k}\left(\frac{j}{k}\right)^{r}\left(1-\frac{j}{k}\right)^{n-r}} \\
& \rightarrow \frac{\int_{0}^{1} x^{r+1}(1-x)^{n-r} d x}{\int_{0}^{1} x^{r}(1-x)^{n-r} d x}
\end{aligned}
$$

as $k \rightarrow \infty$. Suppose we could prove that

$$
\begin{equation*}
C(n, m):=\int_{0}^{1} x^{n}(1-x)^{m} d x=\frac{n!m!}{(n+m+1)!} \tag{1}
\end{equation*}
$$

Then we have shown that

$$
\begin{aligned}
\lim _{k \rightarrow \infty} P\left(H_{n+1} \mid E_{n}\right) & =\frac{C(r+1, n-r)}{C(r, n-r)}=\frac{(r+1)!(n-r)!/(n+2)!}{r!(n-r)!/(n+1)!} \\
& =\frac{r+1}{n+2}
\end{aligned}
$$

This is (essentially) what we are asked to verify. It remains to prove (1). Now integrate by parts $\left(u=x^{n}, d v=(1-x)^{m} d x\right)$ to find that $d u=n x^{n-1} d x$, $v=-(1-x)^{m+1} /(m+1)$, and

$$
\begin{aligned}
C(n, m) & =\int_{0}^{1} u d v=\left.(u v)\right|_{x=0} ^{x=1}-\int_{0}^{1} v d u \\
& =\frac{n}{m+1} \int_{0}^{1} x^{n-1}(1-x)^{m+1} d x=\frac{n}{m+1} C(n-1, m+1)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
C(n, m) & =\frac{n}{m+1} C(n-1, m+1) \\
& =\frac{n}{m+1} \cdot \frac{n-1}{m+2} C(n-2, m+2) \\
& \vdots \\
& =\frac{n}{m+1} \cdot \frac{n-1}{m+2} \cdots \frac{1}{m+n} C(0, m+n) \\
& =\frac{n}{m+1} \cdot \frac{n-1}{m+2} \cdots \frac{1}{m+n} \int_{0}^{1}(1-x)^{n+m} d x \\
& =\frac{n}{m+1} \cdot \frac{n-1}{m+2} \cdots \frac{1}{m+n} \cdot \frac{1}{n+m+1},
\end{aligned}
$$

as desired.

