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1 Introduction

Many variational problems ask for a constrained minimum of a variational func-
tional. We will discuss several types of constraints.

(i) Isoperimetric problem (Section ??). Minimize an integral functional if
the values of the others integral functionals are given. The classic example is
the Dido problem: maximize the area encircled by a rope of a given length.

min
y(x),T

∫ T

0

y(x) dx subject to

∫ T

0

√
1 + (y′)2 dx u(0) = 0, u(T ) = 0 (1)

where
The problem of minimization of the product, ratio, or superposition of the

integrals can also be reduced to constrained variational problems, as described
in Section ??. An example is the problem of the principle eigenfrequency that is
defined as a ratio between the total potential and kinetic energy of an oscillating
body.

(ii) Problem with constraints imposed at each point of the trajectory (Section
??). An example is a problem of geodesics: minimize the distance of the path
between two points if the path everywhere belongs to a given surface φ(x, x, z) =

1



0.

min
u(t)=U

∫ 1

0

ds(t) dt, ds =

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dy

dt

)2

dt subject to φ(x, x, z) = 0

(2)
where

U = {u = (u1(t), u2(t), u3(t)) : u(0) = A, u(1) = B}

(iii) Problems with differential constraints (Section ??). The simplest variational
problem can be rewriten this way:

min
u(x),v(x)

∫ T

0

F (x, u, v) dx subject to u′ = v (3)

More general differential constraints L(u, u′) = 0 can be imposed as well. A
example is the problem of minimization of the fuel consumption by a vehicle
that moves in the given time T between two points A and B, if the rate of spend
fuel f defines the speed of the vehicle u′ through a differential equation of the
motion that depends on f : L(u, u′, f) = 0.

min
f>0

∫ T

0

f(t) dt subject to L(u, u′, f) = 0, u(0) = A, u(T ) = B. (4)

2 Lagrange multipliers: Vector problem

2.1 Lagrange multipliers method

Reminding of the technique discussed in calculus, we first consider a finite-
dimensional problem of constrained minimization. Namely, we want to find the
condition of the minimum:

J = min
x
f(x), x ∈ Rn, f ∈ C2(Rn) (5)

assuming that m constraints are given

gi(x) = 0 i = 1, . . .m, m ≤ n, (6)

The vector form of the constraints is

g(x) = 0

where g is an m-dimensional vector-function of an n-dimensional vector x.
To find the minimum, we add the constraints with the Lagrange multipliers

λ = (λ1, . . . λm) and consider the problem for J(x, λ)

J(x, λ) = min
x

[
f(x) +

m∑
i

λigi(x)

]
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The stationary conditions and the constraints form the system

dL

dxk
=

df

dxk
+

m∑
i

λi
dgi
dxk

= 0, k = 1, . . . n, (7)

dL

dλi
= gi(x) = 0 i = 1, . . .m (8)

The vector form of these relations is

df

dx
+W · λ = 0, g(x) = 0 (9)

where the n×m Jacobian matrix W is

W =
dg

dx
or, by elements, Wij =

dgi
dxj

The system (9) together with the constraints (6) forms a system of n+ p equa-
tions for n+ p unknowns: Components of the vectors x and λ.

Lagrange explanation Lagrange came to the method by considering an equi-
librium of a particle on a surface. Assume that a particle moves minimizing its
potential energy V (x) that depends on the point x = (x1, x2, x3) in space. In
the equilibrium point, energy V (x) reaches a local minimum. The force f acting
on the particle is f = −dVdx . The particle reaches an equilibrium at a point x
where f(x) = 0.

Now assume that the particle moves along a surface g(x) = 0. the Third law
of Newton states that for every action force f , there is an equal and opposite
reaction force. The reaction force exerted from the surface R(x) = 0, its mag-
nitude λ is a priori unknown, and its direction is co-directed with the normal
dg
dx to the surface, R = −λ dgdx . The equilibrium is reached at a point where the
sum of the action and reaction forces is zero, f +R = 0, or

dV

dx
+ λ

dg

dx
= 0

In other words, force f(x) in an equilibrium point x is directed along the normal
to the surface g(x).

2.2 Background of the method

Consider the finite-dimensional minimization problem

J = min
x1,...xn

F (x1, . . . xn) (10)

subject to one constraint
g(x1, . . . xn) = 0 (11)
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and assume that solutions to (11) exist in a neighborhood of the minimal point.
It is easy to see that the described constrained problem is equivalent to the
unconstrained problem

J∗ = min
x1,...xn

max
λ

(F (x1, . . . xn) + λg(x1, . . . xn)) (12)

Indeed, the operation of maximization gives

max
λ

λg(x1, . . . xn) =

{
∞ if g 6= 0
0 if g = 0

because λ can be made arbitrary large or arbitrary small. This possibility forces
us to choose such x that delivers equality in (11), otherwise the cost of the
problem (12) would be infinite (recall that we look for vector x that minimizes
J∗). By assumption, such x exists. On the other hand, the constrained problem
(10)-(11) does not change its cost J if the term λg(x) = 0 is added to it.
Therefore J = J∗ and the problem (10) - (11) is equivalent to (12).

Minimax and maximin Consider the minimax and maximin problems

Iminmax = min
u

max
v

f(u, v) (13)

Imaxmin = max
v

min
u
f(u, v) (14)

that differ by the sequence of extremal operations. Let us show that

Iminmax ≥ Imaxmin (15)

We call φ(v) = minu f(u, v) and ψ(u) = maxv f(u, v) The inequalities hold

φ(v) ≤ f(u, v) ≤ ψ(u) ∀u, v

for all values of u and v. In particular

max
v

φ(v) ≤ f(u, v) ≤ min
u
ψ(u), ∀u, v

which is equivalent to (15).
The interchange of max and min operations preserves the problem’s cost if

the function f(u, v) has a stationary saddle point. This happens, if f(u, v) is
convex with respect to u and concave with respect to v, for all values of u and
v. In this case.

Iminmax = Imaxmin

Augmented problem If we interchange the sequence of the two extremal
operations in (12), we would arrive at the dual problem JD

J ≥ JD(x, λ) = max
λ

min
x

(F (x) + λg(x)) (16)
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where x is a vector x = (x1, . . . xn). The inequality J ≥ JD is called the weak
duality relation

The interchange of max and min- operations preserves the problem’s cost if
f(x) + λg(x) is a convex function of x because it is a linear function of λ. In
this case J = JD. This equality is called the strong duality relation

The procedure is easily generalized for the case of several constraints. In this
case, we add each constraint with its own Lagrange multiplier to the minimizing
functional and arrive at expression (9).

2.3 Examples

Example 2.1

J = min
x

1

2

n∑
i=1

x2i subject to aTx = b

where x, a ∈ Rn, b is a scalar.
The extended Lagrangian is

I =
1

2

n∑
i=1

x2i + λ(aTx− b)

where λ is a scalar Lagrange multiplier.
Interchange the extremal operations, compute derivative with respect of x and

set it to zero:
dI

dxi
= xi + λai = 0 or x = −λa

This conditions shows that vectors x and a are proportional to each other: x = λa.
Now we find λ from the constraint:

aTx− b = λ|a|2 − b = 0 ⇒ λ =
b

|a|2

and find optimal value x0 of x

x0 = −λa = − b

|a|2
a

The cost J of the problem is

J =
1

2
xT0 x0 =

1

2

b2

|a|2

Remark 2.1 Notice that the derivative of the scalar product aTx with respect of
a vector x is

d(aTx)

dx
= a

Similarly, the derivative of a quadratic form is computed as

d(xTAx)

dx
= 2Ax
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Here, matrix A is assumed to be symmetric: A = AT .

The next example shows the eigenvalue problem.

Example 2.2
J = min

x
xTAx subject to xTx = 1

where x,∈ Rn, A is a symmetric n× n matrix.
The extended Lagrangian is

L = xTAx+ λ(xTx− 1)

The optimality condition

dL

dx
= 2 (Ax− λx) = 2(A− λI)x = 0

shows that λ is an eigenvalue of A and x is the corresponding normalized eigen-
vector. The cost J is J = λ. Clearly, the minimum corresponds to the smallest
eigenvalue J = λmin.

Example 2.3 Consider the problem

J = min
x

n∑
i=1

A2
ixi subject to

n∑
i=1

1

xi − k
=

1

c
, xi > k, c > 0, k > 0.

where A = (A1, . . . , An) is a given vector, c and k are given constants.
Using Lagrange multiplier λ we rewrite it in the form:

Ja = min
x

n∑
i=1

A2
ixi + λ

(
n∑
i=1

1

xi − k
− 1

c

)
.

The condition dJa
dx = 0 shows that

A2
i −

λ

(xi − k)2
= 0, or

1

xi − k
=
|Ai|√
λ

i = 1, . . . , n.

Substitute these values into the expression for the constraint and obtain an equation
for λ

1

c
=

n∑
i=1

1

xi − k
=

1√
λ

n∑
i=1

|Ai|

Solving this equation, we find λ and the minimizer xi

√
λ = c

n∑
i=1

|Ai|, xi = k +

√
λ

|Ai|
,

as well as the optimal value of J :

J = k

n∑
i=1

A2
i + c

(
n∑
i=1

|Ai|

)2

Observe, the minimum is a weighted sum of squares of L2- and L1-norms of the
vector A = [A1, . . . , An].
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2.4 Exclusion of Lagrange multipliers

We can exclude the multipliers λ from the system (9) assuming that the con-
straints are independent, that is that rank(W ) = m (Recall that W = dg

dx ). We

project the n-dimensional vector d
dxF onto an (n−m)-dimensional subspace al-

lowed by the constraints, and require that this projection is zero. The procedure
is as follows.

1. Multiply (9) by WT :

WT df

dx
+WTW · λ = 0, (17)

Since the constraints are independent, m×m matrix WTW is nonsingular,
det(WTW ) 6= 0.

2. Find m-dimensional vector of multipliers λ:

λ = −(WTW )−1WT df

dx
,

3. Substitute the obtained expression for λ into (9) and obtain:

(I − P )
df

dx
= 0 P = W (WTW )−1WT (18)

Projection Matrices P and I−P are called the projector to the subspace W
and projector to the orthogonal subspace, respectively.

Definition A symmetric n × n matrix P = W (WTW )−1WT is called a
projector, if its eigenvalues are equal to one or zero.

One can check that P is a projector by checking equality P 2 = P :

P 2 = [W (WTW )−1WT ][W (WTW )−1W ] = W (WTW )−1WT = P

(we see this immediately by opening parenthesis and cancelingWTW (WTW )−1 =
I.

If P is a projector on a subspace, (I − P ) is a projector on the orthogonal
subspace, since the eigenvalue of P that are equal to one become zero eigenvalues
of I − P , and vise versa. The number m of linearly independent constraints
equals to the rank of P : it has m eigenvalues equal to one and n−m eigenvalues
equal to zero. Therefore the rank of I−P is equal to n−m, and the system (18)
produces n−m independent optimality conditions. The remaining m conditions
are given by the constraints (6): gi = 0, i = 1, . . .m. Together, these two groups
of relations produce n equations for n unknowns x1, . . . , xn.

Below, we consider several special cases.

Degeneration: No constraints When there are no constraints, W = 0, the
problem trivially reduces to the unconstrained one, and the necessary condition
(18) becomes df

dx = 0 holds.
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Degeneration: n constraints Suppose that we assign n independent con-
straints. They themselves define vector x and no additional freedom is left. Let
us see what happens with the formula (18) in this case. The rank of the matrix
W (WTW )−1WT is equal to n, (W−1 exists) therefore this matrix-projector is
equal to I:

P = W (WTW )−1WT = I.

The equation (18) becomes a trivial identity. No new condition is produced by
(18) in this case, as it should be. The set of admissible values of x shrinks to
one point and it is completely defined by the n equations g(x) = 0.

One constraint Another special case occurs if only one constraint is imposed;
in this case m = 1, the Lagrange multiplier λ becomes a scalar, and the condi-
tions (9) have the form:

df

dxi
+ λ

dg

dxi
= 0 i = 1, . . . n

which show that the vectors df
dxi

and dg
dxi

are parallel, df
dxi
|| dgdxi

Example 2.4 (Quadratic function) Consider minimization of a quadratic func-
tion

f(x) =
1

2
xTAx+ aTx

subject to linear constraints
Bx = β

where A > 0 is a symmetric positive definite n × n matrix, B is a m × n matrix
of constraints, a and β are the n- and m-dimensional vectors, respectively. Here,
W = B. The optimality conditions consist of m constraints Bx = β and n −m
linear equations

(I −B(BTB)−1BT )(Ax+ a) = 0

2.5 Duality

Let us return to the constrained problem

J = min
x

max
λ

L(x, λ), L(x, λ) = (f(x) + λT g(x))

Interchanging the max and min operations, we find the dual problem

JD = max
λ

min
x

(f(x) + λT g(x))

The cost JD of the dual problem is not larger than J ,

JD ≤ J (19)
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The stationarity conditions for the dual problem are:

df

dx
+ λTW (x) = 0, W =

dg

dx
.

Instead of excluding λ that has been done above, now we do the opposite:
Exclude n-dimensional vector x from n stationarity conditions, solving them
for x and thus expressing x through λ: x = φ(λ). When this expression is
substituted into the original problem, it becomes

JD = max
λ
{F (φ(λ)) + λT g(φ(λ))};

This problem is called dual problem to the original minimization problem.
The dual problem asks for maximization of the cost, therefore any admissible

vector λ provides the lower bound for JD and therefore, as JD ≤ J , for J .
Recall, that any admissible vector x provides the upper bound for the original
minimization problem. Therefore, the pair of the admissible vectors x and λ
give the two-side bounds for the cost function.

Dual form for quadratic problem Consider again minimization of a quadratic
function in example 2.4

f(x) =
1

2
xTAx+ aTx

subject to linear constraints
Bx = β

Let us find the dual form for it. The Lagrangian is

L =
1

2
xTAx+ aTx+ λT (Bx− β).

The stationarity conditions are:

dL

dx
= Ax+ d+BTλ = 0

We solve them for x, obtaining

x = −A−1(d+BTλ);

and substitute it into the Lagrangian:

LD(λ) =
1

2
(dT + λTB)A−1(d+BTλ)− λTBA−1(d+BTλ)

− λTβ − dTA−1(d+BTλ)

Simplifying, we obtain the dual Lagrangian

LD(λ) = −λTβ − 1

2
(BTλ+ d)TA−1(BTλ+ d)

and the dual problem
JD = max

λ∈Rm
LD(λ)

is also a quadratic form over the m dimensional vector of Lagrange multipliers
λ.
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2.6 Inequality constraints

Nonnegative Lagrange multipliers Consider the problem with a constraint
in the form of inequality:

min
x1,...xn

F (x1, . . . xn) subject to g(x1, . . . xn) ≤ 0 (20)

In order to apply the Lagrange multipliers technique, we reformulate the con-
straint as:

g(x1, . . . xn) + v2 = 0

where v is a new auxiliary variable.
The extended Lagrangian becomes

L∗(x, v, λ) = f(x) + λg(x) + λv2

and the optimality conditions with respect to v are

∂L∗
∂v

= 2λv = 0 (21)

∂2L∗
∂v2

= 2λ ≥ 0 (22)

The second condition requires the nonnegativity of the Lagrange multiplier and
the first one states that the multiplier is zero, λ = 0, if the constraint is satisfied
as a strong inequality, g(x0) > 0.

The stationary conditions with respect to x

d
dxf = 0 if g ≤ 0
d
dxf + λ d

dxg = 0 if g = 0

state that either the minimum correspond to an inactive constraint (g < 0) and
coincide with the minimum in the corresponding unconstrained problem, or the
constraint is active (g(xb) = 0) and the gradients of f and g are parallel and
directed in opposite directions:

d
dxf(x0) · ddxg(xb)

| ddxf(xb)| | ddxg(xb)|
= −1, xb : g(xb) = 0

The necessary conditions can be expressed by a single formula using the
notion of infinitesimal variation of x or a differential. Let x0 be an optimal point,
xtrial – an admissible (consistent with the constraint) point in an infinitesimal
neighborhood of x0, and δx = xtrial−x0. Then the optimality condition becomes

d

dx
f(x0) · δx ≤ 0 ∀δx (23)

Indeed, in the interior point x0 (g(x0) < 0) the vector δx is arbitrary, and the
condition (23) becomes d

dxf(x0) = 0. In a boundary point x0 (g(x0) = 0),
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the admissible points satisfy the inequality d
dxg(x0) · δx ≤ 0, the condition (23)

follows from (22).
It is easy to see that the described constrained problem is equivalent to the

unconstrained problem

L∗ = min
x1,...xn

max
λ≥0

(F (x1, . . . xn) + λg(x1, . . . xn)) (24)

that differs from (16) by the requirement λ ≥ 0.

Several constraints: Karush-Kuhn-Tucker conditions Several inequal-
ity constraints are treated similarly. Assume the constraints in the form

g1(x) ≤ 0, . . . , gm(x) ≤ 0.

The stationarity condition can be expressed through nonnegative Lagrange mul-
tipliers

d

dx
f(x) +

m∑
i=1

λi
d

dx
gi(x) = 0, (25)

where
λi ≥ 0, λigi(x) = 0, i = 1, . . . ,m. (26)

The minimal point corresponds either to an interior point of the admissible
set (all constraints are inactive, gi(x0) < 0), in which case all Lagrange multi-
pliers λi are zero, or to a boundary point where p ≤ m constraints are active.
Assume for definiteness that the first p constraints are active, that is

g1(x0) = 0, . . . , gp(x0) = 0. (27)

The conditions (26) show that the multiplier λi is zero if the ith constraint
is inactive, gi(x) > 0. Only active constraints enter the sum in (28), and it
becomes

d

dx
f(x) +

p∑
i=1

λi
d

dx
gi(x) = 0, λi > 0, i = 1, . . . , p. (28)

In the space Rm of the components of Lagrange multiplier vector, the term∑p
i=1 λi

d
dxgi(x0) is a cone with the vertex at x0 stretched on the rays d

dxgi(x0) >

0, i = 1, . . . , p. The condition (28) requires that the negative of d
dxf(x0) belongs

to that cone.
Alternatively, the optimality condition can be expressed through the admis-

sible vector δx,
d

dx
f(x0) · δx ≥ 0 (29)

Assume again that the first p constraints are active, as in (??)

g1(x0) = . . . = gp(x0) = 0.
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In this case, the minimum is given by (29) and the admissible directions of δx
satisfy the system of linear inequalities

δx · d
dx
gi ≥ 0, i = 1, . . . , p. (30)

These conditions are called Karush-Kuhn-Tucker conditions, see []
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