We wish to obtain new functions from given ones. For example, we may attempt to define the sum, difference, product and quotient of two given real-valued functions.

Suppose we are given two real-valued functions \(f : X \rightarrow \mathbb{R} \) and \(g : Y \rightarrow \mathbb{R} \). It is natural to define a the sum \(f + g \) of \(f \) and \(g \) via

\[
(f + g)(x) = f(x) + g(x).
\]

But immediately, for the above to be well defined, the domain of \(f \) must be the same as the domain of \(g \).

Definition

Let \(f, g : X \rightarrow \mathbb{R} \) be two given functions from the set \(X \) to the real numbers. We define the

- the sum \(f + g : X \rightarrow \mathbb{R} \) of \(f \) and \(g \) by
 \[
 (f + g)(x) = f(x) + g(x).
 \]
- the difference \(f - g : X \rightarrow \mathbb{R} \) of \(f \) and \(g \) by
 \[
 (f - g)(x) = f(x) - g(x).
 \]
- the product \(fg : X \rightarrow \mathbb{R} \) of \(f \) and \(g \) by
 \[
 (fg)(x) = f(x)g(x).
 \]
- the quotient \(\frac{f}{g} : X \rightarrow \mathbb{R} \) of \(f \) and \(g \) by
 \[
 \left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)},
 \]
 provided \(g(x) \neq 0 \), for every \(x \in X \). If \(g(x) = 0 \) for any \(x \in X \), then \(\frac{f}{g} \) is not defined.

Examples

1. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be \(f(x) = x^2 \), and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be \(g(x) = x \). Then, \((f + g)(x) = x^2 + x \), \((f - g)(x) = x^2 - x \), \((fg)(x) = x^3 \), and their domains are all \(\mathbb{R} \). However, \(\frac{f}{g} \) is not defined since \(g(0) = 0 \).

2. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be \(f(x) = x \), and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be \(g(x) = x^2 + 1 \). Then, \((f + g)(x) = x + x^2 + 1 \), \((f - g)(x) = x - x^2 - 1 \), \((fg)(x) = x^3 + x \). Moreover, \(\frac{f}{g} \) is well-defined and \(\left(\frac{f}{g} \right)(x) = \frac{x}{x^2 + 1} \), since \(g \) is never 0. The domains of these functions are all \(\mathbb{R} \).

3. Let \(f : [0, \infty) \rightarrow \mathbb{R} \) be \(f(x) = \sqrt{x} \), and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be \(g(x) = x \). Then none of \(f + g \), \(f - g \), \(fg \), \(\frac{f}{g} \) can be defined since for \(f(x) \) is not defined for negative values of \(x \).

Definition (Composition of two functions)

Let \(g : X \rightarrow Y \) and \(f : W \rightarrow Z \) be two given functions.

Suppose \(g(X) \subseteq W \). Then, we may define the composition, \(f \circ g : X \rightarrow Z \) by

\[
(f \circ g)(x) = f(g(x)).
\]

Examples

1. Let \(P := \{ \text{persons} \} \), \(M := \{ \text{mothers} \} \), and \(F := \{ \text{fathers} \} \).

 Let \(g : P \rightarrow M \) be \(g(x) = x \)'s mother, and \(f : P \rightarrow F \) be \(f(y) = y \)'s father.
 - Then \(f \circ g \) is well-defined since \(g(P) = M \subseteq P = \text{domain}(f) \).
 - And, \(f \circ g : P \rightarrow F \) is given by
 \[
 (f \circ g)(x) = x \text{'s maternal grandfather}.
 \]
• Note also that we have \(f(P) = F \) but \((f \circ g)(P) \not\subseteq F \).

2. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be \(f(x) = x^4 \), and \(g : [0, \infty) \rightarrow \mathbb{R} \) be \(g(y) = \sqrt{y} \).

• Then, \(f \circ g \) is well-defined since \(g(\mathbb{R}) = [0, \infty) \subseteq \mathbb{R} = \text{domain}(f) \).
• And, \(f \circ g : [0, \infty) \rightarrow \mathbb{R} \) is given by
 \[
 (f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^4 = x^2.
 \]

3. Let \(f : [0, \infty) \rightarrow \mathbb{R} \) be \(f(x) = \sqrt{x} \), and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be \(g(y) = -y \).

• Then, \(f \circ g \) is not defined since \(g(\mathbb{R}) = \mathbb{R} \not\subseteq [0, \infty) = \text{domain}(f) \).
• In particular, \(g(1) = -1 \) and hence \(f(g(1)) = \sqrt{-1} \) is not in \(\mathbb{R} \).

Exercises

1. Do Problems 1.2.23 to 1.2.30 in the textbook.

2. Suppose \(f : A \rightarrow B, g : B \rightarrow C, \) and \(h : C \rightarrow D \). Prove that
 a) both \(h \circ (g \circ f) \) and \((h \circ g) \circ f \) are well-defined.
 b) for every \(x \in A \), we have \((h \circ (g \circ f))(x) = ((h \circ g) \circ f)(x) \).
 [This means that the two functions \(h \circ (g \circ f) \) and \((h \circ g) \circ f \) are in fact the same.]