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Stationary conditions point to a possibly optimal trajectory, but they do
not state that the trajectory corresponds to the minimum of the functional. A
stationary solution can correspond to a minimum, local minimum, maximum,
local maximum, or saddle point of the functional. In this chapter, we establish
methods aiming to distinguish local minimum from local maximum or saddle.
In addition to being a solution to the Euler equation, the true minimizer satisfies
necessary conditions in the form of inequalities. We introduce variational tests,
Weierstrass and Jacobi conditions, that supplement each other.

The conclusion of optimality of the tested stationary curve u(x) is based on
a comparison of the problem costs I(u) and I(u + δu) computed at stationary
curve u(x) and any close-by admissible curve u(x) + δu(x). The closeness of
the admissible curve to the stationary one is needed to simplify the calculation
and obtain suitable optimality conditions. The question of whether or not two
curves are close to each other or whether υ(x) is small depends on what curves
we consider to be close. Below, we work out three tests of optimality using
different definitions of closeness.

1 Local variations

1.1 Legendre Test

Consider again the simplest problem of the calculus of variations

min
u(x),x∈[a,b]

I(u), I(u) =

∫ b

a

F (x, u, u′)dx, u(a) = ua, u(b) = ub (1)

and function u(x) that satisfies the Euler equation and boundary conditions,

SF (u) =
∂F

∂u
− d

dx

∂F

∂u′
= 0, u(a) = ua, u(b) = ub, (2)

so that the first variation δI(u) is zero.
Let us compute the increment δI of the objective caused by the variation

δu(x, x0) =

{
ε2φ

(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε
(3)

where φ(x) is a function with the following properties:

φ(−1) = φ(1) = 0, max
x∈[−1,1]

|φ(x)| ≤ 1, max
x∈[−1,1]

|φ′(x)| ≤ 1 (4)

(As an example we can consider φ(x) = 1
2 (x2 − 1)).

The magnitude of this Legendre-type variation δu(x, x0) tends to zero when
ε→ 0, the magnitude of its derivative tends to zero as well:

δu′(x, x0) =

{
−ε φ′

(
x−x0

ε

)
if |x− x0| < ε

0 if |x− x0| ≥ ε

2



Additionally, the variation is local: it is zero outside of the interval [x0−ε, x0+ε].
We use these features of the variation in the calculation of the increment of the
cost.

Expanding F (u, u′) into Taylor series and keeping the quadratic terms, we
obtain

δI = I(u+ δu)− I(u) =

∫ b

a

(F (x, u+ δu, u′ + δu′)− F (x, u, u′))dx

=

∫ b

a

([
∂F

∂u
− d

dx

∂F

∂u′

]
δu+Aδu2 + 2Bδu δu′ + C(δu′)2

)
dx+

∂F

∂u′

∣∣∣∣x=b
x=a

, (5)

where

A =
∂2F

∂u2
, B =

∂2F

∂u∂u′
, C =

∂2F

∂(u′)2

and all derivatives are computed at the point x0 at the optimal trajectory u(x).
The term in the square brackets in the integrand in the right-hand side of (5)
is zero because the Euler equation is satisfied. Let us estimate the remaining
terms. We have ∫ b

a

A(x)(δu)2dx =

∫ x0+ε

x0−ε
A(x)(δu)2dx

≤ ε4
∫ x0+ε

x0−ε
A(x)dx = 2A(x0) ε5 + o(ε5)

Indeed, the variation δu is zero outside of the interval [x−ε, x+ε], its magnitude
is of the order of ε2 in this interval, and A(x) is assumed to be continuous at
the trajectory. Similarly, we estimate∫ b

a

B(x)δu δu′ dx ≤ ε3
∫ x0+ε

x0−ε
B(x)dx = 2B(x0) ε4 + o(ε4)∫ b

a

C(x)(δu′)2dx ≤ ε2
∫ x0+ε

x0−ε
C(x)dx = 2C(x0) ε3 + o(ε3)

The magnitude of derivative’s δu′ is of the order of ε, therefore |δu′| � |δu|
as ε→ 0; we conclude that the last term in the integrand in the right-hand side
of (5) dominates. The inequality δI > 0 implies inequality

∂2F

∂(u′)2
≥ 0 (6)

which is called Legendre condition or Legendre test.

Remark 1.1 Here, it is assumed that ∂2F
∂(u′)2 6= 0. If ∂2F

∂(u′)2 = 0, the Legendre test

is inconclusive, and more sophisticated and sensitive variations must be used. An
example is the Kelly variation

υ = ε2

 φ
(
x−x0−ε

ε

)
if x ∈ [x0 − 2ε, x0)

φ
(
x−x0+ε

ε

)
if x ∈ [x0 + 2ε, x0)

0 elsewhere.
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The corresponding condition for the minimum is []

d

dx2
∂2F

∂(u′)2
≤ 0

It is obtained by the same method. This time, four terms in the Taylor expansion
of F are kept.

Example 1.1 Legendre test is always satisfied in the geometric optics. The La-

grangian depends on the derivative u′ as F =

√
1+y′2

v(y) . Its second derivative

∂2F

∂y′ 2
=

1

v(y)(1 + y′2)
3
2

is always nonnegative if v > 0. It is physically obvious that the fastest path is stable
to short-term perturbations.

Example 1.2 Legendre test is also always satisfied in the Lagrangian mechanics.
The Lagrangian F = T−V depends on the derivatives of the generalized coordinates
through the kinetic energy T = 1

2 q̇R(q)q̇ (symbol (̇) is used for time derivative).
The Hessian

He =
∂2F

∂q̇2
= R

is equal to the generalized inertia R which is always positive definite.
Physically speaking, inertia does not allow for infinitesimal zigzags δu in the

trajectory because they always increase the kinetic energy while potential energy is
insensitive to them.

Example 1.3 (Two-well Lagrangian) Consider the Lagrangian

F (u, u′) = [(u′)2 − u2]2

for a simplest variational problem with fixed boundary data u(0) = a0, u(1) = a1.
The Legendre test is satisfied if the inequality

∂2F

∂(u′)2
= 4(3u′2 − u2) ≥ 0.

is satisfied. Consequently, the solution u of Euler equation

−[(u′)3 − u2u′]′ + u(u′)2 − u3 = 0, u(0) = a0, u(1) = a1 (7)

might correspond to a local minimum of the functional if, in addition, the inequality
3u′2 − u2 ≥ 0 is satisfied in all points x ∈ (0, 1). Later we will investigate solution
of the problem, if the optimal trajectory does not satisfy Legendre condition.
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1.2 Weierstrass Test

The Weierstrass test verifies optimality of the trajectory by checking its stability
against strong local perturbations. This test is also local: it compares trajec-
tories that coincide everywhere except a small interval where their derivatives
significantly differ.

Suppose that u(x) is the minimizer of the variational problem (1) that sat-
isfies the Euler equation (2). Consider a variation that is shaped as an in-
finitesimal triangle supported on the interval [x0, x0 + ε], where x0 ∈ (a, b) (see
??): The considered variation (the Weierstrass variation) is localized and has
an infinitesimal absolute value (if ε → 0), but, unlike the Legendre variation,
its derivative (∆u)′ is finite:

(∆u)′ =

 0 if x 6∈ [x0, x0 + ε],
v1 if x ∈ [x0, x0 + αε],
v2 if x ∈ [x0 + αε, x0 + ε].

(8)

Here, v1 and v2 are two real numbers and α ∈ (0, 1). The variation ∆u(x) is:

∆u(x) =

 0 if x 6∈ [x0, x0 + ε],
v1(x− x0) if x ∈ [x0, x0 + αε],
αεv1 + v2(x− x0 − αε) if x ∈ [x0 + αε, x0 + ε].

Parameters α (0 < α < 1), v1 and v2 must be related to provide the continuity
of u+ ∆u at the point x0 + ε, or equality

∆u(x0 + ε) = 0.

The relation is
αv1 + (1− α)v2 = 0 (9)

Condition (9) can be rewritten as

v1 = (1− α)v, v2 = −αv (10)

where v is an arbitrary real number.
The increment

δI = I(u+ δu)− I(u) =

∫ b

a

(F (x, u+ ∆u, u′ + ∆u′)− F (x, u, u′))dx (11)

is computed by splitting the first term in the integrand into two parts

δI =

∫ x0+αε

x0

F (x, u+ ∆u, u′ + v1)dx+

∫ x0+ε

x0+αε

F (x, u+ ∆u, u′ + v2)dx

−
∫ x0+ε

x0

F (x, u, u′)dx (12)

and rounding integrands up to ε as follows

F (x, u(x) + ∆u, u(x)′ + v1) = F (x0, u(x0), u′(x0) + v1) +O(ε), ∀x ∈ [x0, x0 + ε]
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and similarly for F (x, u(x)+∆u, u(x)′+v2). The variation ∆u is of the order of
ε because the length of the interval of variation [x0, x0 + ε] is ε and the variation
of the derivative is finite.

With these simplifications, we compute the main term of the increment as

δI(u, x0) =

ε[αF (x0, u, u
′ + v1) + (1− α)F (x0, u, u

′ + v2)− F (x0, u, u
′)] + o(ε) (13)

Using the arbitrariness of x0, we find that an inequality holds

δI(u, x) ≥ 0 ∀x ∈ [a, b] (14)

for a minimizer u(x). The last expression results in the Weierstrass necessary
condition.

Any minimizer u(x) of (1) satisfies the inequality

αF (x, u, u′ + (1− α)v) + (1− α)F (x, u, u′ − αv)− F (x, u, u′) ≥ 0

∀v, ∀α ∈ (0, 1) (15)

The reader may recognize in this inequality the definition of convexity of F
as a function of its third argument u′, or the condition that the graph of the
function F (., ., z) (considered as a function of the third argument z = u′) lies
below the chord supported by points z1 = u′+ (1−α)v and z2 = u′−αv in the
interval [z1, z2] between these points.

The Weierstrass condition requires convexity of the Lagrangian F (x, u, z)
with respect to its third argument z = u′. The first two arguments x and u are
determined from the equation of the stationary trajectory; the tested minimizer
u(x) is a solution to the Euler equation.

The Weierstrass test is stronger than the Legendre test because convexity
implies non-negativity of the second derivative. The Weierstrass test compares
the optimal trajectory with a larger set of admissible trajectories.

Remark 1.2 If the second derivative ∂2F
∂u′2 is positive for all values of u′, then F

is also convex and Weierstrass test is satisfied. However, Legendre condition tests
the second derivative of the values of u′ only on the stationary trajectory.

Example 1.4 (Two-well Lagrangian. II) Consider again the Lagrangian dis-
cussed in Example 1.3

F (u, u′) =
(
(u′)2 − u2

)2
F (u, v) is convex as a function of v if |v| ≥ |u|.

Indeed, F = (u′−u)2(u′+u)2; F = 0 if u′ = ±u. In the interval u′ ∈ (−u, u),
F is nonconvex because F (u, v) > 0 in this interval.

The Weierstrass test requires u′2 ≥ u2.This condition is stronger than Legendre
test which requires u′2 ≥ 1

3u
2
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Figure 1: The construction of Weierstrass E-function. The graph of a convex
function and its tangent plane.

Weierstrass E-function Weierstrass suggested a convenient test for convex-
ity of Lagrangian, the so-called E-function equal to the difference between the
value of Lagrangian L(x, u, ẑ) in a trial point u, z = z′ and the tangent hy-

perplane L(x, u, u′)− (ẑ − u′)T ∂L(x,u,u
′)

∂u′ to the optimal trajectory at the point
u, u′:

EL(x, u, u′, ẑ) = L(x, u, ẑ)− L(x, u, u′)− (ẑ − u′)∂L(x, u, u′)

∂u′
(16)

Function EL(x, u, u′, ẑ) vanishes together with the derivative ∂E(L)
∂ẑ when ẑ = u′:

EL(x, u, u′, ẑ)|ẑ=u′ = 0,
∂

∂ẑ
E(L(x, u, u′, ẑ)|ẑ=u′ = 0.

According to the basic definition of convexity, the graph of a convex function
is greater than or equal to a tangent. After that, the Weierstrass condition of a
minimum of the objective functional can be written as the condition of positivity
of the Weierstrass E-function for the Lagrangian,

E(L(x, u, u′, ẑ) ≥ 0 ∀ẑ, ∀x, u(x)

where u(x) is the tested trajectory.

Example 1.5 Check the optimality of Lagrangian

L = u′4 − φ(u, x)u′2 + ψ(u, x)

where φ and ψ are some functions of u and x using Weierstrass E-function.
The Weierstrass E-function for this Lagrangian is

EL(x, u, u′, ẑ) =
[
ẑ4 − φ(u, x)ẑ2 + ψ(u, x)

]
−
[
u′4 − φ(u, x)u′2 + ψ(u, x)

]
− (ẑ − u′)(4u′3 − 2φ(u, x)u).

or
EL(x, u, u′, ẑ) = (ẑ − u′)2

(
ẑ2 + 2ẑu′ − φ+ 3u′2

)
.

As expected, EL(x, u, u′, ẑ) is independent of an additive term ψ and contains a
quadratic coefficient (ẑ−u′)2. It is positive for any trial function ẑ if the quadratic

π(ẑ) = −ẑ2 − 2u′ ẑ + (φ− 3u′2)

does not have real roots, or if discriminant is negative:

(u′)2 − φ(u, x) ≤ 0

If this condition is violated at a point of an optimal trajectory u(x), the trajectory
is nonoptimal.
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We emphasize the difference between Legendre and Weierstrass tests. Both
tests examine algebraic dependence of Lagrangian on its third argument u′.
Consider a function F (., ., v) = φ(v). Legendre text requires that φ(v) has a
positive curvatureat all points of the stationary trajectory. Weierstrass test
requires convexity: the tangent line

κ(v) = φ(v0) + φ′(v0)(v − v0)

lies above the graph of φ(v), κ(v) > phi(v) for all v. Convexity is a global
property, while the curvature is local.

Example 1.6 Let φ(v) = v3 − v. The second derivative φ′′(v) = 6v is positive
if v > 0, but the φ(v) is not convex in any point, because it desreases faster than
any linear function when v → −∞

Existence of solution We may face the situation when the only stationary
solution does not satisfy the additional inequality of Weierstrass test and is
therefore nonoptimal. Simultaneously, the functional may be bounded from
below and hence has the infimum. We postpone the discussion of treatment
such ill-posed problems but give a hint:

The failure of the Weierstrass test means that an infinitesimal triangular
perturbation decreases the cost of the problem. The cost can be furthermore
lowered by adding to the solution more infinitesimal triangular perturbations.
We should expect that the optimal trajectory is infinitely often oscillating curve
with alternating distant values of the derivative. Such generalized curve could
be a solution of the problem that does not satisfy the Weierstrass test.

We call such a variational problem ill-posed, or say that the solution is
unstable against fine-scale perturbations.

1.3 Vector-Valued Minimizer

Legendre and Weierstrass tests The Legendre and Weierstrass conditions
are naturally generalized for the problems with the vector-valued minimizer. If
the Lagrangian is twice differentiable function of the vector u′ = z, Legendre
condition becomes

He(F, z) ≥ 0 (17)

(see Section ??) where He(F, z) is the Hessian

He(F, z) =

 ∂2F
∂z21

. . . ∂2F
∂z1∂zn

. . . . . . . . .
∂2F

∂z1∂zn
. . . ∂2F

∂z2n


and inequality in (17) means that the matrix is nonnegative definite (all its
eigenvalues are nonnegative).

Weierstrass test requires convexity of F (x, y, z) with respect to the third
vector argument. If F is nonconvex, the stationary trajectory fails the test and
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is not optimal. Weierstrass E-function can check the convexity of a function of
vector argument.

Remark 1.3 Convexity of the Lagrangian does not guarantee the existence of a
solution to a variational problem. It states only that a differentiable minimizer (if
it exists) cannot be improved by fine-scale perturbations. However, the minimum
may not exist at all or be unstable to other variations.

1.4 Null-Lagrangians and convexity

The Euler equations are derived from the Lagrangians, but the inverse operation
is not uniquely defined; the Lagrangian cannot be uniquely reconstructed from
its Euler equation. Similarly to antiderivative, it is defined up to some terms
called null-Lagrangians.

Definition 1.1 The Lagrangians φ(x, u, u′) for which the operator S(φ, u) of the
Euler equation (??) identically vanishes

S(φ, u) = 0 ∀u

are called Null-Lagrangians.

Null-Lagrangians in variational problems with one independent variable are
linear functions of u′. Indeed, the Euler equation is a second-order differential
equation with respect to u:

d

dx

(
∂

∂u′
φ

)
− ∂

∂u
φ =

∂2φ

∂(u′)2
· u′′ + ∂2φ

∂u′∂u
· u′ + ∂2φ

∂u′∂x
− ∂φ

∂u
≡ 0. (18)

The coefficient of u′′ is equal to ∂2φ
∂(u′)2 . If the Euler equation holds identically,

this coefficient is zero, and therefore ∂φ
∂u′ does not depend on u′. Hence, φ

linearly depends on u′:

φ(x, u, u′) = u′ ·A(u, x) +B(u, x);

A = ∂2φ
∂u′∂u , B = ∂2φ

∂u′∂x −
∂φ
∂u .

(19)

Additionally, if the following equality holds

∂A

∂x
=
∂B

∂u
, (20)

then the Euler equation vanishes identically. In this case, φ is a null-Lagrangian.
We notice that the Null-Lagrangian (19) is simply a full differential of a

function Φ(x, u):

φ(x, u, u′) =
d

dx
Φ(x, u) =

∂Φ

∂x
+
∂Φ

∂u
u′.
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Equations (20) are the integrability conditions (equality of mixed derivatives)
for Φ.

The vanishing of the Euler equation corresponds to the Fundamental theo-
rem of calculus: The equality∫ b

a

dΦ(x, u)

dx
dx = Φ(b, u(b))− Φ(a, u(a)).

that does not depend on u(x) only on its end-points values.

Example 1.7 Function φ = uu′ is the null-Lagrangian. Indeed,we check

d

dx

(
∂

∂u′
φ

)
− ∂

∂u
φ = u′ − u′ ≡ 0.

Null-Lagrangians and Convexity The convexity requirements of the La-
grangian F that follow from the Weierstrass test are in agreement with the
concept of null-Lagrangians (see, for example [?]).

Consider a variational problem with the Lagrangian F ,

min
u

∫ 1

0

F (x, u, u′)dx.

Adding a null-Lagrangian φ to the given Lagrangian F does not affect the Euler
equation of the problem. The family of problems

min
u

∫ 1

0

(F (x, u, u′) + tφ(x, u, u′)) dx,

where t is an arbitrary number, corresponds to the same Euler equation. There-
fore, each solution to the Euler equation corresponds to a family of Lagrangians
F (x, u, z) + tφ(x, u, z).

The stability of the minimizer against the Weierstrass variations should be a
property of the Lagrangian that is independent of the value of the parameter t.
It should be a common property of the family of equivalent Lagrangians. On the
other hand, if F (x, u, z) is convex with respect to z, then F (x, u, z) + tφ(x, u, z)
is also convex. Indeed, φ(x, u, z) is linear as a function of z, and adding the term
tφ(x, u, z) does not affect the convexity of the sum. In other words, convexity
is a characteristic property of the family.

2 Nonlocal variations

Another type of second-order variational conditions deals with the variations
that are small, have small derivatives, but are not localized ? such variations
test optimality of ”long” trajectories.
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2.1 Sufficient condition for the weak local minimum

We assume that a trajectory u(x) satisfies the stationary conditions and Leg-
endre condition. We investigate the increment caused by a nonlocal variation
δu = v of an infinitesimal magnitude:

|υ| < ε, |υ′| < ε, variation interval is arbitrary.

To compute the increment, we expand the Lagrangian into Taylor series keeping
terms up to O(ε2). Recall that the linear in ε terms are zero because the Euler
equation S(u, u′) = 0 for u(x) holds. We have

δI =

∫ T

0

S(u, u′)δu dx+

∫ T

0

δ2Fdx+ o(ε2) (21)

where

δ2F =
∂2F

∂u2
(δu)2 + 2

∂2F

∂u∂u′
(δu)(δu′) +

∂2F

∂(u′)2
(δu′)2 (22)

Because the variation is nonlocal, we cannot neglect υ in comparison with υ′.
No variation of this kind can improve the stationary solution if the quadratic

form

Q(u, u′) =

(
∂2F
∂u2

∂2F
∂u∂u′

∂2F
∂u∂u′

∂2F
∂(u′)2

)
is positively defined,

Q(u, u′) > 0 ∀x on the stationary trajectory u(x) (23)

This condition is called the sufficient condition for the weak minimum. It ne-
glects the relation between δu and δu′ and treats them as two independent trial
functions, enlarging the set of test functions. If the minimum over a larger set
is zero, the minimum over a smaller set is nonnegative.

If the sufficient condition is satisfied, no trajectory that is smooth and suffi-
ciently close to the stationary trajectory can decrease the objective functional of
the problem compared with the value of the functional at the tested stationary
trajectory.

Notice that the first term ∂2F
∂u′2 is non-negative because of the Legendre con-

dition.

Problem 2.1 Show that the sufficient condition is satisfied for the Lagrangians

F1 =
x2

2
u2 +

1

2
(u′)2 and F2 =

1

|u|p
(u′)2 for some p

If the sufficient condition is not satisfied, we try to fund a variation that
improves the stationary solution. In the next sections, we examine two possi-
bilities: a straightforward arbitrary construction of δu and investigation of the
increment (21) using (22) to compute the increment or finding of an optimal
shape of such variation (Jacobi condition).
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2.2 Distance on a sphere: Columbus problem

The following example illustrates the use of the second variation without a single
calculation. We consider the problem of geodesics (shortest path) on a sphere.

Stationarity Let us prove that a geodesic between any two points C and C ′

is a part of the great circle that is shorter than the great semicircle.
Suppose that geodesics is a different curve than the great circle. Then there

exists an arc C C ′ that is a part of the geodesics but does not coincide with
the arc of the great circle. Let us perform the following variation: Replace this
arc with its mirror image – the reflection across the plane that passes through
the ends C,C ′ of this arc and the center of the sphere. The reflected curve has
the same length of the path, and it lies on the sphere; therefore the new path
remains a geodesics. Without losing the generality, we also assume that in the
point C the angle between the trial curve and its mirror image is not zero. The
new path is broken in the point C, and therefore it cannot be the shortest path.
Indeed, consider a part of the path in an infinitesimal circle around the point C
of breakage and fix the points A and B where the path crosses that circle. This
path can be shortened by an arc of a great circle that passes through the points
A and B. To demonstrate this, it is enough to imagine a human-size scale on
Earth: The infinitesimal part of the round surface becomes flat and obviously
the shortest path corresponds to a straight line and not to a zigzag line with an
angle.

Long variation A similar consideration shows that the length of geodesics
is shorter than the great semicircle. Indeed, if the length of geodesics is larger
than the great semicircle one can fix two opposite points – the poles of the
sphere – on the path. Then we turn the semicircular part of the path between
the poles through an arbitrary angle. The new path lies on the sphere, has the
same length as the original one, and it is broken at the poles; thereby its length
is not minimal. We conclude that the minimizer does not satisfy the test if the
length of geodesics is larger than the length of the semicircle.

Therefore, geodesics on a sphere is a part of the great circle that joins the
start and end points and which length is less than a half of the equator’s length.

Remark 2.1 (Columbus argument) The argument that the solution to the
problem of shortest distance on a sphere bifurcates when its length exceeds a half
of the great circle was indirectly used by Columbus who argued that the shortest
way to India passes through the Western route. As we know, Columbus wasn’t able
to prove or disprove the conjecture because he bumped into American continent
discovering New World for better and for worse.

2.3 Constucted Nonlocal Variations

Here we return to the simplest variational problem and consider variations that
may discriminate the stationary solution if it passes the Weierstrass test, but
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does not satisfy the sufficient conditions.
Let us find whether a particular variation decreases the cost functional below

its stationary value. The technique is shown using the simplest example.
Consider the variational problem for the oscillator:

I = min
u

∫ r

0

(
1

2
(u′)2 − c2

2
u2
)
dx u(0) = 0; u(r) = A (24)

where c is a constant. The first variation δI is

δI = −
∫ r

0

(
u′′ + c2u

)
δu dx

δI = 0 if u(x) satisfies the Euler equation (that is the equation of harmonic
oscillator)

u′′ + c2u = 0, u(0) = 0, u(r) = A. (25)

The stationary solution u(x) is

u(x) =

(
A

sin(cr)

)
sin(cx)

The Weierstrass test is satisfied, because the dependence of the Lagrangian

on the derivative u′ is convex, ∂2L
∂u′2 = 1. The sufficient condition for a local

minimum is not satisfied because ∂2L
∂u2 = −c2.

When an infinitesimal nonlocal variation is applied, the increment increases

because of assumed positivity of ∂2F
∂(u′)2 = 1 and decreases because of nonposi-

tivity of ∂2L
∂u2 = −c2. Depending on the length r of the interval of integration

and chosen form of the variation δu, one of these effects prevails. If the second
effect is stronger, the tested extremal fails the test and is nonoptimal.

Let us show that the stationary condition does not correspond to a minimum
of I if the interval’s length r is large enough. We simply demonstrate a varia-
tion that improves the stationary trajectory by decreasing cost of the problem.
Compute the second variation (22):

δ2I =

∫ r

0

(
1

2
(δu′)2 − c2

2
(δu)2

)
dx (26)

Since the boundary conditions at the ends of the trajectory are fixed, the vari-
ation δu satisfies homogeneous conditions δu(0) = δu(r) = 0.

Let us choose the variation as follow:

δu =

{
εx(a− x), 0 ≤ x ≤ a
0 x > a

where the interval of variation [0, a] is not greater than [0, r], a ≤ r. Computing
the second variation of the functional using (26), we obtain

δ2I(a) =
ε2

60
a3(10− c2a2), a ≤ r
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The increment δ2I is positive only if

a < rcrit, rcrit =

√
10

c
=

3.16227

c

The most “dangerous” variation corresponds to the maximal value a = r. The
increment δ2I is negative when r is sufficiently large,

r > rcrit.

In this case δ2I(a) is negative, δ2I(a) < 0. We conclude that the stationary
solution does not correspond to the minimum of I if the length of the trajectory
is larger than rcrit.

If the length is smaller than rcrit, the situation is inconclusive. It could still
be possible to choose another type of variation different from considered here
that disproves the optimality of the stationary solution.

The general case is considered in the same manner. To examine a stationary
solution u(x), one chooses a nonlocal variation δu with the conditions δu(α) =
δu(β) = 0, where α ∈ [0, r] and β ∈ [0, r] and compute the integral of the
expression (21).

δ2I =

∫ r

0

δ2F dx

If we succeed to find a variation that makes δ2I negative, the stationary solution
does not correspond to a minimum.

2.4 Jacobi variation

The Jacobi necessary condition chooses the most sensitive long and shallow
variation and examines the increment caused by such variation. It complements
the Weierstrass test that investigates the stability of a stationary trajectory
to strong localized variations. Jacobi condition tries to disprove optimality by
testing stability against ”optimal” nonlocal variations with small magnitude.

Assume that a trajectory u(x) satisfies the stationary and Legendre condi-
tions but does not satisfy the sufficient conditions for weak minimum, that is
Q(u, u′) in (23) is not positively defined,

S(u, u′) = 0,
∂2F

∂(u′)2
> 0, Q(u, u′) 6> 0

To derive Jacobi condition, we consider an infinitesimal nonlocal variation:
δu = O(ε) � 1 and δu′ = O(ε) � 1 and examine the expression (22) for the
second variation.

Jacobi condition asks for the best variation δu. The expression (22) itself
is a variational problem for δu which we rename here as v; the Lagrangian is
quadratic of v and v′ and the coefficients are functions of x determined at the
stationary trajectory u(x) which is assumed to be known:

δ2I =

∫ r

0

[
Av2 + 2B v v′ + C(v′)2

]
dx, v(0) = v(r) = 0 (27)
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where

A =
∂2F

∂u2
, B =

∂2F

∂u∂u′
, C =

∂2F

∂(u′)2

The functions A,B,C are computed at the stationary trajectory u. The problem
(27) is considered as a variational problem for the unknown variation v with fixed
A, B and C,

min
v: v(0)=v(r)=0

δ2I(v, v′)

Its Euler equation:

d

dx
(Cv′ +Bv)−Av = 0, v(r0) = v(rconj) = 0 [r0, rconj] ⊂ [0, r] (28)

is a solution (eigenfunction) to Sturm-Liouville problem. The points r0 and
rconj are called the conjugate points. The problem is homogeneous: If v(x) is a
solution and c is a real number, cv(x) is also a solution.

Jacobi condition is satisfied if the interval does not contain conjugate points,
that is if there are no nontrivial solutions to (28) on any subinterval [r0, rconj] ⊂
[0, r] with boundary conditions v(r0) = v(rconj) = 0.

If this condition is violated, than there exists a family of trajectories

U(x) =

{
u+ αv if x ∈ [r0, rconj]
u if x ∈ [0, r]/[r0, rconj]

that delivers the same or better value of the cost. Indeed, v is defined up to
a multiplier: If v is a solution, αv is a solution too. These trajectories have
discontinuous derivatives at the points r0 and rconj. Such discontinuity leads
to a contradiction to the Weierstrass-Erdman condition which does not allow a
broken extremal at these points.

Example 2.1 (Nonexistence of the minimizer: Blow up) Consider again
problem (24)

I = min
u

∫ r

0

(
1

2
(u′)2 − c2

2
u2
)
dx u(0) = 0; u(r) = A

The stationary trajectory and the second variation are given by formulas (25) and
(26), respectively. Instead of arbitrary choosing the second variation (as we did
above), we choose it as a solution to the homogeneous problem (28) for v = δu

v′′ + c2v = 0, r0 = 0, u(0) = 0, u(rconj) = 0, rconj ≤ r (29)

This problem has a nontrivial solution v = ε sin(cx) if the length of the interval
is large enough to satisfy homogeneous condition of the right end. We compute
crconj = π or

rconj =
π

c
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The second variation δ2I is positive when r, rconj,

δ2I =
1

r
ε2
(
π2

r2
− c2

)
> 0 if r <

π

c

In the opposite case r > π
c , the increment is negative which shows that the station-

ary solution is not a minimizer.

Remark 2.2 Comparing the critical length rconj = π
c with the critical length

rcrit =
√
10
c found in Example (2.1) using a guessed (nonoptimal) variation, we see

that an optimal choice of variation improved the length of the critical interval at
only 0.65%.

Direct evidence of non-optimality. Let us compute the stationary solution
of (25). We have

u(x) =

(
A

sin(cr)

)
sin(cx) and I(u) = − A2

sin2(cr)

(
c2 − π2

r2

)
When r increases approaching the value π

c , r → π
c − 0, the magnitude of the

stationary solution indefinitely grows, and the cost indefinitely decreases:

lim
r→ c

π−0
I(u) =∞

On the other hand, the cost of the problem is a monotonic function of the interval
length r. To show this, it is enough to show that the problem cost for an interval
[0, r] can correspond to an admissible function defined on a larger interval [0, r+d].

The admissible trajectory that corresponds to the same cost is easily constructed.
Let u(x), x ∈ [0, r] be a minimizer (recall, that u(0) = 0) for the problem in [0, r],
and let the cost functional be Ir. In a larger interval x ∈ [0, r + d], the admissible
trajectory

û(x) =

{
0 if 0 < x < d
u(x− d) if d ≤ x ≤ r + d

corresponds to the same cost Ir. Therefore, the minimum Ir+d over x ∈ [0, r + d]
is not larger than Ir, or Ir+d ≤ Ir.
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