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1 Isoperimetric problem

1.1 Stationarity conditions

Isoperimetric problem of the calculus of variations asks for minimum of one
integral functional subject to condition that another integral functional is fixed.
A classical example is the problem of the domain of maximal area with fixed
perimeter; this problem gave the name ”isoperimetric” to these problems. The
isoperimetric problem is formulated as follows

min
u

∫ b

a

F (x, u, u′)dx subject to

∫ b

a

G(x, u, u′)dx = 0 (1)
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Applying the same procedure as in the finite-dimensional problem, we reformu-
late the problem using Lagrange multiplier λ:

min
u

∫ b

a

[F (x, u, u′) + λG(x, u, u′)] dx (2)

To justify the approach, we consider the finite-dimensional analog of the problem

min
ui

N∑
i=1

F (xi, ui,Diff(ui))(xi−xi−1) subject to

N∑
i=1

G(x, ui,Diff(ui))(xi−xi−1) = 0

where

ui = u(xi), Diff(ui) =
ui − ui−1

xi − xi−1
, |xi − xi−1| → 0, when N →∞

The Lagrange method is applied to the last problem which becomes

min
ui

N∑
i=1

[F (xi, ui,Diff(ui)) + λG(xi, ui,Diff(ui))] .

Passing to the limit when N →∞ we arrive at (2).
The procedure of solution is as follows: First, we solve Euler equation for

the problem (2)
d

dx

∂

∂u′
(F + λG)− ∂

∂u
(F + λG) = 0.

keeping λ undefined, and arrive at minimizer û(x, λ) which depends on param-
eter λ. This parameter is defined from equation∫ b

a

G(x, ˆu(x, λ), ˆu(x, λ)
′
)dx = 0

Remark 1.1 The method assumes that the constraint is consistent with the vari-
ation: The variation must be performed in a class of functions u that satisfy the
constraint. Parameter λ has the meaning of the cost for violation of the constraint.

Of course, it is assumed that the constraint can be satisfied for all varied func-
tions that are close to the optimal one. For example, the method is not applicable
to the constraint ∫ b

a

u2dx ≤ 0

because this constraint allows for only one function u = 0 and will be violated at
any varied trajectory.
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Generalization The isoperimetric problem is naturally generalized to several
constraints and to inequality constraints, as is is done for the finite-dimensional
optimization problem. Namely, consider the minimization problem

min
u

∫ b

a

F (x, u, u′)dx subject to

∫ b

a

G(x, u, u′)dx = 0 (3)

subject to integral constraints∫ b

a

Gi(x, u, u
′)dx = 0 i = 1, . . . , k (4)∫ b

a

Hj(x, u, u
′)dx < 0 j = 1, . . . ,m. (5)

The extended Lagrangian is

L(u, u′, λ, µ) = F (x, u, u′)dx+

k∑
i=1

λiGi(x, u, u
′) +

m∑
j=1

µjHj(x, u, u
′) (6)

where λ = (λ1 . . . λk) and µ = (µ1 . . . µm) are vectors of Lagrange multipliers
λi and µj , respectively.

The stationarity conditions(
∂

∂u
− d

dx

∂

∂u′

)
L(u, u′, λ, µ) = 0, (7)

µj

∫ b

a

Hj(x, u, u
′)dx = 0, µj ≥ 0, j = 1, . . . ,m (8)

allow to determine the solution that depends on Lagrange multipliers, u(x, λ, µ)
and satisfies constraints (4), (5), (8).

1.2 Dido problem

The first isoperimetric problem has been solved by legendary wise princess Dido,
founder and queen of Carthage, the mighty rival of Rome:

The problem was as follows: What is the maximum area of land that
can be encircled by a rope of given length?

Solution: The circle or (if the land is on the sea shore) the semi-
circle.

The problem is described in a passage from Virgil’s Aeneid:

”The Kingdom you see is Carthage, the Tyrians, the town of Agenor;

But the country around is Libya, no folk to meet in war.

Dido, who left the city of Tyre to escape her brother,

Rules here–a long a labyrinthine tale of wrong
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Is hers, but I will touch on its salient points in order....

Dido, in great disquiet, organized her friends for escape.

They met together, all those who harshly hated the tyrant

Or keenly feared him: they seized some ships which chanced to be ready...

They came to this spot, where to-day you can behold the mighty

Battlements and the rising citadel of New Carthage,

And purchased a site, which was named ‘Bull’s Hide’ after the bargain

By which they should get as much land as they could enclose with a bull’s

hide.”

In modern notations, the problem is as follows: Consider a bounded domain
Ω in a plane and its smooth boundary γ. Introduce the parametric representa-
tion of the closed contour γ on a plane

γ : {(x(s), y(s)), s ∈ [s0, s1], x(s0) = x(s1), y(s0) = y(s1)}

The length L and the area A of the contour are expressed through the
coordinates of the contour as

L =

∫ s1

s0

√
x′2 + y′2 ds (9)

A =

∫
Ω

dx dy =
1

2

∫ s1

s0

(xy′ − x′y) ds (10)

where x′ = dx
ds , y′ = dy

ds .

Remark 1.2 Formula (10) is obtained by applying Green’s formula (Divergence
theorem): ∫

Ω

divF dx dy =

∮
γ

F · ν ds (11)

where F (x, y) is a vector function, ν is the normal to the boundary γ,

F =

(
F1

F2

)
, divF =

∂F1

∂x
+
∂F2

∂y
, ν =

(
y′

−x′
)

and the path of integration is anticlockwise. If F is set as follows: F1 = 1
2x,

F2 = 1
2y, the divergence theorem gives (9).

The isoperimetric problem asks for the shape Ω of maximum of A if the
length L is fixed. Accounting for the constraint by Lagrange multiplier λ, we
arrive at the problem

I = max
x(s), y(s)

(A+ λL) (12)

The Lagrangian L is

L =
1

2
(xy′ − x′y) + λ

√
x′2 + y′2
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Euler-Lagrange equations are

dL
ds

∂L
∂x′
− ∂L
∂x

=
d

d s

(
−1

2
y +

λx′√
x′2 + y′2

)
− 1

2
y′ = 0 (13)

dL
ds

∂L
∂xy′

− ∂L
∂y

=
d

d s

(
1

2
x+

λy′√
x′2 + y′2

)
+

1

2
x′ = 0 (14)

they can be integrated. We have

−y +
2λx′√
x′2 + y′2

= C1, x+
2λy′√
x′2 + y′2

= C2 (15)

where C1 and C2 are constant of integration. Rearranging terms, we write

λ√
x′2 + y′2

=
C1 + y

x′
=
C2 − x
y′

(16)

The second equality in (16) gives (C1 + y)y′ + (x− C2)x′ = 0. or

d

ds

[
(C1 + y)2 + (x− C2)2

]
= 0

Integration of this expression gives the solution:

(C1 + y)2 + (x− C2)2 = R2.

where R2 is the constant of integration. It shows that the optimal curve is a
circle. Its radius R is found from the constraint (9): 2πR = L. Constants C1

and C2 represent the coordinates of the center of the circle; they are arbitrary.

1.3 Catenary

The classical problem of the shape of a heavy chain (catenary, from Latin catena
which means ”chain”) was considered by Euler. Assume that a heavy chain of
the shape y(x) hangs between points (−a, 0) and (a, 0) in a vertical plane. The
length of the chain

L =

∫ 1

0

√
1 + (y′)2dx

is fixed, the coordinates of the ends are fixed too y(−a) = 0 and y(a) = 0.
We postulate, that the equilibrium shape of the chain minimizes its potential

energy W that is an integral of potential energy of the links of the chain. The
potential energy dW of an infinitesimal link is dW = gρ(x)y(x)ds where g is
gravitational acceleration, ρds is the the weight of an infinitesimal element, ρ is
the density, ds =

√
1 + (y′)2dx is the length of of the chain’ element.

The whole energy of the chain is

W =

∫
−a
agρy ds = gρ

∫ 1

0

y
√

1 + (y′)2dx
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Normalizing, we put gρ = 1.
The problem becomes a constrained optimization problem: minimize the

energy W when the length L is fixed. The Lagrangian L is L = W (y, y′) +
λL(y, y′) where λ is Lagrange multiplier, and the variational problem is

I = min
y(x)

∫ a

−a
L(y, y′)dx L(y, y′) =

∫ 1

0

(y + λ)
√

1 + (y′)2dx

The Lagrangian is independent of x and therefore permits the first integral

y′
∂L
∂y′
− L = (y + λ)

(
(y′)2√

1 + (y′)2
−
√

1 + (y′)2

)
= C

that is simplified to
y + λ√
1 + (y′)2

= C.

We solve for y′

dy

dx
=

√(
y + λ

C

)2

− 1,

and integrate

x = ln

λ+ y +

√(
y + λ

C

)2

− 1

− lnC + x0.

and find y(x)

y = −C cosh

(
x− x0

C

)
+ λ

The constants x0, C, and λ are found from the boundary conditions and the
constraint. By symmetry, x0 = 0, and the two remaining conditions are trans-
formed to two equations for C and λ:

y(a) = y(−a) = −C cosh
( a
C

)
+ λ = 0∫ a

−a
y(x)dx = sinh(C a) + 2λa = L

Obviously, this system has a solution only if L < 2a.
The equation – the catenary – defines the shape of a chain; it also gave the

name to the hyperbolic cosine.

1.4 An optimal design problem

The energy density F of the bended beam equals to

F (w,w′′) =
1

2
D(w′′)2 − q w
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where w = w(x) is the deflection, q = q(x) is the density of the load, D = D(x)
is the beam’s stiffness. The integral of F represents the energy stored in the
beam bended under the load; it characterizes the integral stiffness of the beam:
the smaller is the integral, the smaller is the norm of deflection under the given
load q, the stiffer is the beam.

Differential equation of the equilibrium of the beam is the Euler equation of
the variational problem

I = min
w(x)

∫ b

a

F (w,w′′) dx

and is (check it)
[Dw′′]′′ = q; (17)

this equation is integrated with the the boundary conditions that specify the
type of fasting of the beam at the ends.

Stiffness D > 0 is proportional to the width S(x) of the beam, D(x) =
κS(x) > 0; the volume of the beam is proportional to the integral of S(x).
Consider the optimal design problem: Choose S(x) to minimize I, if the total
volume of the beam is given or integral of the width is given∫ b

a

S(x)dx = v (18)

The Lagrangian

L = F (w,w′′, S) + λ

(
S − v

b− a

)
where λ is the Lagrange multiplyer, depends on two minimizers w and S. The
Euler equation for w is (17); the Euler equation for δS is an algebraic relation
because L does not depend on derivative S′. This stationarity equation

dL

dS
=

1

2
(w′′)2 + λ = 0 (19)

shows that |w′′| is constant in an optimal beam no matter what the load q is,
and λ < 0.

The equation (17) becomes:

sign (w′′)S′′ +
q

κ
√
−λ

= 0 (20)

Together with (19) and boundary conditions, it allows for finding w and S.

Cantilever beam The boundary conditions are especially simple for a can-
tilever beam, clamped at the point x = a and free at the point x = b. They
allow to find an analytic solution to the problem. These conditions are:

w(a) = 0, w′(a) = 0, (21)

D(b)w′′(b) = 0, [D(b)w′′(b)]′ = 0 (22)
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Assume that w(x)′′ keeps its sign everywhere (which correspond to the load-
ing q(x) > 0, as we will see). Integrating (20), we find:

w(x) =
q

2κ
√
−λ

(x− a)2

Equation (20) is a separate one; it is integrated with boundary conditions (22)
that take the form S(b) = 0, S′(b) = 0 The solution is

S(x) =
1

κλ

∫ b

x

dz

∫ b

z

q(ψ)dψ.

Finally, we use condition (18) to find λ.

Remark 1.3 This example illustrates a principle of optimal design: the variable
material property (here, the width S(x)) of the optimally designed construction
adapts itself to the loading q(x) while the mechanical behavior of the construction
(here the curvature w′′) is is less dependent on that variable loading.

Example 1.1 Assume that q(x) = 1 is constant. Then

S(x) =
q

2κ
√
−λ

(x− b)2.

Lagrange multiplier λ is determined from the constraint (18):

v =
q

2κ
√
−λ

∫ b

0

(x− b)2dx =
q b3

12κ
√
−λ

or
1√
−λ

=
12vk

qv3

and the width of an optimal beam is

S(x) =
6

v2
(x− b)2

Problem Find optimal width of the simple supported beam:

w(0) = w(b) = 0, w′′(0) = w′′(b) = 0 if q(x) = 1

1.5 Homogeneous functionals and Eigenvalue Problem

The next two problems are homogeneous: The functionals I(u) stay invariant if
the solution is multiplied by any real number k,

I(u) = I(k u) ∀k ∈ R

Therefore, the solution u(x) is defined up to a constant multiplier.
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An eigenvalue problem The eigenvalue problem corresponds to the func-
tional

I1 = min
u

∫ 1

0
(u′)2dx∫ 1

0
u2dx

u(0) = u(1) = 0 (23)

Because the solution is defined up to a multiplier, we can normalize it as-
suming that ∫ 1

0

u2dx = 1 (24)

Then the problem becomes a problem of the constrained minimum. Accounting
for the normalized constraint (24) and using Lagrange multiplyer λ, we bring it
to the standard form.

I1 = min
u

∫ 1

0

(
(u′)2 + λ(u2 − 1)

)
dx x(0) = x(1) = 0.

The Euler equation is

u′′ − λu = 0, u(0) = u(1) = 0

This equation represents the eigenvalue problem. It has nonzero solution u(x) =
C sin(

√
−λx) only if λ takes special values, the eigenvalues, which are chosen

so, that the solution satisfs boundary condition

u(1) = C sin(
√
−λ) = 0

The eigenvalues are λn = −(πn)2 where n is an integer. The corresponding
solutions – the eigenfunctions un – are equal to

un(x) = C sin(πnx)

. The constant C is determined from the normalization (24) as C =
√

2. How-
ever, the cost I1(un) of the problem is independent of C

I1 =

∫ 1

0
(u′)2dx∫ 1

0
u2dx

= n2π2

The minimal cost I1 corresponds to n = 1 (the first eigenvalue) and is equal
to I1 = π2

A homogeneous problem The homogeneous problem may have only one
solution defined up to a multiplier. For example, consider the problem:

I2 = min
u

∫ 1

0
(u′)2dx(∫ 1

0
udx

)2 u(0) = u(1) = 0 (25)
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The problem (25) is homogeneous, and its solution u is defined up a multi-
plier. As in the previous example, reformulate the problem by normalizing the
solution, ∫ 1

0

udx = 1. (26)

The problem (25) becomes

min
u

∫ 1

0

(
(u′)2 + λu)

)
dx u(0) = u(1) = 0

where λ is the Lagrange multiplier by the normalization constraint.
The minimizer u satisfies Euler equation

u′′ − λ

2
= 0, u(0) = u(1) = 0

and is equal to u(x) = λ
4x(x − 1). The constraint (26)gives λ = −24 and the

objective is ∫ 1

0

(u′)2dx = 36

∫ 1

0

(2x− 1)2dx = 12

One can check that the cost of the problem (25) is invariant to the constant of
normalization or to the vallue of λ.

Remark 1.4 The two onsidered homogeneous variational problems correspond to
different types of Euler equation. The equation for the problem (23) is has either
infinitely many solutions for special values λ of or no solutions for other values
of it. The Euler equation can point to the set of stationary solutions but cannot
select a solution inside the set: this is done by straight comparison of the objective
functionals.

The problem (25) leads to hon-homogeneous Euler equation that linearly depend
on the constant λ of normalization. It has a unique solution if the normalization
constant is fixed.

2 General form of a variational functional

2.1 Reduction to isoperimetric problem

Lagrange method allows for reformulation of an extremal problem in a general
form as a simplest variational problem. The minimizing functional can be the
product, ratio, superposition of other differentiable function of integrals of the
minimizer and its derivative. Consider the problem

J = min
u

Φ(I1, . . . , In) (27)

where

Ik(u) =

∫ b

a

Fk(x, u, u′)dx k = 1, . . . n (28)
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and Φ is a continuously differentiable function. Using Lagrange multipliers
λ1, λn, we transform the problem (27) to the form

J = min
u

min
I1,...,In

max
λ1,...λn

{
Φ +

n∑
k=1

λk

(
Ik −

∫ b

a

Fk(x, u, u′)dx

)}
. (29)

The stationarity conditions for (29) consist of n algebraic equations

∂Φ

∂Ik
+ λi = 0 (30)

and the differential equation – the Euler equation

S(Ψ, u) = 0(
recall that S(Ψ, u) =

d

dx

∂Ψ

∂u′
− ∂Ψ

∂u

)
for the function

Ψ(u) =

n∑
k=1

λkFk(x, u, u′)

Together with the definitions (28) of Ik, this system enables us to determine
the real parameters Ik and λk and the function u(x). The Lagrange multipliers
can be excluded from the previous expression using (30), then the remaining
stationary condition becomes an integro-differential equation

S(Ψ̄, u) = 0, Ψ̄(Ik, u) =

n∑
k=1

∂Φ

∂Ik
Fk(x, u, u′) (31)

Next examples illustrate the approach.

2.1.1 Product of integrals

Consider the problem

min
u
J(u), J(u) =

(∫ b

a

φ(x, u, u′)dx

)(∫ b

a

ψ(x, u, u′)dx

)
.

We rewrite the minimizing quantity as

J(u) = I1(u)I2(u), I1(u) =

∫ b

a

φ(x, u, u′)dx, I2(u) =

∫ b

a

ψ(x, u, u′)dx,

apply stationary condition (31), and obtain the condition

δJ(u) = I1δI2 + I2δI1 = I2(u)S(φ(u), u) + I1(u)S(ψ(u), u) = 0. (32)
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or (∫ b

a

φ(x, u, u′)dx

)
S(ψ(u), u) +

(∫ b

a

ψ(x, u, u′)dx

)
S(φ(u), u) = 0

(Recall, that S(φ(u), u) = ∂φ
∂u −

d
dx

∂ψ
∂u′ ).

The stationary equation is nonlocal: Solution u at each point depends on its
first and second derivatives and integrals of φ(x, u, u′) and φ(x, u, u′) over the
whole interval [a, b].

Example 2.1 Solve the problem

min
u

(∫ 1

0

(u′)2dx

)(∫ 1

0

(u+ 1)dx

)
u(0) = 0, u(1) = a

We denote

I1 =
1

2

∫ 1

0

(u′)2dx, I2 =

∫ 1

0

(u+ 1)dx

and compute the Euler equation using (32)

I2u
′′ − I1 = 0, u(0) = 0, u(1) = a.

or (assuming that I2 6= 0)

u′′ −R = 0, u(0) = 0, u(1) = a, R =
I1
I2

The integration gives

u(x) =
1

2
Rx2 +

(
a− 1

2
R

)
x,

We obtain the solution that depends on R – the ratio of the integrals of two
function of this solution. To find R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2,

I1 =
R2

12
+ a2, I2 = − R

12
+

1

2
a+ 1

compute the ratio, I1
I2

= R and obtain the equation for R,

R =
R2 + 12a2

R+ 6a+ 12

Solving it, we find R = 1
2 (3a+ 6±

√
36 + 36a− 15a2).
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2.1.2 The ratio of integrals

Consider the problem

min
u
J(u), J(u) =

∫ b
a
φ(x, u, u′)dx∫ b

a
ψ(x, u, u′)dx

.

We rewrite it as

J =
I1
I2
, I1(u) =

∫ b

a

φ(x, u, u′)dx, I2(u) =

∫ b

a

ψ(x, u, u′)dx, (33)

apply stationary condition (31), and obtain the condition

1

I2(u)
S(φ(u), u)− I1(u)

I2
2 (u)

S(ψ(u), u) = 0.

Multiplying this equality by I2 and using definition (33) of the goal functional,
we bring the previous expression to the form

S(φ, u)− J S(ψ, u) = S(φ− Jψ, u) = 0

Observe that the stationarity condition depends on the cost J of the problem.

Example 2.2 Solve the problem

min
u
J(u), J =

∫ 1

0
(u′)2dx∫ 1

0
(u− 1)dx

u(0) = 0, u(1) = a

We compute the Euler equation

u′′ − J = 0, u(0) = 0, u(1) = a.

where

R =
I1
I2
, I1 =

∫ 1

0

(u′)2dx, I2 =

∫ 1

0

(u− 1)dx (34)

The integration gives

u(x) =
1

2
Rx2 +

(
a− 1

2
R

)
x,

We obtain the solution u(R) that depends on the ratio R of the integrals of two
function of this solution. To find R, we substitute the expression for u = u(R) into
right-hand sides of I1 and I2 in (34) and compute:

I1 =
R2

12
+ a2, I2 = − R

12
+

1

2
a− 1

Recalling that I1
I2

= R we obtain the equation for R,

R = − R2 + 12a2

R− 6a+ 12

Solving this quadratic equation, we choose the smaller root R = 1
2 (3a − 6 −√

36− 36a− 15a2).

The examples will be given in the next section.
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2.1.3 Superposition of integrals

Consider the problem

min
u

∫ b

a

R

(
x, u, u′,

∫ b

a

φ(t, u, u′)dt

)
dx

We introduce a new variable I

I =

∫ b

a

φ(t, u, u′)dt

and reformulate the problem as

min
u

∫ b

a

[
R(x, u, u′, I) + λ

(
φ(x, u, u′)− I

b− a

)]
dx

where λ is the Lagrange multiplier. The stationarity conditions are:

S((R+ λφ), u) = 0,
∂R

∂I
− 1

b− a
= 0.

and the above definition of I.

Example 2.3 (Integral term in the Lagrangian) Consider the following ex-
tremal problem posed in “physical terms”: Find the function u(x) on the interval
[0, 1] that is has prescribed values at its ends,

u(0) = 1, u(1) = 0, (35)

and minimizes a weighted sum of two terms: the L2-norm of the derivative u′

P =

∫ 1

0

u′2dx,

and

Q =

∫ 1

0

(u− a)
2
dx, a =

∫ 1

0

u(t)dt. (36)

The last requirement says that u(x) stays close to its averaged over the interval
[0, x] value a. We combine the two above constraints on u(x) into one Lagrangian
F equal to the weighted sum of them:

F = P + αQ = (u′)2 + α

(
u−

∫ 1

0

u(t)dt

)2

where α ≥ 0 is a weight coefficient that show a relative importance of the two
criteria. Function u(x) is a solution to the extremal problem

min
u(x), u(0)=1,u(1)=0

∫ 1

0

F

(
u, u′,

∫ 1

0

u(t)dt

)
dx (37)

We end up with the variational problem with the Lagrangian that depends on the
minimizer u, its derivative and its integral.
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Remark 2.1 Formulating the problem, we could include boundary conditions into
a minimized part of the functional instead of postulating them; in this case the
problem would be

min
u(x)

{∫ 1

0

F

(
u, u′,

∫ 1

0

u(t)dt

)
dx+ β1(u(0)− 1)2 + β2u(1)2

}
where β1 ≥ 0 and β2 ≥ 0 are the additional weight coefficients.

We bring the problem (37) to the form of the standard variational problem,
accounting for the equality (36) with the Lagrange multiplier λ; the objective func-
tional becomes

J =

∫ 1

0

(
u′2 + α(u− a)2

)
dx+ λ

(
a−

∫ 1

0

u dx

)
or

J =

∫ 1

0

(
u′2 + α(u− a)2 + λ(a− u)

)
dx

The parameter a and the function u(x) are the unknowns. The stationary condition
with respect to a is

∂J

∂a
=

∫ 1

0

(−2α(u− a) + λ) dx = 2αa+ λ− 2

∫ 1

0

u dx︸ ︷︷ ︸
=a

= 0,

it allows for linking a and λ,
λ = 2(1− α)a.

The stationary condition with respect to u(x) (Euler equation) is

2u′′ − 2α(u− a) + λ = 0

We exclude λ using the obtained expression for λ, and obtain

2u′′ − 2αu+ a = 0 (38)

The integro-differential system (36) and (38) with the boundary conditions (35)
determines the minimizer.

To solve the system, we first solve (38) and (35) treating a as a parameter,

u(x) =
a

2α
+A sinh(

√
αx) +B cosh(

√
αx)

where

A =
( a

2α
− 1
) cosh(

√
α)

sinh(
√
α)
, B = 1− a

2α
,

and substitute this solution into (36) obtaining the linear equation for the remaining
unknown a. We have

u(x) = c1(x)a+ c2(x)

15



where

c1(x) =
1

2α

(
1 +

cosh(
√
α)

sinh(
√
α)

sinh(
√
αx)− cosh(

√
αx)

)
and

c2(x) =

(
cosh(

√
αx)− cosh(

√
α)

sinh(
√
α)

sinh(
√
αx)

)
and (36) becomes

a = a

∫ 1

0

c1(x)dx+

∫ 1

0

c2(x)dx

which implies

a =

∫ 1

0
c2(x)dx

1−
∫ 1

0
c1(x)dx

The general procedure is similar: We always can rewrite a minimization
problem in the standard form adding new variables (as the parameter c in the
previous examples) and corresponding Lagrange multipliers.

Inequality in the isoperimetric condition Often, the isoperimetric con-
straint is given in the form of an inequality

min
u

∫ b

a

F (x, u, u′)dx subject to

∫ b

a

G(x, u, u′)dx ≥ 0 (39)

In this case, the additional condition λ ≥ 0 is added to the Euler-Lagrange
equations (2).

Remark 2.2 Sometimes, the replacement of an equality constraint with the cor-
responding inequality can help to determine the sign of the Lagrange multiplier. For
example, consider the Dido problem, and replace the condition that the perimeter
is fixed with the condition that the perimeter is smaller than or equal to a constant.
Obviously, the maximal area corresponds to the maximal allowed perimeter and the
constraint is always active. On the other hand, the problem with the inequality
constraint requires positivity of the Lagrange multiplier; so we conclude that the
multiplier is positive in both the modified and original problem.

Homogeneous with a power functionals To complete the considerations,
consider a larger class of homogeneous with a power p functionals, I(qu) =
qpI(u) where q > 0 is an arbitrary positive number. For example function
I(x) = ax4 is homogeneous with the power four, because I(qx) = aq4x4 =
q4I(x). Here, p 6= 1 is a real number. for all u. For example, the functional can
be equal to

J3(u) =

∫ 1

0
(u′)2dx∣∣∣∫ 1

0
udx

∣∣∣p , u(0) = u(1) = 0, u 6≡ 0 (40)

16



which implies that it is homogeneous with the power 2 − p, because J3(qu) =
q2−pJ3(u).

The minimization of such functionals leads to a trivial result: Either infu J3 =
0 or infu J3 = −∞, because the positive factor qp can be made arbitrarily large
or small.

More exactly, if there exist u0 such that I(u0) ≤ 0, than infu J3 = −∞;
the minimizing sequence consists of the terms qku0 where the multipliers qk are
chosen so that lim qpk =∞.

If I(u0) ≥ 0 for all u0, than infu J3 = 0; the minimizing sequence again
consists of the terms qku0 where the multipliers qk are chosen so that lim qpk = 0.

Remark 2.3 In the both cases, the minimizer itself does not exist but the mini-
mizing sequence can be built. These problems are examples of variational problems
without classical solution that satisfies Euler equation. Formally, the solution of
problem (40) does not exist because the class of minimizers is open: It does not
include u ≡ 0 and u ≡ ∞ one of which is the minimizer. We investigate the
problems without classical solutions in Chapter ??.

2.2 Constraints in boundary conditions

Constraints on the boundary, fixed interval Consider a variational prob-
lem (in standard notations) for a vector minimizer u. If there are no constrains
imposed on the end of the trajectory, the solution to the problem satisfies n
natural boundary conditions

δu(b) · ∂F
∂u′

∣∣∣∣
x=b

= 0

(For definiteness, we consider here conditions on the right end, the others are
clearly identical).

The vector minimizer of a variational problem may have some additional
constraints posed at the end point of the optimal trajectory. Denote the bound-
ary value of ui(b) by vi The constraints are

φi(v1, . . . vn) = 0 i = 1, . . . , k; k ≤ n

or in vector form,
Φ(b, v) = 0,

where Φ is the corresponding vector function. The minimizer satisfies these
conditions and n − k supplementary natural conditions that are derived from
the minimization requirement. Here we derive these supplementary boundary
conditions for the minimizer.

Let us add the constrains with a vector Lagrange multiplier λ = (λ1, . . . .λk)
to the problem. The variation of v = u(b) gives the conditions

δv ·

[
∂F

∂u′

∣∣∣∣
x=b,u=v

+
∂Φ

∂v
λ

]
= 0

17



The vector in the square brackets must be zero because of arbitrariness of δu(b).
Next, we may exclude λ from the last equation (see the previous section ??):

λ = −

[(
∂Φ

∂u

)T
∂Φ

∂u

]−1
∂F

∂u′

∣∣∣∣
x=b,u=v

(41)

and obtain the conditionsI − ∂Φ

∂u

T
[(

∂Φ

∂u

)T
∂Φ

∂u

]−1
∂Φ

∂u

 ∂F

∂u′

∣∣∣∣
x=b,u=v

= 0 (42)

The rank of the matrix in the parenthesis is equal to n − k. Together with
k constrains, these conditions are the natural conditions for the variational
problem.

2.2.1 Example

min
u1,u2

∫ b

a

(u′21 + u′22 + u′3)dx, u1(b) + u2(b) = 1, u1(b)− u3(b) = 1,

We compute

∂F

∂u′
=

 2u1

2u2

1

 ,
∂Φ

∂u
=

 1 1
1 0
0 −1

 ,

(please continue..)

Free boundary with constraints Consider a general case when the con-
straints Φ(x, u) = 0 are posed on the solution at the end point. Variation of
these constrains results in the condition:

δΦ(x, u)|x=b =
∂Φ

∂u
δu+

(
∂Φ

∂x
+
∂Φ

∂u
u′
)
δx

Adding the constraints to the problem with Lagrange multiplier λ, performing
variation, and collecting terms proportional to δx, we obtain the condition at
the unknown end point x = b

F (x, u, u′)− ∂F

∂u′
u′ + λT

(
∂Φ

∂x
+
∂Φ

∂u
u′
)

= 0

where λ is defined in (41). Together with n−k conditions (42) and k constraints,
they provide n+ 1 equations for the unknowns u1(b), . . . , un(b), b.
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3 Pointwise Constraints

3.1 Stationarity conditions

Some variational problems deal with a vector minimizer that is subject to con-
straints in every point of the trajectory. For example, the problem of geodesics
asks for the shortest path between two points on a surface, if the path lies on
the surface. These problems are addressed by introducing a Lagrange function
instead of Lagrange multipliers.

Consider a variational problem for a vector-valued minimizer u = u1, . . . un.

min
u

∫ b

a

F (x, u, u′)dx

Assume that the minimizer satisfies a certain algebraic constraint in each point
of any admissible trajectory,

G(x, u) = 0, ∀x ∈ (a, b) (43)

We arrive at the pointwise constrained variational problem

min
u

∫ b

a

F (x, u, u′)dx subject to G(x, u) = 0, ∀x ∈ (a, b) (44)

As in the isoperimetric problem, we use the Lagrange multipliers method to
account for the constraint. This time, the constraint must be enforced in every
point of the trajectory, therefore the Lagrange multiplier becomes a function of
x. To prove the method, it is enough to pass to the finite-dimensional problem;
after discretization, the constraint is replaced by the set of equations

G(x, u) = 0 ⇒ G(xi, ui) = 0, i = 1, . . . N.

that requires that the constraint (43) is enforced at the points xi. Each of this
constraints, multiplied by its own Lagrange multiplier µ1, . . . µN , must be added
to the functional. The set of these multipliers converges to a function µ(x) when
N →∞. The variational problem becomes

min
u

∫ b

a

[F (x, u, u′) + µ(x)G(x, u)] dx (45)

The necessary conditions consist of constraints (43) and Euler equation:

G(x, u, u′) = 0 (46)

− d

dx

∂F

∂u′
+
∂F

∂u
+ µ

∂G

∂u
= 0, (47)

that define functions u(x) and µ(x).
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Elimination of µ(x) In scalar form, equation (47) is written are the system
of differential equations:

∂F

∂uk
− d

d x

∂F

∂u′k
+ µ

∂G

∂uk
= 0, k = 1 . . . , n.

We can express µ = µ(x) from each equation of the system

µ(x) =

(
∂F

∂ui
− d

d x

∂F

∂u′i

)(
∂G

∂ui

)−1

, i− = 1, . . . , n

and obtain n− 1 equations(
∂F

∂u1
− d

d x

∂F

∂u′1

)(
∂G

∂u1

)−1

=

(
∂F

∂uk
− d

d x

∂F

∂u′k

)(
∂G

∂uk

)−1

, k = 1, . . . , n

for u1, . . . un. This system, supplemented with the constraint G(x, u) = 0, allows
for determination of n minimizers u1, . . . un.

The general case of several constraints is considered similarly. Euler equation
forms a linear system for vector-function µ; it can be excluded from the system.

A pointwise constraint in the form of inequality Consider the constraint
in the form of pointwise inequality:

G(x, u) ≤ 0, u = u(x), ∀x ∈ [a, b] (48)

This type of constraints is also taken into account by Lagrange function µ(x) ≥
0. The consideration is similar to the arguments used for isoperimetric and
finite-dimensional problems with inequality constraints. The stationarity con-
ditions are (compare with (47)(

d

dx

∂

∂u′
+

∂

∂u

)
(F + µG) = 0, (49)

G(x, u) ≤ 0, µ(x) ≥ 0, ∀x (50)

µG(x, u) = 0 : Either µ = 0, G < 0 or µ > 0, G = 0. (51)

A pointwise constraint in the form of differential equation This con-
straint is considered by a similar technique. An example will be given in the
next note.

3.2 Geodesics on a sphere

Geodesics on a surface is the shortest path between two points A and B on it.
Let us find a geodesics on a sphere, or the shortest path bewteen A and B.

Assume that the path that joints points A and B is represented in parametric
form

(x(s), y(s), z(s)), s ∈ [s0, s1],

(x(s0), y(s0), z(s0)) = A, (x(s1), y(s1), z(s1)) = B (52)
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The path lies on a sphere:

G (x(s), y(s), z(s)) = 0 where G(x, y, x) = x2 + y2 + z2 −R2. (53)

.
The distance along the trajectory is∫ s1

s0

P (x′, y′, z′)ds, P =
√
x′(s)2 + y′(s)2 + z′(s)2 subject to (53, 52). (54)

where x′, y′, z′ are the derivatives: x′ = dx
ds , y

′ = dy
ds , z

′ = dz
ds . Thus, find-

ing a geodesics is a pointwise constrained variational problem. Introduce the
Lagrange function µ(s) and write the extended functional as

min
x(s),y(s),z(s)

∫ s1

s0

(P (x′, y′, z′) + µ(s)G(x, y, z)) ds; (55)

the boundary values (52) are fixed.

Transformations and the solution The Lagrangian is:

P (x′, y′, z′) + µ(s)G(x, y, z) (56)

The Euler-Lagrange equation with respect of variation of the function x(s) is

d

ds

x′

P
− 2µx = 0

and similar for y and x We find µ from these equations

1

2x

d

ds

(
x′

P

)
=

1

2y

d

ds

(
y′

P

)
=

1

2z

d

ds

(
z′

P

)
= µ

The first two equalities are transformed to

y
x′′P − x′P ′

P 2
= x

y′′P − y′P ′

P 2

and

x
y′′P − y′P ′

P 2
= y

z′′P − z′P ′

P 2

Rearranging terms, we find

P ′

P
=
x′′y − y′′x
x′y − y′x

=
z′′y − y′′z
z′y − y′z

(57)

Note that the expressions in the numerators of the second and third terms
are full derivatives of the denominators of these terms:

x′′y − y′′x
x′y − y′x

=
(x′y − y′x)′

x′y − y′x
= [ln(x′y − y′x)]′

and similarly
z′′y − y′′z
z′y − y′z

= [ln(z′y − y′z)]′
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Remark 3.1 (Reminder) Recall definition of logarithmic derivative:

f ′(s)

f(s)
= [ln f(s)]′

Recall also that integration of the relation [ln a(s)]′ = [ln b(s)]′ where a(s) and b(s)
are some positive differentiable functions, implies ln a(s) = ln b(s) + lnC where
C > 0 is a constant; exponentiation then gives a(s) = Cb(s)

The last two terms in (57) are logarithmic derivatives. We write the second
equality in (57) as

[ln(x′y − y′x)]′ = [ln(z′y − y′z)]′.
Integration gives

(x′y − y′x) = C1(z′y − y′z) (58)

Rearranging terms in (58) once more, we write

y′

y
=

[x− C1z]
′

x− C1z
or [ln(y)]′ = [ln(x− C1z)]

′

Integrating again, we find ln(y) = ln(x − C1z) + lnC2; exponentiation shows
that x, y, z are linearly related

y = C2x− C1C2z.

The found optimal trajectory (geodesics) lies on the surface of the sphere
and on a plane that passes through the origin (the center of the sphere). The
constants of integration C1 and C2 are used to fix the position of that plane. A
geodesics goes along the meridian that passes through the points A and B.

Remark 3.2 There are two paths that connect the points A and B along the
meridian; one of them (the optimal one) is shorter than πR, the other one is
longer.

3.3 Shortest path around an obstacle

Let us find the shortest path between two points on a plane assuming that there
is an obstacle between these points and the path must go around the obstacle.
The coordinates of the points are set to be A = (0, 0) and B = (d, 0). The
obstacle O is described as

O = {(x, y) : φ1(x) < y < φ2, x ∈ [a, b]

φ1(a) = φ1(b) = 0; φ1(x) ≤ 0, ∀x ∈ (a, b)

φ2(a) = φ2(b) = 0; φ2(x) ≥ 0, ∀x ∈ (a, b)},

φ1(x) and φ2(x) are differentiable functions. We are searching for the path y(x)
that minimizes the distance and does not belong to O:

D(y) =

∫ d

0

√
1 + [y′(x)]2dx (x, y) 6∈ O (59)
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There are two paths that deliver a local minimum to (59), one y1(x) ≤ 0 that
goes below O

y1(x)− φ1(x) ≤ 0,∀x ∈ (a, b) (60)

and the other y2(x) ≥ 0 goes above O

y2(x)− φ2(x) ≥ 0,∀x ∈ (a, b)

These paths should be found independently of each other and their lengths
should be compared. We show how to find the best path y1(x), the other one is
found similarly. The variational problem (60) is of the type(48), it is constrained
by pointwise inequalities.

Analysis The augmented Lagrangian is

L =
√

1 + [y′1]2 + λ(y1 − φ1), λ ≥ 0.

where λ is the Lagrange function by the inequality constraint (60). The sta-
tionarity conditions are

d

dx
Θ(y′1)− λ = 0, λ ≥ 0 (61)

λ(y1 − φ1) = 0. (62)

where

Θ(y′) =
y′1√

1 + [y′1]2

We find from (61) and (62) that

Θ is constant if λ = 0, y1(x) < φ1(x)
Θ increases if λ > 0, y1(x) = φ1(x)

Relations (61) show that Θ monotonically increases with x. Notice that
Θ(y′) is a monotonically increasing function of y′, therefore y′(x) also mono-
tonically increases with x. This means that y(x) is convex in (a, b). The second
derivatiive [y′(x)]′ is nonegative, y(x)′′ ≥ 0.

Equality (62) states that if y1(x) < φ1(x) then λ = 0 and y′1 = constant:
The optimal trajectory is a straight line if y′(x) does not coincide with φ1(x).
The optimal trajectory satisfies the relations

y′1(x) =

{
constant if y1 < φ1

increases if y1 = φ1
(63)

In addition, (63) also shows that y′1(xs) = φ′1(xs) in the points xs where y1(x)
touches φ′1(x) and that φ′1(xs) is convex in the segments where y1 = φ1

We conclude that the optimal path y1(x) is the convex envelope of φ1(x)
on [a, b]. Convex envelope is the maximal of all convex functions that do not
exceed φ1. We denote it as

y1 = Cφ1, x ∈ [a, b].
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A similar argument shows that the negative of the optimal upper path y2 is
the convex envelope of the negative of φ2, or

y2 = −C(−φ2), x ∈ [a, b].

Finally, we need directly compare the lengths D(y1) and D(y2), see (59), to
determine which of them deliver the global minimum of D.
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