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Solving a variational problem, we look for the solution u(x) in the class of
differentiable functions. But the set of differentiable functions is open. The
limit of a minimizing sequence of differentiable functions may be discontinuous.

Example 0.1 The sequence of continuous functions fn(x) = 1
1+|x|n has a dis-

countinuous limit

lim
n→∞

1

1 + xn
=

 1 |x| < 1
1/2 |x| = 1
0 |x| > 1

The optimization problems tend to reveal an extremal behavior of minimiz-
ers and their solutions may show unexpected features. Here we introduce and
discuss variational problems with discontinuous solutions that have unbounded
derivatives.

1 Example of discontinuous extremal (Problem
H)

1.1 Euler equation

Consider the minimization problem

I0 = min
u(x)

I(u), I(u) =

∫ 1

−1
x2u′2dx, u(−1) = −1, u(1) = 1. (1)

We observe that I(u) ≥ 0 ∀u, and therefore I0 ≥ 0. The Lagrangian L = x2u′2

is a convex function of u′, so the Weierstrass condition is satisfied.
The Euler equation d

dx (x2u′) = 0 admits the first integral

∂L

∂u′
= 2x2u′ = C and u′ =

C

2x2

If C 6= 0, the value of I(u) is infinity, because the Lagrangian becomes

x2u′2 =
C2

4x2

and the integral of the Lagrangian diverges if C 6= 0.
We conclude that C = 0 which implies that u′(x) = 0 if x 6= 0. Accounting

for the boundary conditions, we find

u(x) =

{
−1 if x < 0

1 if x > 0

and u(0) is not defined.
We arrive at an unexpected result that contradicts the assumptions of dif-

ferentiability of u(x) used in the derivation of the Euler equation: the extremal
u(x) is discontinuous and u′ exists only in the generalized sense:

u0(x) = −1 + 2H(x), x 6= 0 (2)
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where H(x) is the Heavyside function,

H(x) =

{
0 x < 0
1 x ≥ 0

Weierstrass-Erdmann condition The Weierstrass-Erdmann condition[
∂L

∂u′

]+
−

=
[
x2u′

]+
− = 0

shows that Lagrangian L is undetermined when x = 0 but the equality is satis-
fied if it is understood in the sense of distributions.

1.2 Minimizing sequence

Without a reference to the Euler equation, we build a minimizing sequence of
differentiable functions that tends to (2). Let uε(x), ε > 0 be

uε(x) =

−1 if x ∈
[
−1,− 1

ε

]
1 if x ∈

[
1
ε , 1
]

x
ε if x ∈

[
− 1
ε ,

1
ε

]
The derivative [uε]′ is

[uε]′(x) =

{
0 if |x| ≥ 1

ε
1
ε if |x| < 1

ε

The cost of the problem

I(uε) =

∫ 1

−1
x2(uε)′2dx =

1

ε2

∫ ε

−ε
x2 dx =

2

3
ε

goes to zero, I(uε)→ 0 when ε→ 0. The sequence {uε}, ε→ 0 is a minimizing
sequence for I(u) which is nonnegative, I(u) ≥ 0 ∀u, for any trial function u.

This example again illustrates that any variational problem has a solution,
if the word “solution” is properly understood. /David Hilbert/ The differentiable
solution does not exist but one can build a minimizing sequence and take its
limit as the solution.

2 Minimal surface of revolution

2.1 Euler equaton

Another classic example of discontinuous minimizer is the classical problem of
the minimal surface (Lagrange 1762). It is required to find a surface of minimal
area, that is supported by a given spacial curve or curves. Here, we formulate
it for the surface of revolution: Minimize the area of the surface of revolution
supported by two parallel circumferences of two circles with the centers at the
axis r = 0.

3



If is convenient to use cylindrical coordinates z, r(z). According to the cal-
culus, the area J of the surface of revolution is

J = 2π

∫ z1

z2

r
√

1 + r′2 dz (3)

where r′ = dr
dz , z1 and z2 are coordinated of the centers of the supporting

circles. This problem is formally equivalent to a special case of the geometric
optics problem, corresponding to the slowness ψ(r) = r or to the speed v = 1

r .
The Lagrangian

F = r
√

1 + r′2

admits the first integral

r′
∂F

∂r′
− F =

r√
1 + r′2

= c (4)

Solving for r′ = dr
dz and separating variables, we find

dz = c
dr√
r2 − c2

and

z = c

∫
dr√
r2 − c2

= c cosh−1
(r
c

)
+ c1

or, finally,

r(z) = c cosh

(
z − c1
c

)
Constants c, c1 are defined by the boundary conditions: radii of two supporting
circumferences:

c cosh

(
z1 − c1
c

)
= R1, c cosh

(
z2 − c1
c

)
= R2

Assume for clarity that the surface is supported by two equal circles of radius
R = R1 = R2 that are located symmetric to OZ axis, z1 = −z2. Due to this
symmetry, the surface is an even function of z, which implies c1 = 0:

r(z) = c cosh
(z
c

)
(5)

The minimal surface of revolution is a catenoid. The radius of the surface
reaches minimum at the middle of the interval [−z1, z1]: z = 0, r(0) = c, as it is
intuitively expected. The constant c can be found from the boundary condition
that is a transendental equation for c:

r(z1) = c cosh
(z1
c

)
= R (6)
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Figure 1: Family of catenoids (5)

We compute the area of the minimal surface substituting r(z) from (5) into the
formula

J = 2(2π)

∫ z1

0

(r
√

1 + r′2) dz.

We obtain, after calculation,

J = πc2
[
sinh

(
2z1
c

)
+

2z1
c

]
. (7)

Figure 1 shows that two extremals pass through each point inside the cone,
which means that there are two different stationary solutions. Indeed, equation
(6) for c has two solutions. A direct calculation of the cost of the problem (7)
is needed to determine which of these solution corresponds to the minimum of
J . The examination shows that the less steep catenoid is the one with a smaller
value of the objective functional. The detailed analysis of this phenomenon can
be found in

http://mathworld.wolfram.com/MinimalSurfaceofRevolution.html

Family of extremals The family (5) of extremals z
c = cosh

(
z
c

)
forms a c-

dependent family of functions varying only by simultaneously rescaling of the
variables r and z. The ratio of the coordinates ( rc ,

z
c ) on any curve of the family

is independent on the scale c. Geometrically, this means that all curves of the
family lie inside a triangular region which boundary is defined by a minimal
value of that angle, or by the equation of the envelope of the family of function.

Recall that an envelope of the family of curves fc(x, y) = 0 that depends on
a parameter c satisfies the equations

∂fc(x, y)

∂c
= 0, fc(x, y) = 0

. which allow for excluding of the paprameter c
For the analysis of our problem it is convenient to change the parameter of

the family c to 1
c′ the family of extremals is In the considering case

fc′(r, z) = 0 → c′r − cosh(c′z) = 0 (8)

We compute
dfc′(r, z)

dc′
= 0 → r = z sinh(c′z) (9)

Divide (8) by (9) and call c′z = p. We find equation for p

p = coth(p) p = 1.1996789403....
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From (9), we compute the slope of the cone:

r

z
= sinh p = 0.6627434193....

All extremal catenoids (5) lie within a triangle r
|z| ≥ 0.6627434193....

Further analysis If the supporting circumferences are far away from each
other, R

|z1| < 0.6627434193...., none of the extremals passes through the bound-

ary point. The problem does not have a solution. However, any minimal area is
positive and the infimum is also a non-negative number that should correspond
to a curve. What is wrong?

2.2 Goldschmidt solution

We implicitly assumed that the minimal surface of revolution is a differentiable
function with finite tangent r′ to the axis OZ of revolution. Therefore, we
excluded curves for which r′(z) =∞. These curves represent disks that can be
a part of the optimal surface.

Another implicit assumption is that the radius is strictly positive. The set
of positive numbers is open, the radius of the surface of revolution may tend to
zero in an interval, and the surface area of the corresponding cylinder can be
made arbitrarily small.

Accounting for these two factors results in another solution called Gold-
schmidt solution (it was found by Carl Wolfgang Benjamin Goldschmidt, in
1831).

Formally, the constant c in (4) can be zero; which implies that

either r = 0 or r′ =∞

The minimal surface consists of two disks (r′ = ∞) and an infinitesimal
circular tube between them (r = 0). The surface area of the tube is neglectibly
small and the cost JG is equal to the double area of the circle: JG = 2πR2.
Remarkable, that the cost is independent of the distance between circles.

Minimizing sequence As in the previous example,we can build a minimizing
sequence of continuous functions rn(z) , such that the limit corresponds to
discontinuous limiting function. A function rε(z) in the minimizing sequence
describes a cylinder of the radius ε joined with the cone with the angle arctan 2

ε
by the vertex. These two elements meet at the point z = κ.

rε(z) =

{
ε if z ∈ (0, κ]
R− z1−z

ε if z ∈ (κ, z1]
(10)

where κ = z1 − εR+ ε2.
The area Aε is the sum of the areas A1 = 2πεκ of the cylinder and A2 =

πR
√
R2 +H2 of the cone. Since the height H = z1 − κ = ε(R+ ε), we observe

A1 → 0, A2 = πR
√
R2 + ε2(R+ ε)2 = πR2 +O(ε2)→ πR2, if ε→ 0
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The Goldschmidt solution corresponds the discontinuous limit of this minimizing
sequence of continuous functions {rε}.

Stitched solutions The Goldschmidt solution is defined for any values of
R,Z. A separate calculation is needed to find a region where the catenoid solu-
tion delivers a smaller value of the cost than the Goldschmidt solution. Direct
comparison confirms that Goldschmidt solution corresponds to the smaller area
than catenoid even is some part of the domain where both solutions are possible,
see
http://mathworld.wolfram.com/MinimalSurfaceofRevolution.html

Fastest path: Harry Potter Chimney Transportation Strategy Ge-
ometric optics analogy suggests a physical interpretation of the Goldschmidt
solution. The problem of a minimal surface is formally identical to the prob-
lem of the fastest path between two equally distant from OZ-axis points, if the
speed v = 1/r is inversely proportional to the distance to the axis OZ. The op-
timal path between the two close-by points lies along the arch of an appropriate
catenoid r = c cosh( zc ) that passes through the given endpoints; the path sags
toward the OZ-axis where the speed is higher.

The optimal path between two far-away points is different: The travelers go
straight to the OZ-axis where the speed is infinite, then they are transported
instantly (infinitely fast) to the closest to the destination point at the axis,
and then they go straight to the destination. This ”Harry Potter Chimney
Transportation Strategy” is optimal when the two supporting circles are far
away from each other.

3 Discontinuous extremals

Now we analyze the previous problems from the analytical viewpoint without
references to geometrical and physical interpretations. We demonstrated that
in some variational problems the extremal u(x) breaks the basic assumptions
of continuity and admits discontinuities. Such solutions cannot be excluded
because the set of differentiable functions is open, and a minimizing sequence
of continuous functions may tend to a discontinuous limit.

The question is: What Lagrangians F (x, u, u′) can correspond to such solu-
tions?

3.1 Lagrangians of linear growth with respect of u′

The Lagrangian Lms = ψ(x, u)
√

1 + u′2 in the geometric optics problems grows
linearly with u′ as |u′| → ∞:

lim
|u′|→∞

L(x, u, u′)

|u′|
= ψ(x, u) (11)
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We show that the discontinuity of u(x) for Lagrangians of linear growth adds
a finite cost to the cost of the variational problem; therefore the jumps in the
solutions are admissible.

Assume that a Lagrangian L(x, u, u′) has the property (11) where ψ is a
bounded function, and consider a trajectory with a steep increase of u in the
interval [x0, x0 + ε]:

u(x0) = u1, u(x0 + ε) = u2

u′(x) ≈ u2 − u1
ε

� 1

The integral over the interval [x0, x0 + ε] is

Iε =

∫ x0+ε

x0

L(x, u, u′)dx =

∫ x0+ε

x0

(
L(x, u, u′)

u′

)
u′dx

Using (11) and smallness of the interval [x0, x0 + ε] and continuity of L(x, ., .)
as a fi=unction of x, we approximate the Lagrangian :

ψ(x, u) = ψ(x0, u) +O(ε) ∀x ∈ [x0, x0 + ε]

and the value of the integral Iε becomes

Iε = Ijump +O(ε2), Ijump =

∫ x0+ε

x0

ψ(x0, u)u′dx,

Rewriting u′dx = du and correspondingly changing the limits of integration, we
bring the last integral to the form

Iε = Ijump =

∫ u2

u1

ψ(x0, u) du

When ε→ 0, the contribution Ijump of the discontinuity remains finite. Hence,
in some problems with Lagrangians of linear growth optimal solution may have
discontinuities.

Example 3.1 In the Goldschmidt solution, ψ = r and

Ijump = 2π

∫ R

0

r dr = πR2

which coincide with the geometric derivation.

Example 3.2 The Total Variation approximating function can be discontinuous if
the approximated function h(x) is discontinuous. The discontinuity of u(x) inside
its interval of total variation does not affect the value of the total variation.
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3.2 Continuity of the solution and the growth conditions

Superlinear growth Using similar arguments, we can show that a jump of
an extremal for a Lagrangian of superlinear growth

lim
|u|′→∞

L(x, u, u′)

u′
=∞

is not optimal, because the cost of any jump is infinite; hence, discontinues
functions never occur in minimizing sequences: The penalty for discountinuity
is infinitely high.

Therefore, the derivative u′(x) in the optimal solution is uniformly bounded
at any bounded interval [a, b]. It follows that all solutions of a variational
problem with the Lagrangian of superlinear growth are bounded too if at least
one boundary condition prescribes a finite the value of u: u(a) = ua.

Example 3.3 The problems of Lagrange mechanics do satisfy this assumption
because kinetic energy depends on the speed ẋ quadratically. This corresponds to
the physics: trajectories of inertial particles are continuous.

The approximations with a quadratic penalty are also continuous even if the
approximated function is not.

Sublinear growth The Lagrangians of sublinear growth

lim
|u|′→∞

L(x, u, u′)

u′
= 0

admit any number of jumps, because the contribution of each jump to the cost
functional is zero. The discontinuities in minimizing sequences are not penalized
at all.

Sublinear growth at a point In the first example, The Lagrangian x2u′2

grows superlinearly except at the point x = 0, where it grows sublinearly.

lim
|u′|→∞

L

|u′|
=

{
∞, if x 6= 0
0, if x = 0

The discontinuity of u(x) at x = 0 is not penalized.

Sublinear growth at several points Consider the problem with Lagrangian

L = (x− 1

2
)2(x+

1

2
)2u′2

on the same interval [−1, 1] and with the same boundary conditions: u(−1) =
−1, u(1) = 1; L grows sublinearly at the points x = ± 1

2 . Using the same
arguments, we find the solution

u(x) =

−1, if −1 < x,− 1
2

c, if − 1
2 < x < 1

2
1 if 1

2 < x < 1
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where c is an arbitrary constant. The solution is not unique. In the same way,
one can construct the problem with the solution that has any number of jumps
with undefined magnitudes of the jumps.

Sublinear growth in an interval The solution may have an everywhere
dense set of jumps. This disconnects the function and its derivative

u(x)→ f(x), u′(x)→ g(x)

Indeed, consider a sequence of points a = z0, z1, . . . zN = b, and assume that
the distance between them less then εN > 0. Set

u(zn) = fn

and define the piece-wise affine functions

ûn(x) = u(xn) + gn(x− xn), x ∈ [xn, xn+1) (12)

where {gn} is an arbitrary sequence. Sequence {û}(x) approximates u(x) up to
the order of εN :

|u(x)− û(x)| = o(εN ) ∀x ∈ [a, b]

The derivative ûn(x) is piece-wise constant

û′n(x) = gi, x ∈ [xn, xn+1) (13)

at each interval [xn, xn+1) (notice that gi = û′n(x) 6= u′(xn)). At the end of
each interval, ûn is discontinuous,

lim
x→xn+1−0

ûn = u(xn) + gi(xn+1 − xn)

lim
x→xn+1+0

ûn = u(xn+1)

and û′n(x) is undetermined. Because of sublinear growth of the Lagrangian,
discontinuities of û do not affect the cost functional.

The variational functional, computed for the sequence ûn(x), becomes

IN =

N∑
n=1

∫ xn+1

xn

F (x, ûn(x), gn)dx

=

N∑
n=1

∫ xn+1

xn

F (x, un, gn)dx+O(εN )

The limit of such sequence when N →∞, εN → 0, depends on two indepen-
dent functions u(x) and g(x), the variational problem becomes the problem of
minimization with respect to these uncorrelated functions:

lim
N→∞

IN = I = min
u(x)

min
g(x)

∫ b

a

F (x, u(x), g(x))dx

In particular, boundary conditions on u do not affect the cost because they can
be satisfied by a discontinuity at the end of the interval [a, b].
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Example 3.4 Let F be
F =

√
|u′|+ (u− x)2

The minimizing sequence consists of the piece-wise constant step functions

ûn(x) = u(xn), x ∈ [xn, xn+1)

The derivative û′n is zero everywhere except x = xn, n = 1, 2, .. where ûn is dis-
continuous. The discontinuities do not affect the Lagrangian.

The limiting Lagrangian F0 is

F0(u(x), g(x)) =
√
|g(x)|+ (u(x)− x)2,

the minimizer is

v = 0, u = x, and

∫ b

a

F0(0, x)dx = 0

In the classical sense, the solution to this problem does not exist. However,
the discontinuous solution is a minimizer even if it does not belong to the set of
differentiable functions.

4 Regularization and viscosity solutions

A slight perturbation of the problem (regularization) yields to the problem that
has a classical solution and this solution may be close to the discontinuous
solution of the original problem. This time, regularization is performed by
adding to the Lagrangian a stabilizer which is a strictly convex function ερ(u′)
of superlinear growth.

4.1 Regularization of a finite-dimensional linear problem

As the most of variational methods, the regularization has a finite-dimensional
analog. It is applicable to the minimization problem of a convex but not strongly
convex function which may have infinitely many solutions. The idea of regular-
ization is to slightly perturb the function by small but a strictly convex term;
the perturbed problem has a unique solution to matter how small the pertur-
bation is. The numerical advantage of the regularization is the convergence of
minimizing sequences.

Let us illustrate ideas of regularization by studying a finite dimensional
problem. Consider a linear system

Ax = b (14)

where x is an unknown n-dimensional vector, A is a known square n×m matrix
and b is a known m-dimensional vector.

We know from linear algebra that the Fredholm Alternative holds:
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• If detA 6= 0, the problem has a unique solution:

x = A−1b if detA 6= 0 (15)

• If detA = 0 and AT b 6= 0, the problem has no solutions.

• If detA = 0 and AT b = 0, the problem has infinitely many solutions.

Remark 4.1 In practice, we also deal with an additional difficulty: The determi-
nant detA may be a “very small” number and one cannot be sure whether its value
is a result of rounding of digits or it has a “physical meaning.” In any case, the
errors of using the formula (15) can be arbitrary large and the norm of the solution
is not bounded.

To address this difficulties, it is helpful to restate linear problem (14) as an
extremal problem. Minimize the square of norm of the difference between Ax
and b

min
x∈Rn

(Ax− b)T (Ax− b) (16)

This problem does have at least one solution, no matter what the matrix A is.
We compute:

d

dX
(Ax− b)T (Ax− b) = 2[(ATA)x−AT b] = 0

The square n×n matrix ATA is non-negatively defined. If the inverse (ATA)−1

exists, we obtain
x = (ATA)−1AT b

If m = n and matrix A is non-singular, the last formula becomes

x = (ATA)−1AT b = A−1(AT )−1AT b = A−1b

This solution coincides with the solution of the original problem (14) when
this problem has a unique solution; in this case the cost of the minimization
problem (16) is zero. Otherwise, the minimization problem provides ”the best
approximation” of the non-existing solution.

If the problem (14) has infinitely many solutions, so does problem (16).
Corresponding minimizing sequences {xs} can be unbounded, ‖xs‖ → ∞ when
s→∞.

In this case, we may select a solution with minimal norm. We use the
regularization, passing to the perturbed problem

min
x∈Rn

(Ax− b)T (Ax− b) + εxTx, ε > 0

The solution of the last problem exists and is unique. Indeed, we have by
differentiation

(ATA+ εI)x−AT b = 0

and
x = (ATA+ εI)−1AT b

We mention that
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1. The inverse exists since the symmetric matrix ATA is nonnegative defined,
and ε is positive. The eigenvalues (ATA+εI) are real numbers not smaller
than ε.

2. Suppose that we are dealing with a well-posed problem (14), that is the
matrix A is not degenerate. When ε → 0, the solution becomes the solu-
tion (15) of the unperturbed problem, x→ A−1b.

3. If the problem (14) is ill-posed, the norm of the solution of the perturbed
problem is still bounded:

‖x‖ ≤ 1

ε
‖b‖

because eigenvalues of (ATA+ εI)−1 are not greater than 1
ε .

Remark 4.2 Instead of the regularizing term εx2, we may use any positively define
quadratic ε(xTPx + pTx) where matrix P is positively defined, xTPx > 0 ∀x, or
other strongly convex function of x.

4.2 Regularization of the example H

Similarly to the finite-dimensional problem, we perturb the Lagrangian x2u′2 in
the Example H (1) by adding a uniformly convex stabilizer ε2u′2 (ε > 0). The
perturbed problem for the Example H (1) becomes:

Iε = min
u(x)

Iε(u), Iε(u) =

∫ 1

−1

(
x2u′2 + ε2u′2

)
dx, u(−1) = −1, u(1) = 1,

(17)
After the perturbation ε2u′2 is added to the original Lagrangian x2u′2, the
perturbed Lagrangian is of superlinear growth everywhere.

The first integral of the Euler equation for the perturbed problem becomes

(x2 + ε2)u′ = C, or du = C
dx

x2 + ε2

Integrating and accounting for the boundary conditions, we obtain

uε(x) = A arctan
x

ε
, A =

(
arctan

1

ε

)−1
When ε→ 0, the solution uε(x) converges to the discontinuous minimizer u(x)
although the convergence is not uniform at x = 0.

We also show that the sequence of perturbed functionals I(uε) tends to the
limiting value I(u) = 0. Indeed,

[uε]
′ = A

ε

ε2 + x2
;

therefore, the cost of the perturbed problem is of the order of ε2, I(uε) = O(ε2).
This proofs that the sequence of solutions uε(x) is a minimizing sequence.

13



4.3 Regularization of the minimal surface of revolution
problem

Regularization by adding a pointwise constraint The Goldschmidt solu-
tion consists of two essentially disconnected circles; it shows that the connectiv-
ity is not a valid constraint in the problem of the minimal surface. A number of
infinitesimal tunnels can be added to the surface; they changes the connectivity
but do not increase the area.

A possible regularization of the problem is performed by adding a constraint.
For example, we may require that the radius of this path is uniformly bounded
from zero by a positive constant r0,

r(z) ≥ r0 ∀z ∈ [a, b].

This requirement says that a ball of the radius r0 can pass through the tunnel.
With such constraint, the solution splits into a cylinder of the radius r0, r(z) =
r0 and the catenoid that satisfies the Euler equation and joins the cylinder with
the boundary circle.

r(z) =

{
r0 if 0 ≤ x ≤ s
cosh(C(z−C1))

C if s ≤ z ≤ a

The three constants s and C and C1 are bounded by two constraints, that
express the boundary condition and continuity of r(x) at the point z = s where
the cylinder meets catenoid:

(C,C1, s) :=

{
R =

cosh(C(a− C1))

C
, r0 =

cosh(C(s− C1))

C

}
. (18)

The area Acat(s, C,C1) is given by (13). The minimal area is given by
solution of the optimization problem

A(s, C,C1) = 2 min
s,C,C1as in (18)

(2πr0s+Acat(s, C,C1))

It remains to find (numerically) optimal values s and C and C1 that are
subject to above constraints.

Regularization by adding an integral constraint Another way to regu-
larize the problem is the adding an intergal constraint. For example, one can
request that the volume under inside of the body bounded by the minimal sur-
face and two circles is given

V = π

∫ R

0

r(z)2dz

Lagrangian becomes

F = r
√

1 + r′2 + λr(z)2dz

14



where λ is the Lagrange multiplier.
Proceeding as before, we find

u′
∂F

∂u′
− F =

r√
1 + r′2

− λr(z)2 − C = 0;

As before, we solve for r′ and separate the variables; the solution in quadratures
is

z =

∫ r

0

√
R(r) dr, R(r) =

r

2

(
1

λr2 + C − r
+

1

λr2 + C − r
− 1

)
Regularization by perturbation of the Lagrangian A common way for
regularization is the replacement of the Lagrangian F (u, u′) with a perturbed
one Fε(u, u

′) so that

|Fε(u, u′)− F (u, u′)| → 0, when ε→ 0

and the variational problem with Lagrangian Fε(u, u
′) has a solution. The

perturbed problem may not have a clear geometric sense.
Lagrangian of the minimal surface problem

F (r, r′) = r
√

1 + r′2

can be perturbed so that r is always separated from zero. For example, consider
the perturbed Lagrangian in which we replace r with

√
r2 + ε2, so that this term

cannot do to zero:
Fε(r, r

′) =
√
r2 + ε2

√
1 + r′2 (19)

The difference ∆ = |Fε(r, r′)− F (r, r′)| is equal to

∆ = ε2
√

1 + r′2√
r2 + ε2 + r

and goes to zero when ε→ 0.
The first integral of the perturbed Lagrangian is

r′
∂F

∂r′
− F =

√
r2 + ε2

1 + r′2
= c (20)

The left-hand side is larger that ε2, therefore c > ε2 too. This time, r′ in
denominator is is bounded when c is bounded..

Problem: Derive the equation for the minimizer of Lagrangian (19), check
its validity for all values of parameters.
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